metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1537-m1538

Poly[bis­­(4,4′-bi­pyridine)(μ3-4,4′-di­carboxybi­phenyl-3,3′-di­carboxyl­ato)iron(II)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bSouth China Normal University, Key Laboratory of Technology of Electrochemical Energy Storage and Power Generation, in Guangdong Universities, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: luoyf2004@yahoo.com.cn

(Received 25 October 2009; accepted 3 November 2009; online 7 November 2009)

In the polymeric title complex, [Fe(C16H8O8)(C10H8N2)2]n, the iron(II) cation is coordinated by four O atoms from three different 4,4′-dicarboxybiphenyl-3,3′-di­carboxyl­ate ligands and two N atoms from two 4,4′-bipyridine ligands in a distorted octa­hedral geometry. The 4,4′-dicarboxybiphenyl-3,3′-di­carboxyl­ate ligands bridge adjacent cations, forming chains parallel to the c axis. The chains are further connected by inter­molecular O—H⋯N hydrogen bonds, forming two-dimensional supra­molecular layers parallel to (010).

Related literature

For general background to self-assembling coordination polymers, see: Li et al. (2008[Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2008). Inorg. Chem. Commun. 11, 1405-1408.]); Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]). For related structures, see: Li et al. (2009[Li, F., Wang, W.-W., Ji, X., Cao, C.-C. & Zhu, D.-Y. (2009). Acta Cryst. E65, o244.]); Liu et al. (2009[Liu, G.-X., Zhu, K., Chen, H., Huang, R.-Y. & Ren, X.-M. (2009). Z. Anorg. Allg. Chem. 635, 156-164.]); Wang et al. (2007[Wang, J.-J., Yang, M.-L. & Hu, H.-M. (2007). Z. Anorg. Allg. Chem. 633, 341-345.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C16H8O8)(C10H8N2)2]

  • Mr = 696.44

  • Monoclinic, P 21 /c

  • a = 11.9569 (13) Å

  • b = 24.114 (3) Å

  • c = 10.7232 (12) Å

  • β = 105.855 (1)°

  • V = 2974.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.880, Tmax = 0.899

  • 15189 measured reflections

  • 5363 independent reflections

  • 4293 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.03

  • 5363 reflections

  • 444 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N2i 0.82 1.86 2.677 (2) 171
O3—H3⋯N4ii 0.82 1.81 2.598 (3) 162
Symmetry codes: (i) x-1, y, z-2; (ii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of self-assembling coordination polymers is of current interest in the fields of supramolecular chemistry and crystal engineering, because of their potential applications in gas storage, molecular sieves, ion exchange, catalysis, magnetism, nonlinearoptics, and molecular sensing (Li et al., 2008; Yaghi et al., 2003). Due to the presence of four carboxylic groups, 4,4'-dicarboxybiphenyl-3,3'-dicarboxylate ligands are promising building blocks for the construction of novel metal-organic coordination polymers (Li et al., 2009; Liu et al., 2009; Wang et al., 2007). Herein, we report the title new metal-organic framework, which was synthesized under hydrothermal conditions.

In the title complex (Fig. 1), each iron(II) atom exhibits a distorted octahedral geometry, defined by four oxygen atoms from three different 4,4'-dicarboxybiphenyl-3,3'-dicarboxylate ligands and two nitrogen atoms from two different 4,4'-bipyridine ligands. The Fe—O and Fe—N distances range from 2.0244 (1) to 2.3327 (1) Å and 2.2201 (1) to 2.2615 (1) Å, respectively, while the O—Fe—O angles and N—Fe—O angles fall in the range from 58.64 (6) to 160.43 (7) %A and 82.29 (6) to 102.91 (7) %A, respectively. The dihedral angles between the N1/C1–C5 and N2/C6–C10, N3/C11–C15 and N4/C16–C20, C22/C23/C25–c28 and C29–C32/C33/C34 are 25.74 (8), 26.91 (9) and 37.39 (7)°, respectively. Adjacent metal centres are connected by the 4,4'-dicarboxybiphenyl-3,3'-dicarboxylate ligands to form chains (Fig. 2) running parallel to the c axis. Intermolecular O—H···N hydrogen bonds (Table 1) link the chains into two-dimensional supramolecular layers parallel to (0 1 0) (Fig. 3).

Related literature top

For general background to self-assembling coordination polymers, see: Li et al. (2008); Yaghi et al. (2003). For related structures, see: Li et al. (2009); Liu et al. (2009); Wang et al. (2007).

Experimental top

A mixture of FeSO4.7H2O (0.139 g, 0.5mmol), 4,4'-bipyridine (0.078 g; 0.5 mmol), biphenyl-3,3',-4,4'-tetracarboxylic acid (0.165 g; 0.5 mmol), water (10mL) were stirred vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave (25 mL capacity). The autoclave was heated and maintained at 423K for 3 days, then cooled to room temperature at 5Kh-1. Red block crystals suitable for X-ray analysis were obtained.

Refinement top

Carboxy H atoms were located in a difference Fourier map and refined using a riding model approximation, with O–H = 0.82 Å and with 1.5 Ueq(O). All other H atoms were placed at calculated positions and treated as riding on parent atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (#1) x, y, 1+z; (#2) 1-x, 2-y, 1-z]
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing a one-dimensional chain running parallel to the c axis. 4,4'-Bipyridine ligands are omitted for clarity.
[Figure 3] Fig. 3. Partial crystal packing of the title compound showing the two-dimensional supramolecular layers parallel to (0 1 0). Hydrogen bonds are shown as dashed lines.
Poly[bis(4,4'-bipyridine)(µ3-4,4'-dicarboxybiphenyl-3,3'- dicarboxylato)iron(II)] top
Crystal data top
[Fe(C16H8O8)(C10H8N2)2]F(000) = 1432
Mr = 696.44Dx = 1.555 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4905 reflections
a = 11.9569 (13) Åθ = 2.4–27.0°
b = 24.114 (3) ŵ = 0.57 mm1
c = 10.7232 (12) ÅT = 296 K
β = 105.855 (1)°Block, red
V = 2974.2 (6) Å30.23 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5363 independent reflections
Radiation source: fine-focus sealed tube4293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1410
Tmin = 0.880, Tmax = 0.899k = 2826
15189 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0462P)2 + 1.5067P]
where P = (Fo2 + 2Fc2)/3
5363 reflections(Δ/σ)max = 0.002
444 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Fe(C16H8O8)(C10H8N2)2]V = 2974.2 (6) Å3
Mr = 696.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9569 (13) ŵ = 0.57 mm1
b = 24.114 (3) ÅT = 296 K
c = 10.7232 (12) Å0.23 × 0.21 × 0.19 mm
β = 105.855 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
5363 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4293 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.899Rint = 0.038
15189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.71 e Å3
5363 reflectionsΔρmin = 0.46 e Å3
444 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.58299 (3)0.948957 (13)0.88381 (3)0.02617 (11)
C270.63026 (19)0.80826 (9)0.4436 (2)0.0267 (5)
C110.4184 (2)0.97360 (10)0.5952 (2)0.0331 (6)
H110.45421.00820.60640.040*
O30.88485 (15)0.84329 (7)0.88903 (16)0.0417 (4)
H30.94090.84160.95320.063*
C290.5469 (2)0.81316 (9)0.3128 (2)0.0277 (5)
N21.05946 (18)0.88387 (10)1.71537 (19)0.0416 (5)
C30.8429 (2)0.91461 (10)1.3316 (2)0.0322 (5)
O50.23281 (15)0.87426 (7)0.06664 (16)0.0414 (4)
H50.17920.87340.13330.062*
C210.6846 (2)0.88567 (9)0.7580 (2)0.0279 (5)
N10.70900 (17)0.93693 (8)1.07668 (18)0.0327 (5)
N40.0513 (2)0.85951 (11)0.0994 (2)0.0510 (6)
N30.44003 (17)0.93946 (8)0.69706 (18)0.0304 (4)
C100.9865 (2)0.85667 (11)1.4936 (2)0.0382 (6)
H100.98750.83091.42930.046*
C50.7413 (2)0.88541 (11)1.1179 (2)0.0388 (6)
H5A0.71790.85641.05930.047*
C20.8088 (2)0.96780 (11)1.2899 (2)0.0435 (7)
H20.82960.99741.34710.052*
C60.9155 (2)0.90314 (11)1.4651 (2)0.0332 (5)
C10.7440 (2)0.97724 (11)1.1640 (2)0.0432 (7)
H10.72371.01361.13860.052*
C40.8068 (2)0.87257 (11)1.2414 (2)0.0383 (6)
H40.82660.83591.26420.046*
C91.0557 (2)0.84914 (12)1.6183 (2)0.0414 (6)
H91.10260.81771.63550.050*
C70.9158 (2)0.93795 (12)1.5675 (3)0.0482 (7)
H70.86750.96891.55440.058*
C80.9880 (3)0.92674 (13)1.6896 (2)0.0506 (7)
H80.98610.95061.75710.061*
C120.3463 (2)0.96087 (10)0.4744 (2)0.0338 (6)
H120.33440.98640.40690.041*
C160.2130 (2)0.89236 (11)0.3283 (2)0.0350 (6)
C140.3124 (2)0.87458 (10)0.5620 (2)0.0358 (6)
H140.27640.84010.55470.043*
C170.1517 (3)0.93092 (12)0.2401 (3)0.0519 (8)
H170.16400.96870.25590.062*
C130.2917 (2)0.90935 (10)0.4548 (2)0.0313 (5)
C150.3853 (2)0.89073 (10)0.6785 (2)0.0345 (6)
H150.39730.86640.74820.041*
C200.1939 (2)0.83734 (12)0.2949 (3)0.0484 (7)
H200.23530.81000.34950.058*
C190.1136 (3)0.82278 (13)0.1808 (3)0.0527 (8)
H190.10270.78540.16010.063*
C180.0727 (3)0.91279 (14)0.1290 (3)0.0622 (9)
H180.03180.93920.07120.075*
C260.7131 (2)0.76653 (10)0.4723 (2)0.0313 (5)
H260.71380.73930.41120.038*
C360.51638 (19)0.86533 (9)0.2589 (2)0.0269 (5)
H360.54780.89660.30660.032*
C220.70735 (19)0.84500 (9)0.66113 (19)0.0246 (5)
C250.7947 (2)0.76543 (10)0.5919 (2)0.0305 (5)
H250.85160.73800.60870.037*
C340.44068 (19)0.87230 (9)0.1366 (2)0.0250 (5)
C230.79408 (19)0.80409 (9)0.6875 (2)0.0258 (5)
C330.2957 (2)0.82910 (10)0.0585 (2)0.0344 (6)
C280.62884 (19)0.84684 (9)0.5393 (2)0.0284 (5)
H280.57330.87490.52100.034*
C300.5005 (2)0.76689 (10)0.2393 (2)0.0394 (6)
H300.52160.73150.27170.047*
C240.8873 (2)0.80139 (10)0.8127 (2)0.0296 (5)
C320.3894 (2)0.82577 (10)0.0668 (2)0.0310 (5)
C310.4231 (2)0.77351 (10)0.1183 (2)0.0415 (7)
H310.39290.74220.07000.050*
O20.62783 (14)0.86750 (7)0.83378 (14)0.0317 (4)
O10.70685 (16)0.93579 (7)0.75185 (16)0.0382 (4)
O40.95713 (16)0.76380 (8)0.83860 (17)0.0479 (5)
O60.27834 (18)0.79341 (8)0.14063 (18)0.0575 (6)
C350.43099 (19)0.92924 (9)0.0796 (2)0.0256 (5)
O70.45273 (14)0.93505 (7)0.02766 (14)0.0338 (4)
O80.40781 (15)0.96848 (7)0.14606 (15)0.0355 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0328 (2)0.02408 (19)0.01910 (18)0.00295 (13)0.00281 (13)0.00112 (12)
C270.0317 (13)0.0253 (12)0.0203 (11)0.0002 (9)0.0025 (10)0.0004 (9)
C110.0381 (14)0.0307 (13)0.0265 (12)0.0020 (10)0.0023 (10)0.0001 (10)
O30.0371 (11)0.0483 (11)0.0302 (9)0.0044 (8)0.0070 (7)0.0103 (8)
C290.0330 (13)0.0271 (12)0.0209 (11)0.0031 (10)0.0036 (10)0.0012 (9)
N20.0345 (12)0.0527 (14)0.0309 (12)0.0021 (10)0.0023 (9)0.0060 (10)
C30.0269 (13)0.0415 (15)0.0247 (12)0.0026 (10)0.0010 (10)0.0004 (10)
O50.0370 (11)0.0463 (11)0.0307 (10)0.0071 (8)0.0083 (8)0.0022 (8)
C210.0298 (13)0.0275 (13)0.0208 (11)0.0054 (10)0.0024 (9)0.0008 (9)
N10.0348 (12)0.0340 (12)0.0251 (10)0.0045 (9)0.0012 (9)0.0007 (8)
N40.0408 (14)0.0683 (18)0.0352 (13)0.0011 (12)0.0041 (10)0.0144 (12)
N30.0311 (11)0.0349 (12)0.0235 (10)0.0017 (8)0.0047 (8)0.0001 (8)
C100.0369 (15)0.0401 (15)0.0328 (13)0.0020 (11)0.0014 (11)0.0013 (11)
C50.0485 (16)0.0371 (14)0.0241 (12)0.0025 (12)0.0013 (11)0.0029 (10)
C20.0490 (17)0.0376 (15)0.0335 (14)0.0063 (12)0.0065 (12)0.0082 (11)
C60.0270 (13)0.0425 (15)0.0263 (12)0.0008 (10)0.0008 (10)0.0018 (10)
C10.0532 (17)0.0352 (15)0.0307 (14)0.0117 (12)0.0062 (12)0.0001 (11)
C40.0473 (16)0.0349 (14)0.0259 (12)0.0050 (11)0.0013 (11)0.0028 (10)
C90.0344 (15)0.0457 (16)0.0385 (15)0.0047 (12)0.0004 (11)0.0098 (12)
C70.0495 (18)0.0548 (18)0.0308 (14)0.0195 (13)0.0051 (12)0.0021 (12)
C80.0538 (18)0.0607 (19)0.0289 (14)0.0114 (15)0.0031 (12)0.0048 (13)
C120.0372 (14)0.0360 (14)0.0239 (12)0.0020 (11)0.0013 (10)0.0044 (10)
C160.0298 (13)0.0428 (15)0.0279 (12)0.0010 (11)0.0004 (10)0.0044 (11)
C140.0337 (14)0.0323 (14)0.0370 (14)0.0048 (10)0.0020 (11)0.0009 (11)
C170.0584 (19)0.0431 (17)0.0396 (16)0.0095 (14)0.0115 (13)0.0097 (13)
C130.0262 (13)0.0370 (14)0.0273 (12)0.0026 (10)0.0015 (10)0.0040 (10)
C150.0354 (14)0.0371 (14)0.0283 (12)0.0022 (11)0.0042 (10)0.0060 (10)
C200.0502 (17)0.0414 (16)0.0422 (16)0.0034 (13)0.0067 (13)0.0029 (12)
C190.0542 (19)0.0511 (18)0.0448 (16)0.0116 (14)0.0000 (14)0.0133 (14)
C180.062 (2)0.065 (2)0.0414 (17)0.0152 (16)0.0162 (15)0.0066 (15)
C260.0390 (14)0.0292 (13)0.0233 (11)0.0060 (10)0.0048 (10)0.0049 (9)
C360.0336 (13)0.0241 (12)0.0200 (11)0.0001 (9)0.0022 (9)0.0040 (9)
C220.0300 (12)0.0233 (12)0.0196 (11)0.0002 (9)0.0050 (9)0.0009 (8)
C250.0345 (13)0.0278 (12)0.0271 (12)0.0094 (10)0.0048 (10)0.0008 (9)
C340.0285 (12)0.0258 (12)0.0188 (11)0.0029 (9)0.0034 (9)0.0006 (9)
C230.0272 (12)0.0263 (12)0.0220 (11)0.0011 (9)0.0036 (9)0.0024 (9)
C330.0363 (14)0.0338 (14)0.0274 (12)0.0049 (11)0.0011 (10)0.0018 (10)
C280.0304 (13)0.0272 (12)0.0247 (11)0.0076 (9)0.0027 (10)0.0015 (9)
C300.0529 (17)0.0250 (13)0.0306 (13)0.0028 (11)0.0049 (11)0.0022 (10)
C240.0286 (13)0.0348 (14)0.0235 (11)0.0014 (10)0.0039 (10)0.0030 (10)
C320.0354 (13)0.0296 (13)0.0237 (11)0.0011 (10)0.0011 (10)0.0013 (10)
C310.0551 (18)0.0253 (13)0.0331 (14)0.0048 (11)0.0068 (12)0.0038 (10)
O20.0383 (10)0.0346 (9)0.0204 (8)0.0044 (7)0.0049 (7)0.0013 (7)
O10.0517 (11)0.0256 (9)0.0346 (9)0.0016 (8)0.0076 (8)0.0032 (7)
O40.0446 (11)0.0457 (12)0.0422 (11)0.0147 (9)0.0071 (8)0.0026 (9)
O60.0701 (14)0.0466 (12)0.0369 (11)0.0030 (10)0.0176 (9)0.0143 (9)
C350.0243 (12)0.0267 (12)0.0210 (11)0.0005 (9)0.0017 (9)0.0005 (9)
O70.0377 (10)0.0395 (10)0.0233 (8)0.0002 (7)0.0068 (7)0.0056 (7)
O80.0532 (11)0.0234 (9)0.0284 (9)0.0038 (7)0.0084 (8)0.0023 (7)
Geometric parameters (Å, º) top
Fe1—O8i2.0244 (17)C7—C81.384 (4)
Fe1—O7ii2.0609 (16)C7—H70.9300
Fe1—O22.1426 (16)C8—H80.9300
Fe1—N12.2201 (19)C12—C131.392 (3)
Fe1—N32.2615 (19)C12—H120.9300
Fe1—O12.3327 (18)C16—C201.377 (4)
C27—C261.387 (3)C16—C171.384 (4)
C27—C281.389 (3)C16—C131.482 (3)
C27—C291.487 (3)C14—C151.370 (3)
C11—N31.335 (3)C14—C131.390 (3)
C11—C121.381 (3)C14—H140.9300
C11—H110.9300C17—C181.374 (4)
O3—C241.306 (3)C17—H170.9300
O3—H30.8200C15—H150.9300
C29—C361.391 (3)C20—C191.379 (4)
C29—C301.391 (3)C20—H200.9300
N2—C81.321 (4)C19—H190.9300
N2—C91.327 (3)C18—H180.9300
C3—C21.383 (4)C26—C251.383 (3)
C3—C41.386 (3)C26—H260.9300
C3—C61.483 (3)C36—C341.385 (3)
O5—C331.313 (3)C36—H360.9300
O5—H50.8200C22—C281.386 (3)
C21—O11.243 (3)C22—C231.403 (3)
C21—O21.271 (3)C25—C231.387 (3)
C21—C221.506 (3)C25—H250.9300
N1—C11.335 (3)C34—C321.395 (3)
N1—C51.339 (3)C34—C351.495 (3)
N4—C191.321 (4)C23—C241.494 (3)
N4—C181.331 (4)C33—O61.208 (3)
N3—C151.333 (3)C33—C321.498 (3)
C10—C91.379 (3)C28—H280.9300
C10—C61.389 (3)C30—C311.382 (3)
C10—H100.9300C30—H300.9300
C5—C41.378 (3)C24—O41.212 (3)
C5—H5A0.9300C32—C311.391 (3)
C2—C11.380 (3)C31—H310.9300
C2—H20.9300C35—O71.254 (3)
C6—C71.382 (4)C35—O81.260 (3)
C1—H10.9300O7—Fe1iii2.0609 (16)
C4—H40.9300O8—Fe1i2.0244 (17)
C9—H90.9300
O8i—Fe1—O7ii108.27 (7)C13—C12—H12120.4
O8i—Fe1—O2146.50 (7)C20—C16—C17116.8 (2)
O7ii—Fe1—O2103.80 (7)C20—C16—C13121.5 (2)
O8i—Fe1—N1102.91 (7)C17—C16—C13121.6 (2)
O7ii—Fe1—N187.46 (7)C15—C14—C13120.5 (2)
O2—Fe1—N187.76 (7)C15—C14—H14119.7
O8i—Fe1—N391.15 (7)C13—C14—H14119.7
O7ii—Fe1—N384.72 (7)C18—C17—C16119.2 (3)
O2—Fe1—N382.29 (6)C18—C17—H17120.4
N1—Fe1—N3165.49 (8)C16—C17—H17120.4
O8i—Fe1—O188.10 (6)C14—C13—C12116.3 (2)
O7ii—Fe1—O1160.43 (7)C14—C13—C16121.0 (2)
O2—Fe1—O158.64 (6)C12—C13—C16122.6 (2)
N1—Fe1—O199.53 (7)N3—C15—C14123.4 (2)
N3—Fe1—O184.29 (7)N3—C15—H15118.3
C26—C27—C28118.3 (2)C14—C15—H15118.3
C26—C27—C29121.45 (19)C16—C20—C19120.1 (3)
C28—C27—C29120.2 (2)C16—C20—H20120.0
N3—C11—C12124.2 (2)C19—C20—H20120.0
N3—C11—H11117.9N4—C19—C20123.1 (3)
C12—C11—H11117.9N4—C19—H19118.5
C24—O3—H3109.5C20—C19—H19118.5
C36—C29—C30118.1 (2)N4—C18—C17123.7 (3)
C36—C29—C27119.7 (2)N4—C18—H18118.1
C30—C29—C27122.1 (2)C17—C18—H18118.1
C8—N2—C9116.6 (2)C25—C26—C27120.0 (2)
C2—C3—C4116.4 (2)C25—C26—H26120.0
C2—C3—C6121.9 (2)C27—C26—H26120.0
C4—C3—C6121.7 (2)C34—C36—C29122.2 (2)
C33—O5—H5109.5C34—C36—H36118.9
O1—C21—O2121.9 (2)C29—C36—H36118.9
O1—C21—C22121.0 (2)C28—C22—C23119.0 (2)
O2—C21—C22116.4 (2)C28—C22—C21115.20 (19)
C1—N1—C5115.9 (2)C23—C22—C21125.58 (19)
C1—N1—Fe1124.13 (16)C26—C25—C23121.8 (2)
C5—N1—Fe1119.29 (16)C26—C25—H25119.1
C19—N4—C18116.9 (2)C23—C25—H25119.1
C15—N3—C11116.3 (2)C36—C34—C32119.2 (2)
C15—N3—Fe1116.29 (15)C36—C34—C35117.16 (19)
C11—N3—Fe1126.34 (16)C32—C34—C35123.08 (19)
C9—C10—C6119.2 (2)C25—C23—C22118.5 (2)
C9—C10—H10120.4C25—C23—C24118.8 (2)
C6—C10—H10120.4C22—C23—C24122.7 (2)
N1—C5—C4124.2 (2)O6—C33—O5124.2 (2)
N1—C5—H5A117.9O6—C33—C32123.6 (2)
C4—C5—H5A117.9O5—C33—C32112.2 (2)
C1—C2—C3120.4 (2)C22—C28—C27122.2 (2)
C1—C2—H2119.8C22—C28—H28118.9
C3—C2—H2119.8C27—C28—H28118.9
C7—C6—C10116.5 (2)C31—C30—C29120.0 (2)
C7—C6—C3121.9 (2)C31—C30—H30120.0
C10—C6—C3121.6 (2)C29—C30—H30120.0
N1—C1—C2123.4 (2)O4—C24—O3124.5 (2)
N1—C1—H1118.3O4—C24—C23122.5 (2)
C2—C1—H1118.3O3—C24—C23113.0 (2)
C5—C4—C3119.6 (2)C31—C32—C34118.6 (2)
C5—C4—H4120.2C31—C32—C33118.0 (2)
C3—C4—H4120.2C34—C32—C33123.4 (2)
N2—C9—C10124.1 (2)C30—C31—C32121.6 (2)
N2—C9—H9117.9C30—C31—H31119.2
C10—C9—H9117.9C32—C31—H31119.2
C6—C7—C8119.9 (3)C21—O2—Fe193.32 (13)
C6—C7—H7120.0C21—O1—Fe185.40 (14)
C8—C7—H7120.0O7—C35—O8124.6 (2)
N2—C8—C7123.5 (3)O7—C35—C34117.7 (2)
N2—C8—H8118.3O8—C35—C34117.57 (19)
C7—C8—H8118.3C35—O7—Fe1iii144.35 (15)
C11—C12—C13119.1 (2)C35—O8—Fe1i128.26 (15)
C11—C12—H12120.4
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z+1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N2iv0.821.862.677 (2)171
O3—H3···N4v0.821.812.598 (3)162
Symmetry codes: (iv) x1, y, z2; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe(C16H8O8)(C10H8N2)2]
Mr696.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.9569 (13), 24.114 (3), 10.7232 (12)
β (°) 105.855 (1)
V3)2974.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.880, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
15189, 5363, 4293
Rint0.038
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.03
No. of reflections5363
No. of parameters444
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N2i0.821.862.677 (2)170.7
O3—H3···N4ii0.821.812.598 (3)162.3
Symmetry codes: (i) x1, y, z2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the Chan Xue Yan Cooperative Special Project of Guangdong Province and the Ministry of Science and Technology of PRC (No. 2007A090302046), the Project of Science and Technology of Guangdong Province (No. 2007A020200002-4) and the Natural Science Foundation of Guangdong Province (No. 9151063101000037) for supporting this work.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, C.-P., Tian, Y.-L. & Guo, Y.-M. (2008). Inorg. Chem. Commun. 11, 1405–1408.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, F., Wang, W.-W., Ji, X., Cao, C.-C. & Zhu, D.-Y. (2009). Acta Cryst. E65, o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, G.-X., Zhu, K., Chen, H., Huang, R.-Y. & Ren, X.-M. (2009). Z. Anorg. Allg. Chem. 635, 156–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-J., Yang, M.-L. & Hu, H.-M. (2007). Z. Anorg. Allg. Chem. 633, 341–345.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1537-m1538
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds