organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2,6-Di­fluoro­phen­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 6 May 2009; accepted 12 November 2009; online 18 November 2009)

The title compound, C8H5F2N3S, was synthesized by the reaction of 2,6-difluoro­benzoic acid and thio­semicarbazide. The dihedral angle between the thia­diazole and phenyl ring is 35.19 (14)°. In the crystal structure, inter­molecular N—H⋯N hydrogen bonds form chains along the b and c axes.

Related literature

For the biological activity of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pesticide Sci, 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]). For bond-length data see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5F2N3S

  • Mr = 213.21

  • Monoclinic, P 21 /c

  • a = 9.0920 (18) Å

  • b = 8.7400 (17) Å

  • c = 10.936 (2) Å

  • β = 95.85 (3)°

  • V = 864.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.931, Tmax = 0.964

  • 1670 measured reflections

  • 1568 independent reflections

  • 1189 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.109

  • S = 1.01

  • 1568 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.17 3.017 (4) 166
N3—H3B⋯N1ii 0.86 2.30 3.088 (3) 152
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent a class of biologically important compounds, which often exhibit insecticidal, fungicidal and other biological activities (Nakagawa et al., 1996; Wang et al., 1999). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig.1, in which the bond lengths and angles are generally within normal ranges (Allen et al., 1987). The dihedral angle between the thiadiazole and phenyl ring is 35.19 (14)°. In the crystal structure, intermolecular N—H···N hydrogen bonds (Fig. 2) form chains along the b and c axes. There are also intermolecular N-H···S contacts between the molecules, which may further stabilize the structure.

Related literature top

For the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For bond-length data see: Allen et al. (1987).

Experimental top

2,6-difluorobenzoic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 90°C for 6 h. After cooling, the crude product (I) precipitated and was filtrated. Pure compound (I) was obtained by crystallization from ethanol (20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H···N hydrogen bonds and intermolecular N-H···S contacts between the molecules.
5-(2,6-Difluorophenyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C8H5F2N3SDx = 1.638 Mg m3
Mr = 213.21Melting point: 533 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0920 (18) ÅCell parameters from 25 reflections
b = 8.7400 (17) Åθ = 10–13°
c = 10.936 (2) ŵ = 0.37 mm1
β = 95.85 (3)°T = 293 K
V = 864.5 (3) Å3Block, colorless
Z = 40.20 × 0.10 × 0.10 mm
F(000) = 432
Data collection top
Enraf–Nonius CAD-4
diffractometer
1189 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.931, Tmax = 0.964l = 1313
1670 measured reflections3 standard reflections every 200 reflections
1568 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.060P)2 + 0.150P]
where P = (Fo2 + 2Fc2)/3
1568 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C8H5F2N3SV = 864.5 (3) Å3
Mr = 213.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0920 (18) ŵ = 0.37 mm1
b = 8.7400 (17) ÅT = 293 K
c = 10.936 (2) Å0.20 × 0.10 × 0.10 mm
β = 95.85 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1189 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.931, Tmax = 0.9643 standard reflections every 200 reflections
1670 measured reflections intensity decay: 1%
1568 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
1568 reflectionsΔρmin = 0.28 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.68075 (8)0.14488 (8)0.16016 (6)0.0423 (2)
F10.8904 (2)0.0561 (2)0.18276 (16)0.0637 (5)
N10.6608 (3)0.1922 (3)0.07123 (19)0.0475 (6)
C10.8942 (4)0.3350 (4)0.0851 (3)0.0606 (9)
H1B0.93190.42850.10780.073*
F20.6767 (2)0.1812 (2)0.14183 (15)0.0616 (5)
N20.6037 (3)0.3224 (3)0.02139 (19)0.0495 (6)
C20.9208 (3)0.2061 (4)0.1510 (3)0.0531 (8)
H2B0.97840.21100.21650.064*
N30.5574 (3)0.4251 (3)0.1678 (2)0.0521 (7)
H3A0.52090.50740.13380.062*
H3B0.56200.41430.24620.062*
C30.8608 (3)0.0705 (3)0.1185 (2)0.0442 (7)
C40.7736 (3)0.0549 (3)0.0209 (2)0.0362 (6)
C50.7556 (3)0.1889 (3)0.0433 (3)0.0446 (7)
C60.8123 (4)0.3281 (3)0.0144 (3)0.0571 (8)
H6A0.79610.41490.06030.069*
C70.7062 (3)0.0912 (3)0.0101 (2)0.0357 (6)
C80.6070 (3)0.3142 (3)0.0986 (2)0.0376 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0628 (5)0.0382 (4)0.0272 (3)0.0092 (3)0.0101 (3)0.0052 (3)
F10.0799 (13)0.0567 (11)0.0601 (11)0.0030 (10)0.0351 (10)0.0104 (9)
N10.0737 (17)0.0411 (12)0.0278 (11)0.0138 (12)0.0064 (11)0.0010 (9)
C10.069 (2)0.0476 (18)0.065 (2)0.0180 (16)0.0049 (17)0.0093 (16)
F20.0825 (13)0.0493 (10)0.0580 (11)0.0069 (9)0.0309 (10)0.0111 (8)
N20.0803 (18)0.0405 (13)0.0280 (11)0.0176 (12)0.0069 (11)0.0017 (10)
C20.0503 (18)0.063 (2)0.0471 (17)0.0128 (16)0.0116 (14)0.0065 (15)
N30.0824 (19)0.0448 (13)0.0304 (12)0.0185 (13)0.0128 (12)0.0008 (10)
C30.0479 (16)0.0468 (16)0.0384 (14)0.0020 (13)0.0071 (13)0.0000 (12)
C40.0389 (15)0.0363 (14)0.0333 (13)0.0015 (11)0.0035 (11)0.0016 (11)
C50.0468 (16)0.0446 (15)0.0430 (15)0.0022 (13)0.0077 (13)0.0015 (13)
C60.069 (2)0.0377 (16)0.065 (2)0.0041 (15)0.0080 (17)0.0039 (14)
C70.0432 (15)0.0362 (13)0.0279 (12)0.0014 (12)0.0051 (11)0.0011 (11)
C80.0481 (16)0.0348 (14)0.0298 (13)0.0042 (12)0.0042 (11)0.0032 (10)
Geometric parameters (Å, º) top
S—C81.733 (3)C2—C31.367 (4)
S—C71.745 (2)C2—H2B0.9300
F1—C31.352 (3)N3—C81.336 (3)
N1—C71.291 (3)N3—H3A0.8600
N1—N21.385 (3)N3—H3B0.8600
C1—C21.372 (4)C3—C41.400 (4)
C1—C61.382 (4)C4—C51.384 (4)
C1—H1B0.9300C4—C71.471 (3)
F2—C51.356 (3)C5—C61.370 (4)
N2—C81.311 (3)C6—H6A0.9300
C8—S—C786.98 (12)C5—C4—C3114.2 (2)
C7—N1—N2113.4 (2)C5—C4—C7123.0 (2)
C2—C1—C6121.1 (3)C3—C4—C7122.8 (2)
C2—C1—H1B119.5F2—C5—C6118.0 (2)
C6—C1—H1B119.5F2—C5—C4117.4 (2)
C8—N2—N1112.2 (2)C6—C5—C4124.6 (3)
C3—C2—C1118.6 (3)C5—C6—C1117.8 (3)
C3—C2—H2B120.7C5—C6—H6A121.1
C1—C2—H2B120.7C1—C6—H6A121.1
C8—N3—H3A120.0N1—C7—C4123.1 (2)
C8—N3—H3B120.0N1—C7—S113.60 (19)
H3A—N3—H3B120.0C4—C7—S123.26 (18)
F1—C3—C2117.9 (2)N2—C8—N3123.6 (2)
F1—C3—C4118.4 (2)N2—C8—S113.82 (19)
C2—C3—C4123.7 (3)N3—C8—S122.63 (19)
C7—N1—N2—C80.5 (4)C2—C1—C6—C51.5 (5)
C6—C1—C2—C31.9 (5)N2—N1—C7—C4178.8 (2)
C1—C2—C3—F1178.7 (3)N2—N1—C7—S0.9 (3)
C1—C2—C3—C40.2 (5)C5—C4—C7—N1146.4 (3)
F1—C3—C4—C5176.8 (2)C3—C4—C7—N133.2 (4)
C2—C3—C4—C51.6 (4)C5—C4—C7—S33.9 (4)
F1—C3—C4—C73.6 (4)C3—C4—C7—S146.5 (2)
C2—C3—C4—C7178.0 (3)C8—S—C7—N10.7 (2)
C3—C4—C5—F2177.7 (2)C8—S—C7—C4178.9 (2)
C7—C4—C5—F22.7 (4)N1—N2—C8—N3179.6 (3)
C3—C4—C5—C62.1 (4)N1—N2—C8—S0.1 (3)
C7—C4—C5—C6177.5 (3)C7—S—C8—N20.4 (2)
F2—C5—C6—C1179.2 (3)C7—S—C8—N3180.0 (3)
C4—C5—C6—C10.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.862.173.017 (4)166
N3—H3B···N1ii0.862.303.088 (3)152
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H5F2N3S
Mr213.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0920 (18), 8.7400 (17), 10.936 (2)
β (°) 95.85 (3)
V3)864.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.931, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
1670, 1568, 1189
Rint0.018
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.01
No. of reflections1568
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.28

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N2i0.86002.17003.017 (4)166.00
N3—H3B···N1ii0.86002.30003.088 (3)152.00
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pesticide Sci, 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds