organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2,4-Di­chloro­phen­yl)-2-oxo-1-oxa­spiro­[4.5]dec-3-en-4-yl 4-chloro­benzoate

aCollege of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
*Correspondence e-mail: jinhaozhao@zju.edu.cn

(Received 15 October 2009; accepted 23 October 2009; online 4 November 2009)

In the title spiro­diclofen derivative, C22H17Cl3O4, the cyclo­hexane ring adopts a chair conformation [four C atoms are planar with a mean deviation of 0.018 Å and the two C atoms at the flap positions deviate by 0.613 (4) and −0.668 (5) Å from the plane]. The dihedral angles between the furan ring and the two benzene rings are 55.78 (3) and 49.92 (3)°. Weak inter­molecular C—H⋯Cl inter­actions are observed in the crystal structure.

Related literature

For the chemistry of tetronic acid, the central unit of the title compound, see: Fischer et al. (1993[Fischer, R. M., Bretschneider, T. S. & Kruger, B.-W. (1993). US Patent No. 5 262 383. ]); Benson et al. (2000[Benson, D. A., Lipman, D. J., Ostell, J., Rapp, B. A., Wheeler, D. L. & Genbank, N. (2000). Acids Res. 28, 15-18.]). For the pesticides Spiro­diclofen, Spiro­mesifen and Spiro­tetra­mate, see: BAYER Aktiengesellschaft (1995[BAYER Aktiengesellschaft (1995). WO patent No. 9 504 719A1.]). For the synthesis and structure of the inter­mediate compound for the preparation of spiro­diclofen, see: Zhao et al. (2009[Zhao, J. H., Zhou, Y., Xu, X. H., Cheng, J. L. & Zhu, G. N. (2009). Chin. J. Struct. Chem. 28, 837-840.]). For the extinction correction, see: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17Cl3O4

  • Mr = 451.73

  • Monoclinic, P 21 /n

  • a = 14.7979 (8) Å

  • b = 10.3483 (5) Å

  • c = 15.0702 (8) Å

  • β = 115.1875 (12)°

  • V = 2088.33 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 296 K

  • 0.46 × 0.32 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.800, Tmax = 0.878

  • 19403 measured reflections

  • 4756 independent reflections

  • 3289 reflections with F2 > 2σ(F2)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.131

  • S = 1.00

  • 4756 reflections

  • 263 parameters

  • All H-atom parameters refined

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H52⋯Cl1i 0.97 2.79 3.726 (3) 162
C16—H16⋯Cl3ii 0.93 2.82 3.595 (3) 141
Symmetry codes: (i) -x+1, -y, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996[Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.]); molecular graphics: CRYSTALS; software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The chemistry of tetronic acid compounds has being receiving increasing attention in recent years (Fischer et al.,1993; Benson et al., 2000). Bayer company have developed three tetronic acids pesticide-Spirodiclofen, Spiromesifen and Spirotetramat. 4-hydroxyl-3-(2,4-dichlorophenyl)-1- oxaspiro[4,5]dec-3-en-2-one (Zhao et al., 2009) is the key intermediate in preparing highly efficient acaricide-Spirodiclofen (BAYER et al.,1995). We have been involved in the synthesis and potential bioactivity of substituted 4-hydroxyl-3-(2,4-dichlorophenyl) -1-oxaspiro[4,5]dec-3-en-2-one. In order to find new compounds which have good bioactivity, we have isolated the product, (I), of the condensation reaction of 4-chlorobenzoyl chloride and 4-hydroxyl-3- (2,4-dichlorophenyl)-1-oxaspiro[4,5]dec-3-en-2-one as colorless crystals suitable for X-ray analysis. The molecular structure of (I) is shown in Fig. 1. The molecule contains three six membered rings and one five membered rings. The dihedral angles between the ring (C11—C16) and ring (C17—C22), ring (C11—C16) and furan ring, ring (C17—C22) and furan ring, are 67.84 (3), 55.78 (3), and 49.92 (3) °, respectively. The cyclohexane ring displays chair conformation with C1 and C7 atoms at the flap position 0.613 (4) and -0.668 (5) Å out of the mean plane formed by the other four atoms. As expected, C2—C3, C4—O1 and C10—O4 are typically double bonds with bond distances of 1.319 (3), 1.199 (3) and 1.190 (3) Å. The bond distance of C3—C4 is 1.487 (3) Å, suggesting that carbonyl group on C7 has formed a conjugate system with double bond on C2 and C3. It is worth notice that in the title compound there exist two weak intermolecular C—H···Cl contacts (Table 1).

Related literature top

For the chemistry of tetronic acid, the central unit of the title compound, see: Fischer et al. (1993); Benson et al. (2000). For the pesticides Spirodiclofen, Spiromesifen and Spirotetramate, see: BAYER Aktiengesellschaft (1995). For the synthesis and structure of the intermediate compound for the preparation of spirodiclofen, see: Zhao et al. (2009). For the extinction correction, see: Larson (1970).

Experimental top

4-hydroxyl-3-(2,4-dichlorophenyl)-1-oxaspiro[4,5]dec-3-en-2-one (3.12 g, 10 mmol), 4-dimethylaminopyridine (0.58 g, 1eq.), triethylamine (1.31 g, 1.3eq.) and chloroform (100 ml) were added to a 250 ml round flask. Then the mixture was stirred and cooled to 273–278 K. Within 30 min 4-chlorobenzoyl chloride (1.5eq.) was added dropwise to the solution. The mixture was stirred at room temperature for 3 h and then 1% aqueous HCl was added. The organic layer was washed to neutral with water and dried over Na2SO4. After filtered and concentrated, the organic residue was purified by silica gel column chromatography, eluted with ethyl acetate-petroleum(1:30,v/v) to give a white solid (yield 85%, 3.96 g), which was then recrystallized from ethyl acetate/ethanol (1:1,v/v) to give colourless blocks.

The 1H NMR, EI-MS data testified the title compound's structure. 1H-NMR (500MHz, CDCl3, δ ppm):7.969-7.942 (2H, m, -CO-Ph-H4), 7.492-7.465 (2H, m, -CO-Ph-H4), 7.455-7.301 (3H, m, Cl2-Ph-H3), 1.876-1.802 (10H, m, cyclohexane-H10); EI-MS (70eV, m/z) (relative intensity %): 452 (M+2, 5), 450 (M+, 5),141 (33) ,139 (100). So we are sure that our chemical formula of the compound is correctly presented.

Refinement top

The H atoms were geometrically placed (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: CRYSTALS (Watkin et al., 1996); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing arrangement in the unit cell.
3-(2,4-Dichlorophenyl)-2-oxo-1-oxaspiro[4.5]dec-3-en-4-yl 4-chlorobenzoate top
Crystal data top
C22H17Cl3O4F(000) = 928.00
Mr = 451.73Dx = 1.437 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 13096 reflections
a = 14.7979 (8) Åθ = 3.0–27.4°
b = 10.3483 (5) ŵ = 0.46 mm1
c = 15.0702 (8) ÅT = 296 K
β = 115.1875 (12)°Chunk, colorless
V = 2088.33 (19) Å30.46 × 0.32 × 0.28 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3289 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.029
ω scansθmax = 27.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1919
Tmin = 0.800, Tmax = 0.878k = 1312
19403 measured reflectionsl = 1919
4756 independent reflections
Refinement top
Refinement on F2 w = 1/[0.0005Fo2 + 3σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.050(Δ/σ)max < 0.001
wR(F2) = 0.131Δρmax = 0.54 e Å3
S = 1.00Δρmin = 0.43 e Å3
4756 reflectionsExtinction correction: Larson (1970), equation 22
263 parametersExtinction coefficient: 127 (22)
All H-atom parameters refined
Crystal data top
C22H17Cl3O4V = 2088.33 (19) Å3
Mr = 451.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.7979 (8) ŵ = 0.46 mm1
b = 10.3483 (5) ÅT = 296 K
c = 15.0702 (8) Å0.46 × 0.32 × 0.28 mm
β = 115.1875 (12)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4756 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3289 reflections with F2 > 2σ(F2)
Tmin = 0.800, Tmax = 0.878Rint = 0.029
19403 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050263 parameters
wR(F2) = 0.131All H-atom parameters refined
S = 1.00Δρmax = 0.54 e Å3
4756 reflectionsΔρmin = 0.43 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.59797 (8)0.25919 (9)0.12627 (8)0.0964 (3)
Cl20.43688 (6)0.27225 (6)0.35188 (6)0.0706 (2)
Cl30.74849 (6)0.44566 (10)0.67014 (5)0.0783 (2)
O10.41594 (14)0.74637 (17)0.27583 (14)0.0635 (6)
O20.32741 (12)0.64354 (18)0.13360 (12)0.0526 (5)
O30.43940 (12)0.33403 (16)0.14982 (12)0.0499 (5)
O40.60304 (16)0.3775 (2)0.2079 (2)0.0823 (8)
C10.32759 (19)0.5153 (2)0.09125 (19)0.0475 (7)
C20.41627 (18)0.4558 (2)0.17081 (19)0.0426 (7)
C30.45501 (19)0.5243 (2)0.25228 (19)0.0441 (7)
C40.4012 (2)0.6500 (2)0.2275 (2)0.0495 (8)
C50.3374 (2)0.5343 (2)0.00451 (19)0.0545 (8)
C60.2448 (2)0.5961 (3)0.0843 (2)0.0693 (10)
C70.1506 (2)0.5212 (3)0.0994 (2)0.0712 (10)
C80.1395 (2)0.5091 (3)0.0036 (2)0.0653 (9)
C90.23153 (18)0.4468 (2)0.0752 (2)0.0523 (8)
C100.5376 (2)0.3002 (3)0.1748 (2)0.0548 (9)
C110.54804 (19)0.1611 (2)0.15495 (19)0.0452 (7)
C120.6420 (2)0.1213 (2)0.1683 (2)0.0553 (8)
C130.6566 (2)0.0088 (3)0.1565 (2)0.0628 (10)
C140.5783 (2)0.0928 (2)0.1331 (2)0.0552 (8)
C150.4847 (2)0.0556 (2)0.1182 (2)0.0620 (9)
C160.4699 (2)0.0755 (2)0.1285 (2)0.0586 (9)
C170.53097 (19)0.5005 (2)0.35283 (19)0.0454 (7)
C180.52788 (19)0.3912 (2)0.4051 (2)0.0482 (8)
C190.5946 (2)0.3713 (2)0.5033 (2)0.0528 (8)
C200.6659 (2)0.4649 (2)0.5479 (2)0.0530 (8)
C210.6719 (2)0.5728 (3)0.4985 (2)0.0620 (9)
C220.6042 (2)0.5900 (3)0.4017 (2)0.0620 (9)
H120.69410.18010.18470.066*
H130.71880.03860.16440.075*
H150.43300.11500.10190.074*
H160.40670.10520.11740.070*
H190.59080.29790.53720.063*
H210.72100.63440.52970.074*
H220.60840.66410.36870.074*
H510.39440.58960.00790.065*
H520.34810.45070.02760.065*
H610.23860.68410.06540.083*
H620.25210.59690.14540.083*
H710.15440.43550.12360.085*
H720.09290.56620.14720.085*
H810.08160.45620.01460.078*
H820.13060.59440.01810.078*
H910.22450.44750.13630.063*
H920.23560.35830.05610.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1031 (7)0.0598 (5)0.1127 (7)0.0265 (5)0.0329 (6)0.0117 (5)
Cl20.0826 (5)0.0506 (4)0.0693 (5)0.0178 (4)0.0235 (4)0.0017 (3)
Cl30.0571 (4)0.1195 (8)0.0503 (4)0.0126 (5)0.0151 (3)0.0049 (4)
O10.0807 (14)0.0348 (11)0.0636 (12)0.0022 (9)0.0196 (10)0.0103 (9)
O20.0553 (11)0.0493 (11)0.0461 (10)0.0078 (9)0.0148 (9)0.0039 (9)
O30.0434 (10)0.0383 (10)0.0612 (11)0.0034 (8)0.0158 (8)0.0091 (8)
O40.0564 (12)0.0581 (14)0.138 (2)0.0125 (11)0.0469 (13)0.0256 (14)
C10.0482 (15)0.0472 (16)0.0453 (15)0.0039 (12)0.0182 (12)0.0063 (13)
C20.0475 (14)0.0247 (13)0.0544 (16)0.0009 (11)0.0206 (13)0.0045 (12)
C30.0459 (14)0.0333 (14)0.0511 (15)0.0006 (11)0.0187 (12)0.0004 (12)
C40.0531 (16)0.0442 (17)0.0501 (16)0.0031 (13)0.0208 (14)0.0017 (14)
C50.0606 (17)0.0535 (18)0.0522 (16)0.0033 (14)0.0268 (14)0.0028 (14)
C60.075 (2)0.081 (2)0.0465 (16)0.0048 (18)0.0204 (15)0.0007 (16)
C70.073 (2)0.061 (2)0.0576 (19)0.0062 (17)0.0067 (17)0.0070 (16)
C80.0466 (16)0.066 (2)0.075 (2)0.0016 (14)0.0172 (15)0.0164 (17)
C90.0508 (16)0.0480 (17)0.0576 (16)0.0013 (13)0.0225 (14)0.0034 (14)
C100.0412 (15)0.072 (2)0.0535 (17)0.0007 (15)0.0229 (13)0.0034 (15)
C110.0472 (15)0.0394 (15)0.0482 (15)0.0087 (12)0.0196 (13)0.0017 (12)
C120.0523 (16)0.0440 (17)0.0713 (19)0.0035 (14)0.0279 (15)0.0033 (15)
C130.0522 (17)0.074 (2)0.0634 (19)0.0174 (17)0.0254 (15)0.0025 (17)
C140.071 (2)0.0293 (14)0.0596 (18)0.0143 (14)0.0227 (16)0.0001 (13)
C150.0619 (19)0.0420 (17)0.077 (2)0.0028 (15)0.0241 (16)0.0074 (15)
C160.0395 (15)0.072 (2)0.0635 (18)0.0048 (15)0.0213 (14)0.0003 (16)
C170.0463 (15)0.0402 (15)0.0479 (15)0.0015 (12)0.0184 (13)0.0011 (13)
C180.0489 (15)0.0411 (16)0.0537 (16)0.0019 (12)0.0209 (13)0.0061 (13)
C190.0581 (16)0.0458 (17)0.0562 (17)0.0120 (14)0.0259 (14)0.0052 (14)
C200.0487 (16)0.0595 (19)0.0495 (16)0.0098 (14)0.0197 (13)0.0009 (15)
C210.0494 (17)0.068 (2)0.0589 (18)0.0103 (15)0.0138 (15)0.0052 (16)
C220.0545 (17)0.074 (2)0.0522 (17)0.0163 (15)0.0176 (15)0.0006 (16)
Geometric parameters (Å, º) top
Cl1—C141.757 (2)C15—C161.393 (4)
Cl2—C181.747 (2)C17—C181.390 (3)
Cl3—C201.736 (2)C17—C221.377 (3)
O1—C41.199 (3)C18—C191.402 (3)
O2—C11.473 (3)C19—C201.378 (3)
O2—C41.373 (2)C20—C211.366 (4)
O3—C21.377 (3)C21—C221.386 (3)
O3—C101.382 (3)C5—H510.970
O4—C101.190 (3)C5—H520.970
C1—C21.483 (3)C6—H610.970
C1—C51.523 (4)C6—H620.970
C1—C91.513 (3)C7—H710.970
C2—C31.319 (3)C7—H720.970
C3—C41.487 (3)C8—H810.970
C3—C171.473 (3)C8—H820.970
C5—C61.527 (3)C9—H910.970
C6—C71.524 (4)C9—H920.970
C7—C81.526 (5)C12—H120.930
C8—C91.517 (3)C13—H130.930
C10—C111.492 (4)C15—H150.930
C11—C121.380 (4)C16—H160.930
C11—C161.374 (3)C19—H190.930
C12—C131.386 (4)C21—H210.930
C13—C141.369 (4)C22—H220.930
C14—C151.361 (4)
C1—O2—C4110.07 (18)Cl3—C20—C21119.5 (2)
C2—O3—C10120.29 (19)C19—C20—C21121.6 (2)
O2—C1—C2100.83 (17)C20—C21—C22119.5 (2)
O2—C1—C5108.2 (2)C17—C22—C21121.9 (2)
O2—C1—C9108.5 (2)C1—C5—H51108.7
C2—C1—C5114.3 (2)C1—C5—H52108.7
C2—C1—C9112.5 (2)C6—C5—H51108.7
C5—C1—C9111.7 (2)C6—C5—H52108.7
O3—C2—C1114.5 (2)H51—C5—H52109.5
O3—C2—C3130.8 (2)C5—C6—H61109.0
C1—C2—C3114.5 (2)C5—C6—H62109.0
C2—C3—C4105.2 (2)C7—C6—H61109.0
C2—C3—C17135.0 (2)C7—C6—H62109.0
C4—C3—C17119.8 (2)H61—C6—H62109.5
O1—C4—O2121.7 (2)C6—C7—H71109.1
O1—C4—C3129.5 (2)C6—C7—H72109.1
O2—C4—C3108.8 (2)C8—C7—H71109.1
C1—C5—C6112.7 (2)C8—C7—H72109.1
C5—C6—C7111.2 (2)H71—C7—H72109.5
C6—C7—C8111.2 (2)C7—C8—H81109.2
C7—C8—C9110.7 (2)C7—C8—H82109.2
C1—C9—C8113.3 (2)C9—C8—H81109.2
O3—C10—O4121.2 (2)C9—C8—H82109.2
O3—C10—C11112.1 (2)H81—C8—H82109.5
O4—C10—C11126.7 (2)C1—C9—H91108.5
C10—C11—C12116.3 (2)C1—C9—H92108.5
C10—C11—C16122.3 (2)C8—C9—H91108.5
C12—C11—C16121.4 (2)C8—C9—H92108.5
C11—C12—C13118.2 (2)H91—C9—H92109.5
C12—C13—C14119.3 (3)C11—C12—H12120.9
Cl1—C14—C13119.7 (2)C13—C12—H12120.9
Cl1—C14—C15116.7 (2)C12—C13—H13120.4
C13—C14—C15123.6 (2)C14—C13—H13120.4
C14—C15—C16117.0 (2)C14—C15—H15121.5
C11—C16—C15120.5 (2)C16—C15—H15121.5
C3—C17—C18121.6 (2)C11—C16—H16119.8
C3—C17—C22121.3 (2)C15—C16—H16119.8
C18—C17—C22116.9 (2)C18—C19—H19121.3
Cl2—C18—C17121.20 (17)C20—C19—H19121.3
Cl2—C18—C19116.1 (2)C20—C21—H21120.2
C17—C18—C19122.6 (2)C22—C21—H21120.2
C18—C19—C20117.4 (2)C17—C22—H22119.1
Cl3—C20—C19119.0 (2)C21—C22—H22119.1
C1—O2—C4—O1178.8 (3)C17—C3—C4—O2173.4 (2)
C1—O2—C4—C30.2 (3)C1—C5—C6—C753.4 (3)
C4—O2—C1—C24.5 (3)C5—C6—C7—C855.8 (3)
C4—O2—C1—C5124.7 (2)C6—C7—C8—C956.1 (3)
C4—O2—C1—C9113.9 (2)C7—C8—C9—C154.5 (3)
C2—O3—C10—O45.7 (4)O3—C10—C11—C12173.7 (2)
C2—O3—C10—C11174.4 (2)O3—C10—C11—C168.8 (4)
C10—O3—C2—C1137.8 (2)O4—C10—C11—C126.2 (5)
C10—O3—C2—C348.0 (4)O4—C10—C11—C16171.4 (3)
O2—C1—C2—O3176.7 (2)C10—C11—C12—C13176.1 (2)
O2—C1—C2—C38.1 (3)C10—C11—C16—C15174.9 (2)
O2—C1—C5—C668.4 (2)C12—C11—C16—C152.6 (4)
O2—C1—C9—C867.4 (3)C16—C11—C12—C131.5 (4)
C2—C1—C5—C6179.8 (2)C11—C12—C13—C140.5 (4)
C5—C1—C2—O360.9 (3)C12—C13—C14—Cl1175.6 (2)
C5—C1—C2—C3124.0 (2)C12—C13—C14—C151.5 (4)
C2—C1—C9—C8178.0 (2)Cl1—C14—C15—C16176.8 (2)
C9—C1—C2—O367.9 (3)C13—C14—C15—C160.4 (4)
C9—C1—C2—C3107.2 (3)C14—C15—C16—C111.6 (4)
C5—C1—C9—C851.8 (3)C3—C17—C18—Cl23.1 (4)
C9—C1—C5—C651.0 (3)C3—C17—C18—C19174.9 (3)
O3—C2—C3—C4177.6 (3)C3—C17—C22—C21175.5 (3)
O3—C2—C3—C174.5 (6)C18—C17—C22—C210.2 (4)
C1—C2—C3—C48.2 (3)C22—C17—C18—Cl2178.7 (2)
C1—C2—C3—C17169.7 (3)C22—C17—C18—C190.8 (4)
C2—C3—C4—O1173.7 (3)Cl2—C18—C19—C20178.7 (2)
C2—C3—C4—O24.9 (3)C17—C18—C19—C200.6 (4)
C2—C3—C17—C1850.1 (5)C18—C19—C20—Cl3178.8 (2)
C2—C3—C17—C22134.5 (3)C18—C19—C20—C210.1 (4)
C4—C3—C17—C18127.6 (3)Cl3—C20—C21—C22178.2 (2)
C4—C3—C17—C2247.9 (4)C19—C20—C21—C220.7 (5)
C17—C3—C4—O18.0 (5)C20—C21—C22—C170.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H52···Cl1i0.972.793.726 (3)162
C16—H16···Cl3ii0.932.823.595 (3)141
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC22H17Cl3O4
Mr451.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)14.7979 (8), 10.3483 (5), 15.0702 (8)
β (°) 115.1875 (12)
V3)2088.33 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.46 × 0.32 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.800, 0.878
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
19403, 4756, 3289
Rint0.029
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.131, 1.00
No. of reflections4756
No. of parameters263
No. of restraints?
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.54, 0.43

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR97 (Altomare et al., 1993), CRYSTALS (Watkin et al., 1996), CrystalStructure and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H52···Cl1i0.972.793.726 (3)162
C16—H16···Cl3ii0.932.823.595 (3)141
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 30700532) and the Science and Technology Project of Zhejiang Province (No. 2009C21044) for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBAYER Aktiengesellschaft (1995). WO patent No. 9 504 719A1.  Google Scholar
First citationBenson, D. A., Lipman, D. J., Ostell, J., Rapp, B. A., Wheeler, D. L. & Genbank, N. (2000). Acids Res. 28, 15–18.  Web of Science CrossRef CAS Google Scholar
First citationFischer, R. M., Bretschneider, T. S. & Kruger, B.-W. (1993). US Patent No. 5 262 383.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationZhao, J. H., Zhou, Y., Xu, X. H., Cheng, J. L. & Zhu, G. N. (2009). Chin. J. Struct. Chem. 28, 837–840.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds