organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cinnamyl 2-oxo-2H-chromene-3-carboxyl­ate

aCollege of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China, and bCollege of Tobacco, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: xucuilian666@126.com

(Received 8 October 2009; accepted 30 October 2009; online 4 November 2009)

The title compound, C19H14O4, was prepared by the reaction of 2-oxo-2H-chromene-3-acyl chloride with cinnamic alcohol. The whole mol­ecule is not planar, the dihedral angle between the planes of coumarin and benzene rings being 13.94 (4)°, but the plane of the coumarin ring and that of the ester group are almost coplanar, making a dihedral angle of 2.9 (1)°. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link two mol­ecules into dimers, and ππ stacking inter­actions between inversion-related rings of the coumarin groups [centroid–centroid distance 3.8380 (15) Å with a slippage of 1.535 Å], which connect the dimers into columns extending along [010].

Related literature

For the medicinal and biological activity of coumarins and their derivatives, see: Borges et al. (2005[Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887-916.]); Kontogiorgis & Hadjipavlou-Litina (2005[Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2005). J. Med. Chem. 48, 6400-6408.]); Gursoy & Karali (2003[Gursoy, A. & Karali, N. (2003). Turk. J. Chem, 27, 545-551.]). For the development of coumarin derivatives as anti-HIV agents, see: Yu et al. (2003[Yu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322-345.], 2007[Yu, D., Morris-Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108-132.]). For the structure of menthyl 2-oxo-2H-chromene-3-carboxyl­ate, see: Xu et al. (2009[Xu, C.-L., Liu, S.-Y., Chen, G., Yang, G.-Y. & Zhao, M.-Q. (2009). Acta Cryst. E65, o2431.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14O4

  • Mr = 306.30

  • Monoclinic, P 21 /n

  • a = 5.7026 (11) Å

  • b = 8.2969 (17) Å

  • c = 31.693 (6) Å

  • β = 92.96 (3)°

  • V = 1497.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Rigaku R-AXIS-IV diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.981, Tmax = 0.983

  • 4266 measured reflections

  • 2485 independent reflections

  • 2002 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.147

  • S = 1.08

  • 2485 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O3i 0.93 2.54 3.344 (3) 145
C7—H7A⋯O3i 0.93 2.46 3.292 (3) 149
Symmetry code: (i) -x+1, -y, -z.

Data collection: R-AXIS (Rigaku, 1997[Rigaku (1997). R-AXIS. Rigaku Corporation, Tokyo, Japan.]); cell refinement: R-AXIS data reduction: R-AXIS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation & Rigaku, 2000[Molecular Structure Corporation & Rigaku (2000). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

The coumarins and derivatives display a wide range of biological activities, such as antiviral effect (Borges et al., 2005), anti-inflammatories (Kontogiorgis & Hadjipavlou-Litina, 2005), anti-bacterials (Gursoy & Karali, 2003), and anti-proliferative properties. (Yu et al., 2003; Yu et al., 2007), as well as being a kind of basic flavor compounds. As part of work, we have synthesized the title compound (I) and report its crystal structure here.

The molecular structure of (I) is shown in Fig. 1. It crystallizes in the E conformation, with an C11—C12—C13—C14 torsion angle of -19.6 (3)°. The plane of the coumarin ring and that of the ester group are almost co-planar, with a small dihedral angle of 2.9 (1) °, but the coumarin ring is not coplanar with the C14-benzene ring, forming a dihedral angle of 13.94 (4)°.

There are weak intermolecular C—H···O hydrogen bonds (Table 1) that link two molecules into a dimer (Fig. 2), and π-π stackings between two parallel rings [Cg1:O1, C1, C6, C7, C8, C9 and Cg2:C1i - C6i. Symmetry code:(i) -x, 1 - y, -z] with a slippage of 1.535 Å and Cg1···Cg2 distance of 3.8380 (15) Å that helps to connect dimers into columns along the b axis (Fig. 3). The perpendicular distance between the stacked coumarin rings is 3.518 Å.

Related literature top

For the medicinal and biological activity of coumarins and their derivatives, see: Borges et al. (2005); Kontogiorgis & Hadjipavlou-Litina (2005); Gursoy & Karali (2003). For the development of coumarin derivatives as anti-HIV agents, see: Yu et al. (2003, 2007). For the structure of menthyl 2-oxo-2H-chromene-3-carboxylate, see: Xu et al. (2009).

Experimental top

Compound (I) was synthesized as reported by Xu et al. (2009), starting from 2-oxo-2H-chromene-3-acyl chloride and cinnamic alcohol in equimolar amounts. Single crystals of the title compound suitable for X-ray diffractions were obtained by slow evaporation of a mixed solvent (ethyl acetate: petroleum ether = 1: 3, 7 ml) solution of the title compound (0.030 g).

Refinement top

All H atoms were placed in calculated positions, with C—H= 0.93 Å, and Uiso(H)=1.2Ueq(C) for aromatic and vinyl H atoms; C—H=0.97 Å, and Uiso(H)=1.2 Ueq(C) for methylene H atoms. The final difference map had a highest peak at 0.64 Å from atom C8 and a deepest hole at 0.95 Å from atom C9, but were otherwise featureless.

Computing details top

Data collection: R-AXIS (Rigaku, 1997); cell refinement: R-AXIS (Rigaku, 1997); data reduction: R-AXIS (Rigaku, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation & Rigaku, 2000).

Figures top
[Figure 1] Fig. 1. PLATON plot of (I) showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing weak C—H···O hydrogen bonds as dashed lines.
[Figure 3] Fig. 3. Packing diagram of the title compound.
Cinnamyl 2-oxo-2H-chromene-3-carboxylate top
Crystal data top
C19H14O4F(000) = 640
Mr = 306.30Dx = 1.359 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 378 reflections
a = 5.7026 (11) Åθ = 1.3–25.0°
b = 8.2969 (17) ŵ = 0.10 mm1
c = 31.693 (6) ÅT = 291 K
β = 92.96 (3)°Block, colourless
V = 1497.5 (5) Å30.20 × 0.18 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS-IV
diffractometer
2485 independent reflections
Radiation source: fine-focus sealed tube2002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 1.3°
Oscillation frames scansh = 06
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.981, Tmax = 0.983l = 3737
4266 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.2535P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2485 reflectionsΔρmax = 0.24 e Å3
209 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (4)
Crystal data top
C19H14O4V = 1497.5 (5) Å3
Mr = 306.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7026 (11) ŵ = 0.10 mm1
b = 8.2969 (17) ÅT = 291 K
c = 31.693 (6) Å0.20 × 0.18 × 0.18 mm
β = 92.96 (3)°
Data collection top
Rigaku R-AXIS-IV
diffractometer
2485 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2002 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.983Rint = 0.060
4266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
2485 reflectionsΔρmin = 0.23 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2090 (3)0.32886 (19)0.02988 (4)0.0567 (4)
O20.1217 (3)0.2749 (2)0.09679 (5)0.0696 (5)
O30.4778 (3)0.0109 (2)0.06191 (4)0.0638 (5)
O40.2725 (3)0.09462 (19)0.11589 (4)0.0534 (4)
C10.1652 (4)0.3240 (3)0.01256 (6)0.0470 (5)
C20.3243 (4)0.4004 (3)0.04038 (7)0.0621 (6)
H2A0.45520.45280.03060.075*
C30.2838 (5)0.3967 (3)0.08278 (7)0.0638 (7)
H3A0.38860.44830.10180.077*
C40.0916 (4)0.3184 (3)0.09790 (7)0.0623 (7)
H4A0.06740.31790.12670.075*
C50.0644 (4)0.2410 (3)0.07000 (6)0.0557 (6)
H5A0.19280.18670.08010.067*
C60.0297 (3)0.2440 (2)0.02644 (6)0.0438 (5)
C70.1821 (4)0.1682 (3)0.00463 (6)0.0445 (5)
H7A0.31370.11390.00410.053*
C80.1425 (3)0.1722 (2)0.04622 (6)0.0421 (5)
C90.0628 (4)0.2578 (3)0.06115 (6)0.0493 (5)
C100.3154 (4)0.0854 (3)0.07502 (6)0.0451 (5)
C110.4328 (4)0.0061 (3)0.14417 (6)0.0581 (6)
H11A0.58290.06130.14680.070*
H11B0.45860.10090.13290.070*
C120.3306 (4)0.0062 (3)0.18634 (6)0.0532 (6)
H12A0.41470.06670.20670.064*
C130.1334 (4)0.0596 (3)0.19788 (6)0.0483 (5)
H13A0.04790.11900.17750.058*
C140.0349 (4)0.0481 (2)0.24006 (6)0.0448 (5)
C150.1666 (4)0.1337 (3)0.24838 (7)0.0557 (6)
H15A0.23590.19900.22740.067*
C160.2664 (4)0.1240 (3)0.28701 (7)0.0643 (7)
H16A0.40150.18260.29180.077*
C170.1661 (4)0.0276 (3)0.31857 (7)0.0610 (7)
H17A0.23500.01900.34440.073*
C180.0363 (5)0.0556 (3)0.31136 (7)0.0592 (6)
H18A0.10650.11870.33270.071*
C190.1365 (4)0.0463 (3)0.27266 (6)0.0530 (6)
H19A0.27330.10360.26820.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0587 (9)0.0672 (10)0.0450 (8)0.0205 (8)0.0100 (7)0.0005 (7)
O20.0735 (11)0.0936 (13)0.0434 (8)0.0265 (10)0.0188 (8)0.0040 (8)
O30.0654 (10)0.0836 (12)0.0431 (8)0.0282 (9)0.0102 (7)0.0002 (8)
O40.0606 (9)0.0657 (10)0.0341 (7)0.0156 (8)0.0053 (6)0.0006 (7)
C10.0493 (12)0.0461 (12)0.0459 (11)0.0017 (10)0.0064 (9)0.0010 (9)
C20.0594 (14)0.0684 (16)0.0585 (14)0.0179 (12)0.0030 (11)0.0045 (12)
C30.0639 (15)0.0732 (16)0.0535 (13)0.0069 (13)0.0047 (11)0.0118 (12)
C40.0654 (15)0.0820 (18)0.0397 (12)0.0056 (13)0.0043 (10)0.0094 (11)
C50.0543 (13)0.0722 (16)0.0412 (11)0.0038 (11)0.0089 (10)0.0023 (11)
C60.0452 (12)0.0473 (11)0.0394 (10)0.0008 (9)0.0069 (9)0.0009 (9)
C70.0449 (11)0.0473 (12)0.0421 (11)0.0058 (9)0.0098 (8)0.0009 (9)
C80.0484 (11)0.0415 (11)0.0370 (10)0.0023 (9)0.0078 (8)0.0018 (8)
C90.0527 (13)0.0529 (13)0.0428 (11)0.0059 (10)0.0085 (9)0.0026 (10)
C100.0494 (12)0.0493 (12)0.0374 (10)0.0022 (10)0.0092 (9)0.0028 (9)
C110.0596 (14)0.0747 (15)0.0396 (11)0.0136 (12)0.0006 (10)0.0011 (11)
C120.0599 (14)0.0633 (14)0.0360 (10)0.0072 (11)0.0022 (9)0.0020 (10)
C130.0534 (13)0.0513 (12)0.0398 (10)0.0007 (10)0.0027 (9)0.0028 (9)
C140.0460 (12)0.0469 (11)0.0412 (10)0.0055 (9)0.0008 (9)0.0016 (9)
C150.0502 (12)0.0658 (14)0.0505 (12)0.0030 (11)0.0015 (10)0.0049 (11)
C160.0529 (14)0.0815 (18)0.0593 (14)0.0091 (13)0.0096 (11)0.0045 (13)
C170.0665 (15)0.0762 (17)0.0413 (12)0.0027 (13)0.0130 (10)0.0016 (11)
C180.0770 (16)0.0593 (14)0.0410 (11)0.0070 (13)0.0004 (10)0.0015 (10)
C190.0620 (14)0.0541 (13)0.0429 (11)0.0086 (11)0.0017 (10)0.0006 (10)
Geometric parameters (Å, º) top
O1—C11.381 (2)C8—C101.494 (3)
O1—C91.393 (3)C11—C121.489 (3)
O2—C91.203 (2)C11—H11A0.9700
O3—C101.205 (2)C11—H11B0.9700
O4—C101.333 (2)C12—C131.319 (3)
O4—C111.447 (3)C12—H12A0.9300
C1—C61.385 (3)C13—C141.480 (3)
C1—C21.386 (3)C13—H13A0.9300
C2—C31.375 (3)C14—C151.388 (3)
C2—H2A0.9300C14—C191.398 (3)
C3—C41.381 (4)C15—C161.379 (3)
C3—H3A0.9300C15—H15A0.9300
C4—C51.380 (3)C16—C171.382 (3)
C4—H4A0.9300C16—H16A0.9300
C5—C61.405 (3)C17—C181.374 (4)
C5—H5A0.9300C17—H17A0.9300
C6—C71.426 (3)C18—C191.382 (3)
C7—C81.349 (3)C18—H18A0.9300
C7—H7A0.9300C19—H19A0.9300
C8—C91.469 (3)
C1—O1—C9123.31 (16)O4—C10—C8114.69 (17)
C10—O4—C11115.52 (16)O4—C11—C12109.07 (18)
O1—C1—C6120.76 (18)O4—C11—H11A109.9
O1—C1—C2117.44 (19)C12—C11—H11A109.9
C6—C1—C2121.8 (2)O4—C11—H11B109.9
C3—C2—C1118.3 (2)C12—C11—H11B109.9
C3—C2—H2A120.9H11A—C11—H11B108.3
C1—C2—H2A120.9C13—C12—C11126.8 (2)
C2—C3—C4121.7 (2)C13—C12—H12A116.6
C2—C3—H3A119.1C11—C12—H12A116.6
C4—C3—H3A119.1C12—C13—C14126.4 (2)
C5—C4—C3119.6 (2)C12—C13—H13A116.8
C5—C4—H4A120.2C14—C13—H13A116.8
C3—C4—H4A120.2C15—C14—C19117.52 (19)
C4—C5—C6120.2 (2)C15—C14—C13119.69 (19)
C4—C5—H5A119.9C19—C14—C13122.79 (19)
C6—C5—H5A119.9C16—C15—C14121.5 (2)
C1—C6—C5118.45 (19)C16—C15—H15A119.2
C1—C6—C7117.54 (18)C14—C15—H15A119.2
C5—C6—C7124.00 (19)C15—C16—C17120.1 (2)
C8—C7—C6122.51 (18)C15—C16—H16A119.9
C8—C7—H7A118.7C17—C16—H16A119.9
C6—C7—H7A118.7C18—C17—C16119.4 (2)
C7—C8—C9120.19 (18)C18—C17—H17A120.3
C7—C8—C10116.55 (18)C16—C17—H17A120.3
C9—C8—C10123.26 (17)C17—C18—C19120.6 (2)
O2—C9—O1115.64 (19)C17—C18—H18A119.7
O2—C9—C8128.7 (2)C19—C18—H18A119.7
O1—C9—C8115.68 (17)C18—C19—C14120.8 (2)
O3—C10—O4123.20 (19)C18—C19—H19A119.6
O3—C10—C8122.10 (18)C14—C19—H19A119.6
C9—O1—C1—C60.9 (3)C7—C8—C9—O11.1 (3)
C9—O1—C1—C2179.7 (2)C10—C8—C9—O1178.51 (18)
O1—C1—C2—C3180.0 (2)C11—O4—C10—O31.0 (3)
C6—C1—C2—C30.5 (4)C11—O4—C10—C8177.69 (18)
C1—C2—C3—C40.5 (4)C7—C8—C10—O32.4 (3)
C2—C3—C4—C50.2 (4)C9—C8—C10—O3177.2 (2)
C3—C4—C5—C61.0 (4)C7—C8—C10—O4178.87 (18)
O1—C1—C6—C5179.21 (19)C9—C8—C10—O41.5 (3)
C2—C1—C6—C50.2 (3)C10—O4—C11—C12166.07 (19)
O1—C1—C6—C70.2 (3)O4—C11—C12—C133.8 (3)
C2—C1—C6—C7179.6 (2)C11—C12—C13—C14179.2 (2)
C4—C5—C6—C11.0 (3)C12—C13—C14—C15175.4 (2)
C4—C5—C6—C7179.7 (2)C12—C13—C14—C194.5 (3)
C1—C6—C7—C80.1 (3)C19—C14—C15—C161.2 (3)
C5—C6—C7—C8179.4 (2)C13—C14—C15—C16178.8 (2)
C6—C7—C8—C90.4 (3)C14—C15—C16—C170.0 (4)
C6—C7—C8—C10179.19 (19)C15—C16—C17—C181.4 (4)
C1—O1—C9—O2178.6 (2)C16—C17—C18—C191.5 (4)
C1—O1—C9—C81.4 (3)C17—C18—C19—C140.2 (4)
C7—C8—C9—O2178.9 (2)C15—C14—C19—C181.1 (3)
C10—C8—C9—O21.5 (4)C13—C14—C19—C18178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.932.543.344 (3)145
C7—H7A···O3i0.932.463.292 (3)149
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC19H14O4
Mr306.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)5.7026 (11), 8.2969 (17), 31.693 (6)
β (°) 92.96 (3)
V3)1497.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerRigaku R-AXIS-IV
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.981, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
4266, 2485, 2002
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.147, 1.08
No. of reflections2485
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: R-AXIS (Rigaku, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2005), TEXSAN (Molecular Structure Corporation & Rigaku, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···O3i0.932.543.344 (3)145
C7—H7A···O3i0.932.463.292 (3)149
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province (No. 2009A150012).

References

First citationBorges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationGursoy, A. & Karali, N. (2003). Turk. J. Chem, 27, 545–551.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2005). J. Med. Chem. 48, 6400–6408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMolecular Structure Corporation & Rigaku (2000). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1997). R-AXIS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, C.-L., Liu, S.-Y., Chen, G., Yang, G.-Y. & Zhao, M.-Q. (2009). Acta Cryst. E65, o2431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, D., Morris-Natschke, S. L. & Lee, K.-H. (2007). Med. Res. Rev. 27, 108–132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, D., Suzuki, M., Xie, L., Morris-Natschke, S. L. & Lee, K. H. (2003). Med. Res. Rev. 23, 322–345.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds