metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridine-κ2N,N′)chloridocobalt(II) perchlorate

aDepartment of Chemistry, Jining University, Shandong 273155, People's Republic of China, and bMarine Drug and Food Institute, Ocean University of China, Qingdao 266003, People's Republic of China
*Correspondence e-mail: zhongjungao@yahoo.cn

(Received 7 November 2009; accepted 17 November 2009; online 25 November 2009)

In the cation of the title compound, [CoCl(C10H8N2)2]ClO4, the CoII atom displays a distorted trigonal-bipyramidal coordination geometry. The two pyridine rings in each 2,2′-bipyridine ligand form dihedral angles of 10.75 (12) and 4.28 (13)°. The crystal packing is stabilized by inter­ionic C—H⋯O hydrogen bonds, C—H⋯π inter­actions and aromatic ππ stacking inter­actions, with centroid–centroid distances of 3.616 (7) Å.

Related literature

For the use of 2,2′-bipyridine in coordination chemistry, see: Ruiz-Perez et al. (2002[Ruiz-Perez, C., Luis, P. A. L., Lloret, F. & Julve, M. (2002). Inorg. Chim. Acta, 336, 131-136.]). For the structure of the corresponding copper(II) compound, see: Harrison et al. (1981[Harrison, W. D., Kennedy, D. M., Ray, N. J., Sheahan, R. & Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 1556-1565.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl(C10H8N2)2]ClO4

  • Mr = 506.20

  • Monoclinic, P 21 /n

  • a = 10.7725 (12) Å

  • b = 12.2696 (14) Å

  • c = 16.333 (2) Å

  • β = 105.361 (2)°

  • V = 2081.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 298 K

  • 0.40 × 0.21 × 0.19 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.664, Tmax = 0.816

  • 10284 measured reflections

  • 3661 independent reflections

  • 2458 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.06

  • 3661 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N3 1.992 (3)
Co1—N1 1.992 (3)
Co1—N4 2.075 (4)
Co1—N2 2.138 (3)
Co1—Cl1 2.2645 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.93 2.41 3.170 (6) 139
C4—H4⋯O2ii 0.93 2.50 3.365 (6) 155
C10—H10⋯O3iii 0.93 2.53 3.116 (6) 122
C11—H11⋯Cg1iv 0.93 2.85 3.709 (6) 155
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+2, -z+2. Cg1 is the centroid of the N2/C6–C10 pyridine ring.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrogen bonding has been intensively investigated in organic crystalline solids, but is relatively unexplored in coordination complexes. In order to search the new functional hydrogen-bonded metal coordination network structures, chelating ligands such as 2,2'-bipyridine (Ruiz-Perez et al., 2002) were selected for study because they can simultaneously coordinate with the metal ions and provide potential intermolecular interaction sites.

In title compound (Fig. 1), the cobalt(II) atom has a distorted trigonal bipyramidal coordination geometry provided by one chloride anion and four nitrogen atoms from the two chelating 2, 2'-bipyridine molecules. The equatorial plane is defined by the N2, N4 and Cl1 atoms, and the sum of the N—Co—N and N—Co—Cl angles is 360.0 (3)°. The apical positions are occupied by the N1 and N3 atoms [N1—Co1—N3 = 174.58 (14)°]. The Co—N bond lenghts (Table 1) lie in the range 1.992 (3)-2.138 (3) Å. The N1/C1–C5, N2/C6–C10 and N3/C11–C15, N4/C16–C20 pyridine rings form dihedral angles of 10.75 (12) and 4.28 (13)°, respectively. The structure is similar to that reported previously for the corresponding copper(II) compound (Harrison et al., 1981). In the crystal structure, cations and anions interact through C—H···O hydrogen bonds (Table 2) to form a three-dimensional network. The structure is further stabilized by a C—H···π interaction (C11—H11···Cg1, 2.85 Å; C11—H11—Cg1, 155°; Cg1 is the centroid of the N2/C6–C10 pyridine ring) and by aromatic ππ stacking interactions involving centrosymmetrically related N3/C11–C15 pyridine rings, with a centroid-to-centroid distance of 3.616 (7) Å.

Related literature top

For the use of 2,2'-bipyridine in coordination chemistry, see: Ruiz-Perez et al. (2002). For the structure of the corresponding copper(II) compound, see: Harrison et al. (1981). Cg1 is the centroid of the N2/C6–C10 pyridine ring.

Experimental top

To a solution of Co(ClO4)2.6H2O and CoCl2.6H2O (1:1 molar ratio) in ethanol (10 mL) was added a solution of 2,2'-bipyridine (0.1562 g, 1 mmol) in ethanol (20 mL) and the resulting green solution was stirred for 8h at 333 K. The mixture was then filtered and the filtrate was allowed to stand at room temperature for one week to give well shaped green crystals suitable for X-ray analysis (yield 61%). Analysis calculated for C20H16Cl2N4O4Co: C 47.45, H, 3.19; N 11.07%; found: C 47.49, H 3.26, N, 11.12%.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% displacement ellipsoids.
Bis(2,2'-bipyridine-κ2N,N')chloridocobalt(II) perchlorate top
Crystal data top
[CoCl(C10H8N2)2]ClO4F(000) = 1028
Mr = 506.20Dx = 1.615 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2895 reflections
a = 10.7725 (12) Åθ = 2.6–25.8°
b = 12.2696 (14) ŵ = 1.12 mm1
c = 16.333 (2) ÅT = 298 K
β = 105.361 (2)°Block, green
V = 2081.7 (4) Å30.40 × 0.21 × 0.19 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3661 independent reflections
Radiation source: fine-focus sealed tube2458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.664, Tmax = 0.816k = 1414
10284 measured reflectionsl = 1219
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0432P)2 + 2.7771P]
where P = (Fo2 + 2Fc2)/3
3661 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
[CoCl(C10H8N2)2]ClO4V = 2081.7 (4) Å3
Mr = 506.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7725 (12) ŵ = 1.12 mm1
b = 12.2696 (14) ÅT = 298 K
c = 16.333 (2) Å0.40 × 0.21 × 0.19 mm
β = 105.361 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3661 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2458 reflections with I > 2σ(I)
Tmin = 0.664, Tmax = 0.816Rint = 0.029
10284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.50 e Å3
3661 reflectionsΔρmin = 0.39 e Å3
280 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.73259 (5)0.95539 (4)0.86267 (3)0.04181 (18)
N10.7739 (3)0.9517 (3)0.7508 (2)0.0531 (9)
Cl10.72296 (14)1.13977 (10)0.86111 (8)0.0720 (4)
Cl20.27386 (13)0.89418 (10)0.63357 (7)0.0653 (3)
N20.9032 (3)0.8579 (3)0.8932 (2)0.0504 (9)
N30.6929 (3)0.9438 (3)0.9747 (2)0.0514 (9)
N40.6035 (3)0.8263 (3)0.8383 (2)0.0527 (9)
O10.1665 (5)0.9455 (4)0.5784 (3)0.140 (2)
O20.2326 (4)0.8325 (4)0.6957 (2)0.1056 (14)
O30.3357 (5)0.8273 (4)0.5887 (3)0.143 (2)
O40.3567 (6)0.9733 (4)0.6800 (4)0.163 (2)
C10.7066 (5)1.0065 (4)0.6821 (3)0.0656 (13)
H10.63291.04400.68510.079*
C20.7427 (5)1.0089 (4)0.6077 (3)0.0682 (14)
H20.69391.04680.56090.082*
C30.8520 (5)0.9544 (4)0.6034 (3)0.0691 (14)
H30.87900.95620.55380.083*
C40.9217 (5)0.8970 (4)0.6730 (3)0.0617 (12)
H40.99550.85930.67080.074*
C50.8802 (4)0.8963 (3)0.7466 (3)0.0485 (10)
C60.9463 (4)0.8365 (3)0.8244 (3)0.0472 (10)
C71.0428 (5)0.7611 (4)0.8278 (3)0.0658 (13)
H71.07270.74730.78040.079*
C81.0942 (5)0.7065 (4)0.9037 (4)0.0742 (14)
H81.15890.65520.90720.089*
C91.0505 (5)0.7275 (4)0.9728 (3)0.0674 (13)
H91.08400.69091.02370.081*
C100.9553 (4)0.8044 (4)0.9653 (3)0.0624 (12)
H100.92590.81981.01270.075*
C110.7445 (5)1.0087 (4)1.0417 (3)0.0623 (12)
H110.80731.05881.03760.075*
C120.7073 (5)1.0034 (5)1.1160 (3)0.0689 (13)
H120.74471.04871.16150.083*
C130.6132 (5)0.9294 (4)1.1214 (3)0.0711 (15)
H130.58580.92451.17070.085*
C140.5602 (5)0.8629 (4)1.0530 (3)0.0679 (14)
H140.49590.81351.05570.082*
C150.6028 (4)0.8700 (4)0.9804 (3)0.0526 (11)
C160.5549 (4)0.8017 (3)0.9042 (3)0.0526 (11)
C170.4680 (5)0.7166 (4)0.8981 (4)0.0720 (14)
H170.43440.69990.94350.086*
C180.4323 (5)0.6573 (4)0.8242 (4)0.0835 (17)
H180.37340.60060.81930.100*
C190.4824 (5)0.6808 (4)0.7588 (4)0.0751 (15)
H190.45960.64040.70890.090*
C200.5678 (5)0.7659 (4)0.7675 (3)0.0632 (12)
H200.60220.78230.72240.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0476 (3)0.0455 (3)0.0378 (3)0.0002 (3)0.0210 (2)0.0038 (2)
N10.056 (2)0.058 (2)0.049 (2)0.0005 (19)0.0199 (17)0.0079 (18)
Cl10.1044 (10)0.0515 (6)0.0683 (8)0.0031 (7)0.0372 (7)0.0040 (6)
Cl20.0797 (8)0.0674 (8)0.0556 (7)0.0164 (7)0.0302 (6)0.0039 (6)
N20.050 (2)0.057 (2)0.048 (2)0.0015 (17)0.0184 (17)0.0080 (17)
N30.054 (2)0.053 (2)0.052 (2)0.0006 (18)0.0244 (17)0.0030 (17)
N40.050 (2)0.055 (2)0.056 (2)0.0011 (17)0.0181 (17)0.0032 (18)
O10.138 (4)0.217 (6)0.072 (3)0.099 (4)0.039 (3)0.055 (3)
O20.107 (3)0.131 (4)0.093 (3)0.021 (3)0.051 (2)0.047 (3)
O30.178 (5)0.176 (5)0.095 (3)0.094 (4)0.071 (3)0.006 (3)
O40.191 (6)0.107 (4)0.184 (6)0.048 (4)0.034 (5)0.021 (4)
C10.073 (3)0.072 (3)0.052 (3)0.011 (3)0.018 (2)0.010 (2)
C20.086 (4)0.071 (3)0.045 (3)0.004 (3)0.013 (3)0.007 (2)
C30.094 (4)0.073 (3)0.047 (3)0.013 (3)0.031 (3)0.001 (3)
C40.073 (3)0.066 (3)0.055 (3)0.006 (3)0.032 (2)0.009 (2)
C50.053 (3)0.046 (2)0.051 (2)0.012 (2)0.022 (2)0.005 (2)
C60.049 (2)0.045 (2)0.051 (2)0.007 (2)0.020 (2)0.0030 (19)
C70.070 (3)0.061 (3)0.071 (3)0.006 (3)0.026 (3)0.008 (3)
C80.068 (3)0.061 (3)0.090 (4)0.015 (3)0.014 (3)0.001 (3)
C90.067 (3)0.064 (3)0.070 (3)0.007 (3)0.016 (3)0.011 (3)
C100.063 (3)0.071 (3)0.055 (3)0.001 (3)0.020 (2)0.012 (2)
C110.069 (3)0.065 (3)0.057 (3)0.000 (2)0.023 (2)0.001 (2)
C120.085 (4)0.075 (3)0.051 (3)0.014 (3)0.026 (3)0.004 (2)
C130.091 (4)0.080 (4)0.055 (3)0.019 (3)0.042 (3)0.016 (3)
C140.072 (3)0.073 (3)0.071 (3)0.008 (3)0.040 (3)0.020 (3)
C150.053 (3)0.053 (3)0.058 (3)0.012 (2)0.025 (2)0.016 (2)
C160.048 (3)0.047 (2)0.067 (3)0.008 (2)0.022 (2)0.015 (2)
C170.073 (3)0.060 (3)0.090 (4)0.004 (3)0.034 (3)0.016 (3)
C180.077 (4)0.059 (3)0.109 (5)0.019 (3)0.016 (3)0.007 (3)
C190.079 (4)0.055 (3)0.084 (4)0.006 (3)0.007 (3)0.001 (3)
C200.065 (3)0.063 (3)0.060 (3)0.002 (2)0.015 (2)0.001 (2)
Geometric parameters (Å, º) top
Co1—N31.992 (3)C6—C71.381 (6)
Co1—N11.992 (3)C7—C81.388 (7)
Co1—N42.075 (4)C7—H70.9300
Co1—N22.138 (3)C8—C91.358 (7)
Co1—Cl12.2645 (13)C8—H80.9300
N1—C11.344 (6)C9—C101.375 (6)
N1—C51.349 (5)C9—H90.9300
Cl2—O31.383 (4)C10—H100.9300
Cl2—O41.399 (5)C11—C121.375 (6)
Cl2—O11.412 (4)C11—H110.9300
Cl2—O21.428 (4)C12—C131.381 (7)
N2—C101.335 (5)C12—H120.9300
N2—C61.351 (5)C13—C141.379 (7)
N3—C151.348 (5)C13—H130.9300
N3—C111.349 (6)C14—C151.382 (6)
N4—C201.342 (5)C14—H140.9300
N4—C161.350 (5)C15—C161.475 (6)
C1—C21.370 (6)C16—C171.388 (6)
C1—H10.9300C17—C181.374 (7)
C2—C31.372 (7)C17—H170.9300
C2—H20.9300C18—C191.351 (7)
C3—C41.379 (7)C18—H180.9300
C3—H30.9300C19—C201.373 (6)
C4—C51.388 (6)C19—H190.9300
C4—H40.9300C20—H200.9300
C5—C61.476 (6)
N3—Co1—N1174.58 (14)N2—C6—C5115.2 (4)
N3—Co1—N479.94 (14)C7—C6—C5123.6 (4)
N1—Co1—N496.21 (14)C6—C7—C8118.5 (5)
N3—Co1—N297.25 (13)C6—C7—H7120.8
N1—Co1—N279.29 (13)C8—C7—H7120.8
N4—Co1—N296.25 (14)C9—C8—C7120.5 (5)
N3—Co1—Cl193.53 (10)C9—C8—H8119.8
N1—Co1—Cl191.89 (11)C7—C8—H8119.8
N4—Co1—Cl1137.20 (10)C8—C9—C10118.0 (5)
N2—Co1—Cl1126.54 (10)C8—C9—H9121.0
C1—N1—C5119.2 (4)C10—C9—H9121.0
C1—N1—Co1123.5 (3)N2—C10—C9123.1 (4)
C5—N1—Co1117.2 (3)N2—C10—H10118.5
O3—Cl2—O4111.8 (4)C9—C10—H10118.5
O3—Cl2—O1110.8 (3)N3—C11—C12122.2 (5)
O4—Cl2—O1109.5 (4)N3—C11—H11118.9
O3—Cl2—O2110.3 (3)C12—C11—H11118.9
O4—Cl2—O2104.9 (3)C11—C12—C13118.6 (5)
O1—Cl2—O2109.4 (3)C11—C12—H12120.7
C10—N2—C6118.8 (4)C13—C12—H12120.7
C10—N2—Co1128.0 (3)C14—C13—C12119.4 (4)
C6—N2—Co1112.2 (3)C14—C13—H13120.3
C15—N3—C11119.4 (4)C12—C13—H13120.3
C15—N3—Co1116.4 (3)C13—C14—C15119.8 (5)
C11—N3—Co1124.1 (3)C13—C14—H14120.1
C20—N4—C16118.7 (4)C15—C14—H14120.1
C20—N4—Co1127.7 (3)N3—C15—C14120.6 (4)
C16—N4—Co1113.5 (3)N3—C15—C16114.8 (4)
N1—C1—C2122.2 (5)C14—C15—C16124.5 (4)
N1—C1—H1118.9N4—C16—C17120.5 (5)
C2—C1—H1118.9N4—C16—C15115.0 (4)
C1—C2—C3119.0 (5)C17—C16—C15124.5 (4)
C1—C2—H2120.5C18—C17—C16119.3 (5)
C3—C2—H2120.5C18—C17—H17120.4
C2—C3—C4119.5 (4)C16—C17—H17120.4
C2—C3—H3120.3C19—C18—C17120.2 (5)
C4—C3—H3120.3C19—C18—H18119.9
C3—C4—C5119.2 (5)C17—C18—H18119.9
C3—C4—H4120.4C18—C19—C20118.5 (5)
C5—C4—H4120.4C18—C19—H19120.7
N1—C5—C4120.8 (4)C20—C19—H19120.7
N1—C5—C6115.4 (3)N4—C20—C19122.7 (5)
C4—C5—C6123.8 (4)N4—C20—H20118.6
N2—C6—C7121.2 (4)C19—C20—H20118.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.413.170 (6)139
C4—H4···O2ii0.932.503.365 (6)155
C10—H10···O3iii0.932.533.116 (6)122
C11—H11···Cg1iv0.932.853.709 (6)155
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[CoCl(C10H8N2)2]ClO4
Mr506.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.7725 (12), 12.2696 (14), 16.333 (2)
β (°) 105.361 (2)
V3)2081.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.40 × 0.21 × 0.19
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.664, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
10284, 3661, 2458
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.06
No. of reflections3661
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.39

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—N31.992 (3)Co1—N22.138 (3)
Co1—N11.992 (3)Co1—Cl12.2645 (13)
Co1—N42.075 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.413.170 (6)139.2
C4—H4···O2ii0.932.503.365 (6)155.1
C10—H10···O3iii0.932.533.116 (6)121.6
C11—H11···Cg1iv0.932.853.709 (6)155
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x+2, y+2, z+2.
 

Acknowledgements

We acknowledge the financial support of the Science Foundation of Shandong.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarrison, W. D., Kennedy, D. M., Ray, N. J., Sheahan, R. & Hathaway, B. J. (1981). J. Chem. Soc. Dalton Trans. pp. 1556–1565.  CSD CrossRef Web of Science Google Scholar
First citationRuiz-Perez, C., Luis, P. A. L., Lloret, F. & Julve, M. (2002). Inorg. Chim. Acta, 336, 131–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds