organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[1-(3,4-Di­chloro­phen­yl)eth­yl]-1,3-thia­zinane-2-thione

aProvincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China, and bHenan Sports School, Zhengzhou 450044, People's Republic of China
*Correspondence e-mail: yanfufeng@yahoo.cn

(Received 28 October 2009; accepted 3 November 2009; online 11 November 2009)

In the title compound, C12H13Cl2NS2, the thia­zinane ring adopts a half-boat conformation. An intra­molecular C—H⋯S hydrogen bond is observed. In the crystal structure, centrosymmetrically related mol­ecules inter­act through an aromatic ππ stacking inter­actions, with a centroid–centroid separation of 3.790 (2) Å.

Related literature

For the crystal structures of related thia­zinane compounds, see: Kálmán, et al. (1977[Kálmán, A., Argay, G., Riba'r, B. & Toldy, L. (1977). Tetrahedron Lett, 18, 4241-4244.]); Peng & Wu (2009[Peng, Y. & Wu, L. (2009). Acta Cryst. E65, o784.]). For the biological activity of thia­zinane-containing compounds, see: Soloway et al. (1978[Soloway, S. B., Henry, A. C., Kollmeyer, W. D., Padgett, W. M., Powell, J. E., Roman, S. A., Tiemann, C. H., Corey, R. A. & Horne, C. A. (1978). Nitromethylene heterocycles as insecticides. In Pesticide and Venom Neurotoxicology, edited by D. L. Shankland, R. M. Hollingworth & T. Smyth Jr, pp. 153-158. New York: Plenum Press.]); Tomizawa et al. (1995[Tomizawa, M., Otsuka, H., Miyamoto, T. & Yamamoto, I. (1995). J. Pesticide Sci. 20, 49-56.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13Cl2NS2

  • Mr = 306.25

  • Monoclinic, C 2/c

  • a = 13.6003 (13) Å

  • b = 6.7270 (7) Å

  • c = 29.149 (3) Å

  • β = 101.417 (4)°

  • V = 2614.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 113 K

  • 0.14 × 0.12 × 0.08 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.897, Tmax = 0.939

  • 11612 measured reflections

  • 3029 independent reflections

  • 2527 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.07

  • 3029 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯S1 1.00 2.48 3.068 (2) 117

Data collection: CrystalClear (Rigaku, 2005[Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1,3-thiazinane ring is an important group in organic chemistry, as many compounds containing this groups possess a broad spectrum of biological activities (Soloway et al., 1978; Tomizawa et al., 1995). Herein, we report the crystal structure of the title compound, 3-[1-(3,4-dichlorophenyl)ethyl]-1,3-thiazinane-2-thione.

In title compound (Fig. 1), all bond lengths and angles are normal and in good agreement with those reported previously for the related compounds 2-phenylimino-1,3-thiazine (Kálmán, et al., 1977) and (Z)-(1,3-thiazinan-2-ylideneamino)formonitrile (Peng & Wu, 2009). The thiazinane ring adopts a half boat conformation, with atom C3 displaced by 0.685 (2) Å from the plane (p1) formed by S2, N1, C1, C2 and C4 [maximum least squares plane deviation 0.040 (3) Å for N1]. The ring puckering parameters of the thiazinane ring are q2 = 0.512 (2) Å, θ = 130.1 (3)° and ϕ = 57.12 (2)° (Cremer & Pople, 1975). The dihedral angle between the benzene ring (C7—C12) and plane p1 is 84.18 (3)°. The molecular conformation is stabilized by an intramolecular C—H···S hydrogen bond (Table 1). In the crystal structure, centrosymmetrically related molecules at (x, y, z) and (-x, -y, -z) are linked by an aromatic ππ stacking interaction involving the benzene rings, with a centroid-to-centroid separation of 3.790 (2) Å.

Related literature top

For the crystal structures of related thiazinane compounds, see: Kálmán, et al. (1977); Peng & Wu (2009). For the biological activity of thiazinane-containing compounds, see: Soloway et al. (1978); Tomizawa et al. (1995). For ring puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of 1,3-thiazinane-2-thione (1.33 g, 10 mmol) and sodium hydride (0.3 g) in anhydrous acetonitrile (20 ml) was added dropwise over a period of 10 min to a solution of 1,2-dichloro-4-(1-chloroethyl)benzene (2.10 g, 10 mmol) in acetonitrile (10 ml) at 273 K. The mixture was stirred at 353 K for 3 h. The solvent was removed and the residue was purified by flash chromatography (eluted with 5:1 v/v cyclohexane/dichloromethane) to give title compound as a white solid (2.66 g, 87% yield). Single crystals suitable for X-ray measurements were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.95–1.00 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 40% probability level.
3-[1-(3,4-Dichlorophenyl)ethyl]-1,3-thiazinane-2-thione top
Crystal data top
C12H13Cl2NS2F(000) = 1264
Mr = 306.25Dx = 1.556 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7182 reflections
a = 13.6003 (13) Åθ = 2.3–27.5°
b = 6.7270 (7) ŵ = 0.79 mm1
c = 29.149 (3) ÅT = 113 K
β = 101.417 (4)°Platelet, colourless
V = 2614.1 (5) Å30.14 × 0.12 × 0.08 mm
Z = 8
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3029 independent reflections
Radiation source: rotating anode2527 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.048
ω scansθmax = 27.8°, θmin = 2.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1717
Tmin = 0.897, Tmax = 0.939k = 88
11612 measured reflectionsl = 3736
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.4571P]
where P = (Fo2 + 2Fc2)/3
3029 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H13Cl2NS2V = 2614.1 (5) Å3
Mr = 306.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.6003 (13) ŵ = 0.79 mm1
b = 6.7270 (7) ÅT = 113 K
c = 29.149 (3) Å0.14 × 0.12 × 0.08 mm
β = 101.417 (4)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3029 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2527 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.939Rint = 0.048
11612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.07Δρmax = 0.32 e Å3
3029 reflectionsΔρmin = 0.27 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60316 (4)0.10311 (6)0.452969 (16)0.02326 (13)
Cl20.63526 (3)0.55467 (7)0.429381 (15)0.02298 (13)
S10.55056 (4)0.60336 (7)0.693068 (19)0.02744 (14)
S20.75483 (4)0.70607 (7)0.725845 (17)0.02484 (13)
N10.69926 (10)0.4226 (2)0.66046 (5)0.0155 (3)
C10.66962 (14)0.5552 (3)0.68892 (6)0.0177 (4)
C20.80510 (13)0.3723 (3)0.66064 (7)0.0189 (4)
H2A0.80970.31300.63000.023*
H2B0.82770.27090.68510.023*
C30.87453 (14)0.5495 (3)0.66958 (7)0.0256 (4)
H3A0.94280.50940.66620.031*
H3B0.85070.65410.64610.031*
C40.87848 (15)0.6317 (3)0.71811 (7)0.0281 (5)
H4A0.92410.74790.72320.034*
H4B0.90560.52940.74160.034*
C50.62405 (13)0.3052 (2)0.62764 (6)0.0162 (4)
H50.55630.34380.63310.019*
C60.63753 (15)0.0842 (3)0.63832 (7)0.0224 (4)
H6A0.70110.03910.63090.034*
H6B0.58200.01010.61930.034*
H6C0.63820.06130.67160.034*
C70.62876 (13)0.3644 (3)0.57774 (6)0.0168 (4)
C80.61792 (13)0.2249 (3)0.54197 (6)0.0172 (4)
H80.60980.08850.54880.021*
C90.61883 (13)0.2827 (3)0.49638 (6)0.0163 (4)
C100.63158 (12)0.4809 (3)0.48584 (6)0.0167 (4)
C110.64194 (14)0.6213 (3)0.52126 (7)0.0208 (4)
H110.65040.75750.51440.025*
C120.63994 (14)0.5635 (3)0.56657 (6)0.0197 (4)
H120.64630.66120.59050.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0312 (3)0.0223 (2)0.0161 (2)0.00385 (19)0.00449 (19)0.00435 (18)
Cl20.0274 (3)0.0267 (2)0.0152 (2)0.00102 (19)0.00507 (19)0.00504 (18)
S10.0251 (3)0.0273 (3)0.0333 (3)0.0055 (2)0.0140 (2)0.0023 (2)
S20.0338 (3)0.0205 (2)0.0181 (3)0.0007 (2)0.0003 (2)0.00394 (18)
N10.0150 (7)0.0191 (7)0.0123 (8)0.0016 (6)0.0023 (6)0.0010 (6)
C10.0246 (9)0.0159 (8)0.0127 (9)0.0017 (7)0.0038 (7)0.0034 (7)
C20.0166 (9)0.0248 (9)0.0158 (10)0.0034 (7)0.0046 (7)0.0008 (7)
C30.0190 (9)0.0317 (10)0.0259 (11)0.0019 (8)0.0040 (8)0.0052 (9)
C40.0245 (10)0.0281 (10)0.0279 (12)0.0067 (8)0.0038 (8)0.0002 (8)
C50.0171 (8)0.0185 (9)0.0126 (9)0.0007 (7)0.0016 (7)0.0002 (7)
C60.0307 (10)0.0215 (9)0.0152 (10)0.0041 (8)0.0046 (8)0.0015 (7)
C70.0146 (8)0.0201 (8)0.0151 (9)0.0014 (7)0.0018 (7)0.0004 (7)
C80.0172 (8)0.0163 (8)0.0176 (10)0.0008 (7)0.0024 (7)0.0000 (7)
C90.0144 (8)0.0197 (9)0.0145 (9)0.0006 (7)0.0022 (7)0.0039 (7)
C100.0153 (8)0.0224 (9)0.0125 (9)0.0021 (7)0.0028 (7)0.0029 (7)
C110.0252 (10)0.0162 (9)0.0201 (10)0.0010 (7)0.0027 (8)0.0017 (7)
C120.0227 (9)0.0192 (9)0.0160 (10)0.0016 (7)0.0011 (7)0.0023 (7)
Geometric parameters (Å, º) top
Cl1—C91.7317 (18)C5—C71.522 (2)
Cl2—C101.7292 (18)C5—C61.522 (2)
S1—C11.6789 (19)C5—H51.0000
S2—C11.7430 (19)C6—H6A0.9800
S2—C41.811 (2)C6—H6B0.9800
N1—C11.334 (2)C6—H6C0.9800
N1—C21.478 (2)C7—C81.389 (2)
N1—C51.483 (2)C7—C121.393 (2)
C2—C31.511 (3)C8—C91.387 (2)
C2—H2A0.9900C8—H80.9500
C2—H2B0.9900C9—C101.387 (2)
C3—C41.510 (3)C10—C111.386 (2)
C3—H3A0.9900C11—C121.382 (3)
C3—H3B0.9900C11—H110.9500
C4—H4A0.9900C12—H120.9500
C4—H4B0.9900
C1—S2—C4106.42 (9)N1—C5—H5107.4
C1—N1—C2124.42 (15)C7—C5—H5107.4
C1—N1—C5120.18 (15)C6—C5—H5107.4
C2—N1—C5115.30 (13)C5—C6—H6A109.5
N1—C1—S1126.05 (14)C5—C6—H6B109.5
N1—C1—S2121.84 (14)H6A—C6—H6B109.5
S1—C1—S2112.08 (10)C5—C6—H6C109.5
N1—C2—C3113.25 (15)H6A—C6—H6C109.5
N1—C2—H2A108.9H6B—C6—H6C109.5
C3—C2—H2A108.9C8—C7—C12118.30 (17)
N1—C2—H2B108.9C8—C7—C5121.49 (15)
C3—C2—H2B108.9C12—C7—C5120.16 (16)
H2A—C2—H2B107.7C9—C8—C7120.70 (16)
C4—C3—C2110.84 (16)C9—C8—H8119.7
C4—C3—H3A109.5C7—C8—H8119.7
C2—C3—H3A109.5C8—C9—C10120.44 (16)
C4—C3—H3B109.5C8—C9—Cl1118.80 (14)
C2—C3—H3B109.5C10—C9—Cl1120.75 (14)
H3A—C3—H3B108.1C11—C10—C9119.28 (16)
C3—C4—S2110.86 (13)C11—C10—Cl2119.71 (14)
C3—C4—H4A109.5C9—C10—Cl2121.02 (14)
S2—C4—H4A109.5C12—C11—C10120.12 (17)
C3—C4—H4B109.5C12—C11—H11119.9
S2—C4—H4B109.5C10—C11—H11119.9
H4A—C4—H4B108.1C11—C12—C7121.16 (17)
N1—C5—C7108.84 (14)C11—C12—H12119.4
N1—C5—C6110.40 (14)C7—C12—H12119.4
C7—C5—C6115.16 (15)
C2—N1—C1—S1174.57 (13)C6—C5—C7—C817.1 (2)
C5—N1—C1—S11.7 (2)N1—C5—C7—C1241.1 (2)
C2—N1—C1—S27.3 (2)C6—C5—C7—C12165.64 (16)
C5—N1—C1—S2176.51 (12)C12—C7—C8—C90.4 (3)
C4—S2—C1—N12.87 (17)C5—C7—C8—C9177.67 (15)
C4—S2—C1—S1178.74 (10)C7—C8—C9—C100.6 (3)
C1—N1—C2—C337.4 (2)C7—C8—C9—Cl1179.05 (13)
C5—N1—C2—C3146.26 (15)C8—C9—C10—C111.0 (3)
N1—C2—C3—C464.7 (2)Cl1—C9—C10—C11178.73 (13)
C2—C3—C4—S258.89 (18)C8—C9—C10—Cl2178.77 (13)
C1—S2—C4—C328.40 (16)Cl1—C9—C10—Cl21.6 (2)
C1—N1—C5—C7113.96 (17)C9—C10—C11—C120.3 (3)
C2—N1—C5—C769.49 (18)Cl2—C10—C11—C12179.45 (14)
C1—N1—C5—C6118.73 (18)C10—C11—C12—C70.7 (3)
C2—N1—C5—C657.82 (19)C8—C7—C12—C111.1 (3)
N1—C5—C7—C8141.65 (16)C5—C7—C12—C11178.40 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S11.002.483.068 (2)117

Experimental details

Crystal data
Chemical formulaC12H13Cl2NS2
Mr306.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)13.6003 (13), 6.7270 (7), 29.149 (3)
β (°) 101.417 (4)
V3)2614.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.14 × 0.12 × 0.08
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.897, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
11612, 3029, 2527
Rint0.048
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.07
No. of reflections3029
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.27

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S11.002.483.068 (2)117
 

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationKálmán, A., Argay, G., Riba'r, B. & Toldy, L. (1977). Tetrahedron Lett, 18, 4241–4244.  Google Scholar
First citationPeng, Y. & Wu, L. (2009). Acta Cryst. E65, o784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoloway, S. B., Henry, A. C., Kollmeyer, W. D., Padgett, W. M., Powell, J. E., Roman, S. A., Tiemann, C. H., Corey, R. A. & Horne, C. A. (1978). Nitromethylene heterocycles as insecticides. In Pesticide and Venom Neurotoxicology, edited by D. L. Shankland, R. M. Hollingworth & T. Smyth Jr, pp. 153–158. New York: Plenum Press.  Google Scholar
First citationTomizawa, M., Otsuka, H., Miyamoto, T. & Yamamoto, I. (1995). J. Pesticide Sci. 20, 49–56.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds