metal-organic compounds
Bis(μ-5-nitro-2-oxidobenzoato)bis[triaquazinc(II)]
aKey Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei Province 066004, People's Republic of China
*Correspondence e-mail: qsli@ysu.edu.cn
The title complex molecule, [Zn2(C7H3NO5)2(H2O)6], is a centrosymmetric dimer containing two zinc(II) cations with distorted octahedral geometries provided by the O atoms of three water molecules and the two bridging bidentate 5-nitrosalicylate ligands. The separation between the metal centres in the dimer is 3.1790 (11) Å. The is stabilized by O—H⋯O hydrogen bonds, one of which intradimeric, linking the dimers into a three-dimensional network.
Related literature
For examples of bonding modes exhibited by salicylate anions, see: Klug et al. (1958); Risannen et al. (1987); Charles et al. (1983); Jagner et al. (1976); Fu et al. (2005). For the crystal structures of 5-nitrosalicylate zinc(II) complexes, see: Tahir et al. (1997); Morgant et al. (2006); Erxleben (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809045607/rz2375sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809045607/rz2375Isup2.hkl
The title complex was prepared by digesting a mixture of 5-nitrosalicylic acid (5 mmol) and fresh zinc hydroxide (10 mmol) in distilled water (30 ml) at 80 °C under stirring for 10 min. After filtration yellow-green crystals grew out of the solution by slow evaporation over a period of three days at room temperature. The starting zinc hydroxide was prepared from 50 ml aqueous solutions of 0.9 g of zinc chloride and 0.5 g of sodium hydroxide.
The H atoms of the water molecule were found in a difference Fourier map. However, during
they were restrained to O–H = 0.85 (1) Å and their Uiso values were set at 1.2 Ueq(O). Other H atoms were treated as riding, with C–H = 0.93 Å, and with Uiso (H) = 1.2 Ueq(C).Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The structure of the title compound, with the atom-numbering scheme, and 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii and hydrogen bonds are indicated by dashed lines. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.] |
[Zn2(C7H3NO5)2(H2O)6] | F(000) = 608 |
Mr = 601.04 | Dx = 2.031 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1942 reflections |
a = 10.858 (3) Å | θ = 2.4–25.8° |
b = 13.645 (3) Å | µ = 2.53 mm−1 |
c = 6.6367 (17) Å | T = 294 K |
β = 91.887 (4)° | Block, yellow-green |
V = 982.7 (4) Å3 | 0.26 × 0.10 × 0.08 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2009 independent reflections |
Radiation source: fine-focus sealed tube | 1418 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ϕ and ω scans | θmax = 26.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −13→13 |
Tmin = 0.752, Tmax = 0.821 | k = −17→12 |
5435 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0314P)2 + 1.0942P] where P = (Fo2 + 2Fc2)/3 |
2009 reflections | (Δ/σ)max = 0.001 |
154 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.55 e Å−3 |
[Zn2(C7H3NO5)2(H2O)6] | V = 982.7 (4) Å3 |
Mr = 601.04 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.858 (3) Å | µ = 2.53 mm−1 |
b = 13.645 (3) Å | T = 294 K |
c = 6.6367 (17) Å | 0.26 × 0.10 × 0.08 mm |
β = 91.887 (4)° |
Bruker SMART CCD area-detector diffractometer | 2009 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1418 reflections with I > 2σ(I) |
Tmin = 0.752, Tmax = 0.821 | Rint = 0.041 |
5435 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.45 e Å−3 |
2009 reflections | Δρmin = −0.55 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.52129 (4) | 0.61159 (3) | 0.44189 (8) | 0.03665 (16) | |
O1 | 0.7644 (3) | 0.37686 (19) | 0.3938 (5) | 0.0555 (9) | |
O2 | 0.6145 (2) | 0.48166 (16) | 0.4439 (4) | 0.0310 (6) | |
O3 | 0.6603 (2) | 0.67583 (17) | 0.3118 (4) | 0.0364 (6) | |
O4 | 1.2058 (2) | 0.6122 (2) | 0.1104 (5) | 0.0506 (8) | |
O5 | 1.1653 (2) | 0.4656 (2) | 0.2105 (4) | 0.0393 (7) | |
O6 | 0.4498 (3) | 0.5753 (2) | 0.1270 (5) | 0.0564 (8) | |
H6A | 0.4933 | 0.5848 | 0.0249 | 0.068* | |
H6B | 0.3721 | 0.5766 | 0.1097 | 0.068* | |
O7 | 0.4029 (3) | 0.72837 (19) | 0.4384 (5) | 0.0507 (8) | |
H7B | 0.3400 | 0.7042 | 0.4931 | 0.061* | |
H7A | 0.3907 | 0.7724 | 0.3504 | 0.061* | |
O8 | 0.5896 (3) | 0.64083 (19) | 0.7437 (4) | 0.0493 (8) | |
H8A | 0.6412 | 0.5961 | 0.7716 | 0.059* | |
H8B | 0.6131 | 0.6997 | 0.7546 | 0.059* | |
N1 | 1.1340 (3) | 0.5505 (2) | 0.1763 (5) | 0.0333 (7) | |
C1 | 0.7233 (3) | 0.4611 (2) | 0.3858 (5) | 0.0271 (8) | |
C2 | 0.8053 (3) | 0.5409 (2) | 0.3128 (5) | 0.0242 (7) | |
C3 | 0.9258 (3) | 0.5143 (3) | 0.2764 (5) | 0.0273 (8) | |
H3 | 0.9503 | 0.4496 | 0.2969 | 0.033* | |
C4 | 1.0097 (3) | 0.5813 (3) | 0.2108 (5) | 0.0281 (8) | |
C5 | 0.9774 (3) | 0.6787 (3) | 0.1786 (6) | 0.0333 (9) | |
H5A | 1.0350 | 0.7236 | 0.1346 | 0.040* | |
C6 | 0.8604 (3) | 0.7068 (3) | 0.2126 (6) | 0.0336 (9) | |
H6 | 0.8387 | 0.7719 | 0.1905 | 0.040* | |
C7 | 0.7692 (3) | 0.6412 (2) | 0.2803 (5) | 0.0268 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0288 (2) | 0.0205 (2) | 0.0615 (3) | −0.00197 (18) | 0.01434 (19) | −0.0010 (2) |
O1 | 0.0525 (18) | 0.0247 (16) | 0.092 (2) | 0.0100 (12) | 0.0359 (17) | 0.0158 (15) |
O2 | 0.0268 (13) | 0.0184 (12) | 0.0483 (17) | −0.0017 (10) | 0.0091 (11) | −0.0007 (11) |
O3 | 0.0268 (14) | 0.0236 (13) | 0.0593 (19) | 0.0032 (10) | 0.0096 (12) | 0.0079 (12) |
O4 | 0.0274 (14) | 0.0560 (19) | 0.069 (2) | −0.0043 (14) | 0.0138 (13) | 0.0088 (16) |
O5 | 0.0314 (14) | 0.0428 (17) | 0.0436 (17) | 0.0106 (12) | 0.0012 (12) | 0.0017 (13) |
O6 | 0.0329 (16) | 0.076 (2) | 0.060 (2) | −0.0017 (15) | 0.0045 (14) | −0.0002 (17) |
O7 | 0.0429 (17) | 0.0279 (16) | 0.082 (2) | 0.0012 (12) | 0.0102 (16) | 0.0103 (14) |
O8 | 0.064 (2) | 0.0238 (14) | 0.061 (2) | −0.0075 (13) | 0.0134 (15) | −0.0095 (13) |
N1 | 0.0264 (16) | 0.044 (2) | 0.0293 (18) | −0.0002 (14) | 0.0000 (13) | −0.0024 (14) |
C1 | 0.0311 (19) | 0.0213 (18) | 0.029 (2) | 0.0013 (14) | 0.0042 (15) | −0.0004 (14) |
C2 | 0.0243 (17) | 0.0244 (18) | 0.0240 (19) | −0.0004 (13) | 0.0021 (14) | 0.0008 (14) |
C3 | 0.032 (2) | 0.0263 (19) | 0.023 (2) | 0.0022 (14) | 0.0015 (15) | 0.0017 (15) |
C4 | 0.0221 (17) | 0.039 (2) | 0.023 (2) | 0.0008 (14) | 0.0012 (14) | 0.0003 (15) |
C5 | 0.0287 (19) | 0.034 (2) | 0.037 (2) | −0.0037 (15) | 0.0050 (16) | 0.0027 (17) |
C6 | 0.035 (2) | 0.0226 (19) | 0.044 (2) | 0.0003 (15) | 0.0051 (17) | 0.0069 (16) |
C7 | 0.0271 (18) | 0.0243 (18) | 0.029 (2) | 0.0021 (14) | 0.0036 (14) | 0.0015 (14) |
Zn1—O3 | 1.969 (2) | O7—H7A | 0.8457 |
Zn1—O2 | 2.041 (2) | O8—H8A | 0.8452 |
Zn1—O7 | 2.047 (3) | O8—H8B | 0.8448 |
Zn1—O2i | 2.107 (2) | N1—C4 | 1.440 (4) |
Zn1—O8 | 2.150 (3) | C1—C2 | 1.497 (5) |
Zn1—O6 | 2.260 (3) | C2—C3 | 1.386 (5) |
O1—C1 | 1.234 (4) | C2—C7 | 1.439 (5) |
O2—C1 | 1.285 (4) | C3—C4 | 1.372 (5) |
O3—C7 | 1.297 (4) | C3—H3 | 0.9300 |
O4—N1 | 1.237 (4) | C4—C5 | 1.389 (5) |
O5—N1 | 1.226 (4) | C5—C6 | 1.353 (5) |
O6—H6A | 0.8486 | C5—H5A | 0.9300 |
O6—H6B | 0.8486 | C6—C7 | 1.418 (5) |
O7—H7B | 0.8511 | C6—H6 | 0.9300 |
O3—Zn1—O2 | 90.14 (10) | Zn1—O8—H8B | 110.5 |
O3—Zn1—O7 | 97.96 (11) | H8A—O8—H8B | 118.1 |
O2—Zn1—O7 | 170.84 (10) | O5—N1—O4 | 122.3 (3) |
O3—Zn1—O2i | 169.08 (10) | O5—N1—C4 | 120.1 (3) |
O2—Zn1—O2i | 79.97 (10) | O4—N1—C4 | 117.5 (3) |
O7—Zn1—O2i | 91.59 (11) | O1—C1—O2 | 121.7 (3) |
O3—Zn1—O8 | 94.59 (11) | O1—C1—C2 | 118.2 (3) |
O2—Zn1—O8 | 89.95 (11) | O2—C1—C2 | 120.1 (3) |
O7—Zn1—O8 | 93.63 (12) | C3—C2—C7 | 118.5 (3) |
O2i—Zn1—O8 | 90.07 (10) | C3—C2—C1 | 116.2 (3) |
O3—Zn1—O6 | 86.38 (11) | C7—C2—C1 | 125.4 (3) |
O2—Zn1—O6 | 88.33 (11) | C4—C3—C2 | 121.4 (3) |
O7—Zn1—O6 | 87.93 (12) | C4—C3—H3 | 119.3 |
O2i—Zn1—O6 | 88.69 (11) | C2—C3—H3 | 119.3 |
O8—Zn1—O6 | 178.03 (11) | C3—C4—C5 | 121.3 (3) |
C1—O2—Zn1 | 130.4 (2) | C3—C4—N1 | 119.4 (3) |
C1—O2—Zn1i | 129.6 (2) | C5—C4—N1 | 119.2 (3) |
Zn1—O2—Zn1i | 100.03 (10) | C6—C5—C4 | 118.6 (3) |
C7—O3—Zn1 | 128.7 (2) | C6—C5—H5A | 120.7 |
Zn1—O6—H6A | 121.5 | C4—C5—H5A | 120.7 |
Zn1—O6—H6B | 115.5 | C5—C6—C7 | 122.9 (3) |
H6A—O6—H6B | 117.7 | C5—C6—H6 | 118.5 |
Zn1—O7—H7B | 101.9 | C7—C6—H6 | 118.5 |
Zn1—O7—H7A | 130.2 | O3—C7—C6 | 118.1 (3) |
H7B—O7—H7A | 117.4 | O3—C7—C2 | 124.6 (3) |
Zn1—O8—H8A | 106.0 | C6—C7—C2 | 117.3 (3) |
O3—Zn1—O2—C1 | 2.4 (3) | O2—C1—C2—C7 | −6.9 (5) |
O2i—Zn1—O2—C1 | 177.8 (4) | C7—C2—C3—C4 | 0.0 (5) |
O8—Zn1—O2—C1 | −92.1 (3) | C1—C2—C3—C4 | −179.4 (3) |
O6—Zn1—O2—C1 | 88.8 (3) | C2—C3—C4—C5 | 0.1 (6) |
O3—Zn1—O2—Zn1i | −175.34 (12) | C2—C3—C4—N1 | 179.6 (3) |
O2i—Zn1—O2—Zn1i | 0.0 | O5—N1—C4—C3 | −2.0 (5) |
O8—Zn1—O2—Zn1i | 90.08 (11) | O4—N1—C4—C3 | 177.5 (3) |
O6—Zn1—O2—Zn1i | −88.96 (12) | O5—N1—C4—C5 | 177.5 (3) |
O2—Zn1—O3—C7 | −8.9 (3) | O4—N1—C4—C5 | −3.0 (5) |
O7—Zn1—O3—C7 | 175.4 (3) | C3—C4—C5—C6 | −0.2 (6) |
O2i—Zn1—O3—C7 | −33.9 (7) | N1—C4—C5—C6 | −179.7 (3) |
O8—Zn1—O3—C7 | 81.0 (3) | C4—C5—C6—C7 | 0.2 (6) |
O6—Zn1—O3—C7 | −97.2 (3) | Zn1—O3—C7—C6 | −170.1 (3) |
Zn1—O2—C1—O1 | −178.2 (3) | Zn1—O3—C7—C2 | 8.7 (5) |
Zn1i—O2—C1—O1 | −1.1 (5) | C5—C6—C7—O3 | 178.8 (4) |
Zn1—O2—C1—C2 | 3.9 (5) | C5—C6—C7—C2 | −0.1 (6) |
Zn1i—O2—C1—C2 | −178.9 (2) | C3—C2—C7—O3 | −178.8 (3) |
O1—C1—C2—C3 | −5.5 (5) | C1—C2—C7—O3 | 0.5 (6) |
O2—C1—C2—C3 | 172.4 (3) | C3—C2—C7—C6 | 0.0 (5) |
O1—C1—C2—C7 | 175.2 (4) | C1—C2—C7—C6 | 179.3 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8B···O3ii | 0.84 | 1.81 | 2.651 (3) | 173 |
O8—H8A···O5iii | 0.85 | 2.26 | 3.038 (4) | 153 |
O7—H7A···O8iv | 0.85 | 2.58 | 3.023 (4) | 114 |
O7—H7B···O1i | 0.85 | 1.77 | 2.596 (4) | 163 |
O6—H6B···O4v | 0.85 | 1.87 | 2.696 (4) | 164 |
O6—H6A···O8vi | 0.85 | 2.30 | 3.135 (5) | 168 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x+2, −y+1, −z+1; (iv) x, −y+3/2, z−1/2; (v) x−1, y, z; (vi) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Zn2(C7H3NO5)2(H2O)6] |
Mr | 601.04 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 10.858 (3), 13.645 (3), 6.6367 (17) |
β (°) | 91.887 (4) |
V (Å3) | 982.7 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.53 |
Crystal size (mm) | 0.26 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.752, 0.821 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5435, 2009, 1418 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.088, 1.03 |
No. of reflections | 2009 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.55 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H8B···O3i | 0.84 | 1.81 | 2.651 (3) | 172.8 |
O8—H8A···O5ii | 0.85 | 2.26 | 3.038 (4) | 152.6 |
O7—H7A···O8iii | 0.85 | 2.58 | 3.023 (4) | 113.7 |
O7—H7B···O1iv | 0.85 | 1.77 | 2.596 (4) | 163.4 |
O6—H6B···O4v | 0.85 | 1.87 | 2.696 (4) | 164.1 |
O6—H6A···O8vi | 0.85 | 2.30 | 3.135 (5) | 168.1 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+2, −y+1, −z+1; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) x, y, z−1. |
Acknowledgements
The authors thank Yanshan University for financial support.
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Charles, N. G., Griffith, E. A. H., Rodesiler, P. F. & Amma, E. L. (1983). Inorg. Chem. 22 2717–2723. CSD CrossRef CAS Web of Science Google Scholar
Erxleben, A. (2001). Inorg. Chem. 40 208–213. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1730–m1732. Web of Science CSD CrossRef IUCr Journals Google Scholar
Jagner, S., Hazell, R. G. & Larsen, K. P. (1976). Acta Cryst. B32, 548–554. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Klug, H. P., Alexander, L. E. & Sumner, G. G. (1958). Acta Cryst. 11, 41–46. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Morgant, G., Bouhmaida, N., Balde, L., Ghermani, N. E. & D'Angelo, J. (2006). Polyhedron, 25, 2229–2235. Web of Science CSD CrossRef CAS Google Scholar
Risannen, K., Valkonen, J., Kokkonen, P. & Leskela, M. (1987). Acta Chem. Scand. Ser. A, 41, 299–309. Google Scholar
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tahir, M. N., Ülkü, D., Movsumov, E. M. & Hökelek, T. (1997). Acta Cryst. C53, 176–179. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
From a coordination standpoint, salicylate is a versatile ligand displaying a variety of bonding modes. For example, mono-deprotonation of salicylic acid normally leads to complexes containing the coordinated 2-HOC6H4CO2 (salH) anion. This anion is known to bond to metals as a unidentate carboxylate e.g. in [Zn(salH)2(H2O)2] (Klug et al. 1958; Risannen et al., 1987), as a bidentate chelating carboxylate e.g. in [Cd2(salH)4(H2O)4] (Charles et al. 1983), as a bidentate chelating ligand using one carboxylate oxygen and the hydroxyl oxygen e.g. in [Cu(salH)2].2H2O (Jagner et al., 1976). On the other hand, deprotonation of both the hydroxyl and carboxyl protons from the parent acid generates the [OC6H4CO2]2- (sal2-) anion, which can be found chelating through the phenolate oxygen and one of the carboxyl O atoms as in [Ti(sal)3]2- (Fu, et al., 2005).
Although many complexes which use salicylate as ligand have been synthesized, two structures coming out from the reaction of the 5-nitrosalicylic acid with zinc salt are known to us: a tetrahydrate (Tahir et al., 1997), in an approximately octahedral geometry around the metal surrounding O atoms from four water ligands and two unidentate monoanionic 5-nitrosalicylate ligands using one carboxylate oxygen and a pentahydrate (Morgant, et al., 2006), penta-aqua-(5-nitrosalicylato-O)-zinc(ii) 5-nitrosalicylate monohydrate, in which the metal is coordinated by five water ligands and one carboxylato O-atom from the 5-nitrosalicylato ligand. Interestingly, the title binuclear complex presents a third, different structure, being an hexahydrate dimer with its two zinc(II) atoms bridged by two carboxylate O atoms.
The structure of the title compounds is shown in Fig. 1. The distorted octahedral environment of each zinc(II) cation is defined by three O atoms from three water molecules, another two (the phenolate and a carboxylate one) from a chelating 5-nitrosalicylate and the centrosymmetric image of the latter. These two carboxylate O atoms bridge neighbouring zinc cations into a planar, four-membered matallacycle resulting in a Zn1···Zn1i (see Fig 1 for symmetry codes) separation of 3.1790 (11) Å. It is the shortest of separation of Zn···Zn as reported previously in binuclear and tetranuclear zinc complex with salicylate ligands (Erxleben, 2001) It is worth mentioning that the use of a carboxylate oxygen as a bridging atom in salicylate metal complexes is rare; the title binuclear complex appears to be the first example of this behaviour in zinc complexes.
The carboxy group C1/O1/O2 as well as the nitro group N1/O4/O5 are effectively coplanar to the aromatic ring in the ligand as well as to the central Zn1/O2/C1/C2/C7/O3 six-membered ring generated upon coordination. The centrosymmetric character of the binuclear unit results in a large planar group composed of the two almost planar chelating ligands, the two zinc atoms and two O atoms from two aqua; the O atoms atoms from the remaining four aqua present Zn—O bonds almost orthogonal to this plane.
There are a number O—H···O hydrogen bonds stabilizing the structure (Table 1). The interaction involving O7—H7B and O1i is intradimeric and coplanar to the dimer mean plane. The remainig ones define a three-dimensional framework.