organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-2-Hy­droxy­benzyl­­idene]-5-methyl­isoxazole-4-carbohydrazide monohydrate

aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China, and bOffice of Assets Administration, Taizhou University, Linhai 317000, People's Republic of China
*Correspondence e-mail: snowflakej@gmail.com

(Received 28 October 2009; accepted 12 November 2009; online 18 November 2009)

In the structure of the title compound, C12H11N3O3·H2O, the dihedral angle formed by the benzene and isoxazole rings is 2.03 (8)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond. In the crystal structure, mol­ecules are linked into a three-dimesional network by inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, and by ππ stacking inter­actions involving adjacent benzene and isoxazole rings [centroid–centroid separation = 3.663 (2) Å].

Related literature

For the biological and coordination properties of hydrazine compounds, see: Molina et al. (1994[Molina, P., Almendros, O. & Fresneda, P. M. (1994). Tetrahedron, 50, 2241-2243.]); Reiter et al. (1985[Reiter, J., Somoral, T. & Dvortsak, P. (1985). Heterocycl. Chem. 22, 385-394.]); Sato et al. (1998[Sato, H., Tsuda, M. & Watanabe, K. (1998). Tetrahedron, 54, 8687-8689.]); Edwards et al. (1975[Edwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, 23-25.]). For the pharmaceutical activity of isoxazole compounds, see: Stevens & Albizati (1984[Stevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587-4591.]); El-Gaby et al. (2002[El-Gaby, M. A., Micky, J. & Taha, N. (2002). J. Chin. Chem. Soc. 49, 407-414.]). For the synthesis of the title compound, see: Jin et al. (2008[Jin, Y. X., Pan, F. Y., Jia, W. P. & Qian, Q. (2008). J. Sci. Technol. Eng. 8, 1015-1017.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O3·H2O

  • Mr = 263.25

  • Orthorhombic, P n a 21

  • a = 12.8783 (6) Å

  • b = 11.3108 (6) Å

  • c = 8.6535 (4) Å

  • V = 1260.50 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.48 × 0.39 × 0.28 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.971

  • 12295 measured reflections

  • 1432 independent reflections

  • 1279 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 0.89

  • 1432 reflections

  • 182 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N3 0.87 (3) 1.890 (18) 2.617 (2) 145 (2)
N2—H2B⋯O1W 0.86 2.04 2.8847 (17) 169
O1W—H1W1⋯N1i 0.85 (3) 2.097 (15) 2.9304 (19) 166 (2)
O1W—H1W2⋯O2ii 0.831 (15) 1.955 (15) 2.7850 (17) 176 (2)
Symmetry codes: (i) [-x, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The interest in the study of hydrazine compounds has recently grown due to their biological activities (Molina et al.1994; Sato et al.1998) and coordination ability (Reiter et al.1985; Edwards et al.1975). Isoxazole compounds have been widely studied because they exhibit some fungicidal activity, plant-growth regulating activity and antibacterial activity (Stevens et al.1984). Some isoxazole derivatives (El-Gaby et al.2002) are widely used as insecticides, herbicides and bactericides. However, compounds containing both the hydrazine and isoxazole groups has scarcely been reported. In order to search for more effective antibacterial medicines, we synthesized the title compound and report here its crystal structure.

The molecular structure of the title compounds is shown in Fig. 1. The molecule is almost planar, the dihedral angle between the benzene and the isoxazole rings being 2.03 (8)°. Bond lengths (Allen et al., 1987) and angles in the molecule are within normal ranges. The molecular conformation is enforced by an intramolecular O—H···N hydrogen bond (Table 1). In the crystal packing (Fig. 2), molecules are linked into supramolecular layers by intermolecular O—H···N and N—H···O hydrogen bonds, and by ππ stacking interactions involving adjacent benzene and isoxazole rings, with a centroid-to-centroid separation of 3.663 (2) Å. The layers are further linked by intermolecular O—H···O hydrogen bonds to form a three-dimensional network.

Related literature top

For the biological and coordination properties of hydrazine compounds, see: Molina et al. (1994); Reiter et al. (1985); Sato et al. (1998); Edwards et al. (1975). For the pharmaceutical activity of isoxazole compounds, see: Stevens & Albizati (1984); El-Gaby et al. (2002). For the synthesis of the title compound, see: Jin et al. (2008). For reference structural data, see: Allen et al. (1987).

Experimental top

The title compound, C12H13N3O4, was synthesized according to the literature method (Jin et al.2008). Salicylaldehyde (1.44 ml) was added into a solution of 5-methylisoxazole-4-carbonyl hydrazine (2.0 g, 0.014 mol) in anhydrous ethanol (40 ml). The mixture was refluxed for 2 h, then the precipitate was collected by filtration and washed with water, chloroform and ethanol. The product was recrystallized from ethanol, then dried under reduced pressure (yield 84.5%). Pink block-shaped crystals were obtained by slow evaporation of a dimethylformamide solution.

Refinement top

The water and hydroxyl H atoms were located in a difference Fourier map and isotropically refined with the O—H distance restrained to 0.86 (1) Å. All other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
N'-[(E)-2-Hydroxybenzylidene]-5-methylisoxazole-4-carbohydrazide monohydrate top
Crystal data top
C12H11N3O3·H2OF(000) = 552
Mr = 263.25Dx = 1.387 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6440 reflections
a = 12.8783 (6) Åθ = 2.4–27.0°
b = 11.3108 (6) ŵ = 0.11 mm1
c = 8.6535 (4) ÅT = 296 K
V = 1260.50 (11) Å3Block, pink
Z = 40.48 × 0.39 × 0.28 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1432 independent reflections
Radiation source: fine-focus sealed tube1279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1616
Tmin = 0.951, Tmax = 0.971k = 1213
12295 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.135P]
where P = (Fo2 + 2Fc2)/3
1432 reflections(Δ/σ)max = 0.097
182 parametersΔρmax = 0.14 e Å3
5 restraintsΔρmin = 0.14 e Å3
Crystal data top
C12H11N3O3·H2OV = 1260.50 (11) Å3
Mr = 263.25Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 12.8783 (6) ŵ = 0.11 mm1
b = 11.3108 (6) ÅT = 296 K
c = 8.6535 (4) Å0.48 × 0.39 × 0.28 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1432 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1279 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.971Rint = 0.039
12295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0325 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.14 e Å3
1432 reflectionsΔρmin = 0.14 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14390 (16)0.00283 (18)0.3335 (3)0.0565 (5)
N20.24031 (12)0.15708 (15)0.7518 (2)0.0421 (4)
H2B0.17440.15230.73680.051*
N30.27882 (14)0.20055 (16)0.8883 (2)0.0416 (4)
O1W0.01706 (11)0.16789 (14)0.7294 (2)0.0559 (4)
H1W10.026 (2)0.123 (2)0.776 (4)0.084*
H1W20.019 (2)0.2255 (19)0.704 (4)0.084*
O10.24526 (12)0.01962 (14)0.2774 (2)0.0550 (4)
O20.40155 (10)0.13200 (14)0.6549 (2)0.0517 (4)
O30.43156 (13)0.25524 (19)1.0747 (2)0.0648 (5)
C10.26059 (14)0.06858 (16)0.5035 (3)0.0373 (4)
C20.15530 (16)0.0488 (2)0.4659 (3)0.0467 (5)
H2A0.10020.07040.52940.056*
C30.31271 (16)0.02328 (18)0.3808 (3)0.0442 (5)
C40.42389 (18)0.0114 (3)0.3423 (4)0.0716 (8)
H4A0.43090.02510.24270.107*
H4B0.45750.03670.41890.107*
H4C0.45550.08820.34040.107*
C50.30730 (14)0.12213 (16)0.6423 (3)0.0376 (4)
C60.25002 (15)0.27711 (17)1.1395 (3)0.0390 (4)
C70.35615 (16)0.29084 (19)1.1731 (3)0.0443 (5)
C80.3861 (2)0.3415 (2)1.3120 (3)0.0578 (6)
H8A0.45630.35001.33470.069*
C90.3126 (2)0.3794 (2)1.4164 (3)0.0583 (6)
H9A0.33360.41431.50860.070*
C100.2090 (2)0.3664 (2)1.3859 (3)0.0568 (6)
H10A0.15980.39121.45760.068*
C110.17799 (17)0.31606 (19)1.2483 (3)0.0488 (5)
H11A0.10750.30801.22770.059*
C120.21445 (16)0.22851 (18)0.9941 (3)0.0422 (5)
H12A0.14370.21760.97760.051*
H3A0.403 (2)0.224 (2)0.994 (3)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0478 (11)0.0662 (12)0.0556 (12)0.0047 (9)0.0081 (9)0.0123 (11)
N20.0321 (8)0.0543 (9)0.0399 (9)0.0018 (7)0.0076 (7)0.0024 (8)
N30.0401 (8)0.0488 (9)0.0358 (9)0.0008 (7)0.0086 (8)0.0013 (7)
O1W0.0322 (7)0.0646 (9)0.0708 (11)0.0027 (6)0.0057 (8)0.0108 (9)
O10.0562 (9)0.0595 (9)0.0491 (9)0.0023 (7)0.0009 (8)0.0155 (8)
O20.0307 (7)0.0630 (9)0.0613 (10)0.0010 (6)0.0087 (7)0.0070 (8)
O30.0354 (8)0.1088 (15)0.0502 (9)0.0052 (8)0.0047 (7)0.0136 (11)
C10.0325 (9)0.0358 (9)0.0434 (10)0.0001 (7)0.0015 (9)0.0017 (8)
C20.0353 (10)0.0559 (12)0.0488 (12)0.0004 (8)0.0036 (9)0.0076 (10)
C30.0431 (11)0.0424 (10)0.0471 (12)0.0001 (8)0.0011 (10)0.0017 (9)
C40.0479 (13)0.0867 (19)0.080 (2)0.0068 (12)0.0167 (14)0.0125 (17)
C50.0350 (9)0.0360 (9)0.0420 (11)0.0000 (7)0.0068 (8)0.0030 (9)
C60.0377 (9)0.0405 (9)0.0388 (10)0.0009 (7)0.0030 (8)0.0058 (9)
C70.0386 (10)0.0553 (11)0.0390 (11)0.0012 (8)0.0051 (9)0.0017 (10)
C80.0486 (13)0.0720 (16)0.0528 (13)0.0036 (11)0.0138 (11)0.0078 (12)
C90.0750 (17)0.0579 (14)0.0420 (13)0.0036 (11)0.0105 (12)0.0088 (11)
C100.0636 (15)0.0623 (14)0.0443 (12)0.0138 (11)0.0049 (12)0.0057 (11)
C110.0427 (10)0.0545 (12)0.0491 (12)0.0040 (9)0.0003 (11)0.0015 (11)
C120.0355 (9)0.0485 (11)0.0426 (11)0.0002 (8)0.0068 (9)0.0030 (9)
Geometric parameters (Å, º) top
N1—C21.294 (3)C3—C41.476 (3)
N1—O11.405 (3)C4—H4A0.9600
N2—C51.341 (3)C4—H4B0.9600
N2—N31.372 (2)C4—H4C0.9600
N2—H2B0.8600C6—C111.393 (3)
N3—C121.274 (3)C6—C71.406 (3)
O1W—H1W10.851 (17)C6—C121.448 (3)
O1W—H1W20.831 (17)C7—C81.386 (3)
O1—C31.338 (3)C8—C91.377 (4)
O2—C51.224 (2)C8—H8A0.9300
O3—C71.353 (3)C9—C101.368 (4)
O3—H3A0.864 (18)C9—H9A0.9300
C1—C31.356 (3)C10—C111.379 (4)
C1—C21.412 (3)C10—H10A0.9300
C1—C51.474 (3)C11—H11A0.9300
C2—H2A0.9300C12—H12A0.9300
C2—N1—O1105.15 (19)O2—C5—C1121.0 (2)
C5—N2—N3118.78 (15)N2—C5—C1115.76 (15)
C5—N2—H2B120.6C11—C6—C7118.2 (2)
N3—N2—H2B120.6C11—C6—C12119.79 (19)
C12—N3—N2118.15 (17)C7—C6—C12121.9 (2)
H1W1—O1W—H1W2103 (2)O3—C7—C8118.0 (2)
C3—O1—N1108.85 (18)O3—C7—C6122.3 (2)
C7—O3—H3A109 (2)C8—C7—C6119.7 (2)
C3—C1—C2103.6 (2)C9—C8—C7120.4 (2)
C3—C1—C5126.24 (18)C9—C8—H8A119.8
C2—C1—C5130.1 (2)C7—C8—H8A119.8
N1—C2—C1112.6 (2)C10—C9—C8120.7 (2)
N1—C2—H2A123.7C10—C9—H9A119.7
C1—C2—H2A123.7C8—C9—H9A119.7
O1—C3—C1109.82 (18)C9—C10—C11119.6 (2)
O1—C3—C4116.5 (2)C9—C10—H10A120.2
C1—C3—C4133.7 (2)C11—C10—H10A120.2
C3—C4—H4A109.5C10—C11—C6121.4 (2)
C3—C4—H4B109.5C10—C11—H11A119.3
H4A—C4—H4B109.5C6—C11—H11A119.3
C3—C4—H4C109.5N3—C12—C6120.83 (18)
H4A—C4—H4C109.5N3—C12—H12A119.6
H4B—C4—H4C109.5C6—C12—H12A119.6
O2—C5—N2123.2 (2)
C5—N2—N3—C12176.93 (18)C2—C1—C5—N20.6 (3)
C2—N1—O1—C30.1 (2)C11—C6—C7—O3179.8 (2)
O1—N1—C2—C10.2 (2)C12—C6—C7—O32.7 (3)
C3—C1—C2—N10.3 (2)C11—C6—C7—C80.3 (3)
C5—C1—C2—N1178.83 (19)C12—C6—C7—C8177.8 (2)
N1—O1—C3—C10.3 (2)O3—C7—C8—C9179.9 (2)
N1—O1—C3—C4179.0 (2)C6—C7—C8—C90.6 (4)
C2—C1—C3—O10.3 (2)C7—C8—C9—C100.9 (4)
C5—C1—C3—O1178.94 (17)C8—C9—C10—C110.8 (4)
C2—C1—C3—C4178.7 (3)C9—C10—C11—C60.6 (4)
C5—C1—C3—C40.1 (4)C7—C6—C11—C100.3 (3)
N3—N2—C5—O23.5 (3)C12—C6—C11—C10177.9 (2)
N3—N2—C5—C1175.77 (16)N2—N3—C12—C6178.73 (16)
C3—C1—C5—O21.7 (3)C11—C6—C12—N3174.73 (19)
C2—C1—C5—O2179.9 (2)C7—C6—C12—N32.7 (3)
C3—C1—C5—N2177.57 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N30.87 (3)1.89 (2)2.617 (2)145 (2)
N2—H2B···O1W0.862.042.8847 (17)169
O1W—H1W1···N1i0.85 (3)2.10 (2)2.9304 (19)166 (2)
O1W—H1W2···O2ii0.83 (2)1.96 (2)2.7850 (17)176 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC12H11N3O3·H2O
Mr263.25
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)12.8783 (6), 11.3108 (6), 8.6535 (4)
V3)1260.50 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.48 × 0.39 × 0.28
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.951, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
12295, 1432, 1279
Rint0.039
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 0.89
No. of reflections1432
No. of parameters182
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N30.87 (3)1.890 (18)2.617 (2)145 (2)
N2—H2B···O1W0.862.042.8847 (17)169.1
O1W—H1W1···N1i0.85 (3)2.097 (15)2.9304 (19)166 (2)
O1W—H1W2···O2ii0.831 (15)1.955 (15)2.7850 (17)176 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (No.Y406049).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, 23–25.  CrossRef Web of Science Google Scholar
First citationEl-Gaby, M. A., Micky, J. & Taha, N. (2002). J. Chin. Chem. Soc. 49, 407–414.  CAS Google Scholar
First citationJin, Y. X., Pan, F. Y., Jia, W. P. & Qian, Q. (2008). J. Sci. Technol. Eng. 8, 1015–1017.  Google Scholar
First citationMolina, P., Almendros, O. & Fresneda, P. M. (1994). Tetrahedron, 50, 2241–2243.  CrossRef CAS Google Scholar
First citationReiter, J., Somoral, T. & Dvortsak, P. (1985). Heterocycl. Chem. 22, 385–394.  CrossRef CAS Google Scholar
First citationSato, H., Tsuda, M. & Watanabe, K. (1998). Tetrahedron, 54, 8687–8689.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevens, R. V. & Albizati, K. F. (1984). Tetrahedron Lett. 25, 4587–4591.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds