metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1580-m1581

catena-Poly[[bis­­(2,2′-bi­pyridine-κ2N,N′)cadmium(II)]-μ-9,10-dioxo­anthracene-1,5-di­sulfonato-κ2O1:O5]

aDepartment of Chemistry, Baicheng Normal College, Baicheng, Jilin 137000, People's Republic of China, bCollege of Chemistry, Northeast Normal University, Changchun, Jilin 130024, People's Republic of China, and cCollege of Chemistry, Jilin Normal University, Siping, Jilin 136000, People's Republic of China
*Correspondence e-mail: jj_zhx@126.com

(Received 22 October 2009; accepted 6 November 2009; online 14 November 2009)

The title complex, [Cd(C14H6O8S2)(C10H8N2)2]n, exhibits a chain-like polymeric structure with 9,10-dioxoanthracene-1,5-disulfonate anions bridging CdII atoms in a bis-monodentate mode. The CdII atom shows a distorted octa­hedral environment, with four N atoms from two chelating 2,2′-bipyridine ligands forming the equatorial plane and two sulfonate O atoms from two 9,10-dioxoanthracene-1,5-disulfonate anions occupying the apical positions. Weak C—H⋯O hydrogen-bonding contacts and ππ inter­actions [centroid–centroid distances = 3.6920 (12) and 3.7095 (12) Å] connect the complex mol­ecules into a three-dimensional supra­molecular framework.

Related literature

For applications of organosulfonate-based metal complexes, see: Vaira et al. (2003[Vaira, M. D., Orioli, P., Piccioli, F., Bruni, B. & Messori, L. (2003). Inorg. Chem. 42, 3157-3159.]). For a review on structural chemistry and properties of metal arenesulfonates, see: Cai (2004[Cai, J. W. (2004). Coord. Chem. Rev. 248, 1061-1083.]). For self-assembled structural motifs in coordination chemistry, see: Cai et al. (2001[Cai, J. W., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137-1142.]); Sun & Lees (2001[Sun, S. S. & Lees, A. J. (2001). Chem. Commun. pp. 103-104.]); Swiegers & Malefetse (2000[Swiegers, G. F. & Malefetse, T. J. (2000). Chem. Rev. 100, 3483-3537.]). For the synthetic procedure, see: Zhao et al. (2007[Zhao, J. P., Hu, B. W., Liu, F. C., Hu, X., Zeng, Y. F. & Bu, X. H. (2007). CrystEngComm, 9, 902-906.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C14H6O8S2)(C10H8N2)2]

  • Mr = 791.08

  • Triclinic, [P \overline 1]

  • a = 10.3807 (7) Å

  • b = 10.7406 (8) Å

  • c = 13.1289 (9) Å

  • α = 94.044 (1)°

  • β = 90.239 (1)°

  • γ = 97.025 (1)°

  • V = 1449.08 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 296 K

  • 0.24 × 0.23 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.802, Tmax = 0.816

  • 7435 measured reflections

  • 5078 independent reflections

  • 4773 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.061

  • S = 1.01

  • 5078 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N3 2.2645 (17)
Cd1—N1 2.3050 (17)
Cd1—N2 2.3356 (17)
Cd1—O4i 2.3527 (16)
Cd1—N4 2.3882 (17)
Cd1—O2 2.4109 (16)
Symmetry code: (i) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5ii 0.93 2.48 3.200 (3) 135
C5—H5⋯O4ii 0.93 2.53 3.239 (3) 133
C14—H14⋯O2iii 0.93 2.54 3.267 (3) 136
Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of metal sulfonate compounds has been a research field of rapid expansion in recent years, mainly due to their adjustable coordination ability and interesting applications as functional materials [Cai, 2004; Vaira et al., 2003; Zhao et al., 2007]. Coordination interaction, H-bonding and ππ interaction usually play important roles in constructing, tuning, modifying, controlling, and modulating such coordination architectures [Cai et al., 2001; Sun & Lees, 2001; Swiegers & Malefetse, 2000]. We herein report the crystal structure of a Cd II complex with 2,2'-bipyridine and 9,10-dioxoanthracene-1,5-disulfonate ligands (I).

The local coordination environment of CdII atom in I is shown in Fig.1. The unique CdII atom is six-coordinated by four N atoms from two unsymmetric bi-chelating 2,2'-bipyridine ligands and two sulfonate O atoms from two independent anthraquinone-1,5-disulfonate anions, exhibiting a slightly distorted octahedral coordination mode (Table 1). The anthraquinone-1,5-disulfonate anion adopts a bis-monodentate mode, linking the adjacent Cd II atoms into a one-dimentional infinite chain along the b-axis (Fig.2). The ππ stacking interactions between the adjacent 2,2'-bipyridine rings as well as weak C—H···O hydrogen-bonding interactions (Table 2) were observed (Fig. 2), which further extend the chains into a two-dimensional plane. Cg5···Cg5iii distance is 3.6920 (12) Å, the perpendicular distance between the inversion-related planes (therefore the dihedral angle is zero) is 3.291 Å, and the slippage (offset) is 1.674 Å. Cg5 is the centroid of the ring (N3, C11, C15, C14, C13, C12), and the symmetry code iii = 2 - x, -y, 1 - z. Additionally, the adjacent two-dimensional planes are extended into a three-dimensional supramolecular network by ππ stacking interactions between the anthraquinone rings. Cg9···Cg9iv distance is 3.7095 (12) Å, the plane-to-plane (perpendicular) distance between inversion related planes is 3.340 Å, the slippage is 1.615 Å, Cg9 is the centroid of the ring (C24, C25, C26, C27, C28, C29) and the symmetry code iv = 1 - x, 1 - y, 1 - z.

Related literature top

For applications of organosulfonate-based metal complexes, see: Vaira et al. (2003). For a review on structural chemistry and properties of metal arenesulfonates, see: Cai (2004). For self-assembled structural motifs in coordination chemistry, see: Cai et al. (2001); Sun & Lees (2001); Swiegers & Malefetse (2000). For the synthetic procedure, see: Zhao et al. (2007).

Experimental top

A mixture of disodium 9,10-dioxoanthracene-1,5-disulfonate (41.2 mg, 0.1 mmol), Cd(OAc)2.2H2O(26.7 mg, 0.1 mmol), 2,2'-bipyridine(15.6 mg, 0.1 mmol), and H2O (10 ml) was sealed in a 23 ml teflonlined stainlesssteel vessel. The vessel was heated to 413 K for 2 days under autogenous pressure and then cooled to room temperature at a rate of 2.4 K / h. Pink block-shaped crystals suitable for X-ray analysis were obtained in a 39% yield. Analysis calculated for C34H22CdN4O8S2: C 51.62, H 2.80, N 7.08%; found: C 51.53, H 2.84, N 6.99%.

Refinement top

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C–H = 0.93 Å and O–H = 0.85 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = Ueq(C, O)].

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The local coordination environment of CdII in (I) drawn with 30% probability displacement ellipsoids. H atoms were omitted for clarity.
[Figure 2] Fig. 2. The three-dimensional supramolecular network of (I) produced by hydrogen-bonding and ππ stacking interactions.
catena-Poly[[bis(2,2'-bipyridine-κ2N,N')cadmium(II)]- µ-9,10-dioxoanthracene-1,5-disulfonato-κ2O1:O5] top
Crystal data top
[Cd(C14H6O8S2)(C10H8N2)2]Z = 2
Mr = 791.08F(000) = 796
Triclinic, P1Dx = 1.813 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3807 (7) ÅCell parameters from 6497 reflections
b = 10.7406 (8) Åθ = 2.5–27.9°
c = 13.1289 (9) ŵ = 0.96 mm1
α = 94.044 (1)°T = 296 K
β = 90.239 (1)°BLOCK, pink
γ = 97.025 (1)°0.24 × 0.23 × 0.22 mm
V = 1449.08 (18) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5078 independent reflections
Radiation source: fine-focus sealed tube4773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1210
Tmin = 0.802, Tmax = 0.816k = 1212
7435 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.8688P]
where P = (Fo2 + 2Fc2)/3
5078 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cd(C14H6O8S2)(C10H8N2)2]γ = 97.025 (1)°
Mr = 791.08V = 1449.08 (18) Å3
Triclinic, P1Z = 2
a = 10.3807 (7) ÅMo Kα radiation
b = 10.7406 (8) ŵ = 0.96 mm1
c = 13.1289 (9) ÅT = 296 K
α = 94.044 (1)°0.24 × 0.23 × 0.22 mm
β = 90.239 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5078 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4773 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.816Rint = 0.010
7435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
5078 reflectionsΔρmin = 0.47 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.739498 (14)0.019562 (14)0.758892 (11)0.02811 (7)
S10.98757 (5)0.25760 (5)0.82102 (4)0.03023 (12)
S20.49276 (5)0.76753 (5)0.66792 (4)0.03213 (13)
O11.06004 (17)0.33125 (16)0.74831 (15)0.0487 (4)
O20.92846 (15)0.13520 (14)0.77782 (13)0.0374 (4)
O31.06023 (18)0.24621 (18)0.91345 (14)0.0515 (5)
O40.56626 (15)0.81750 (15)0.76110 (13)0.0416 (4)
O50.36219 (14)0.71481 (15)0.68755 (13)0.0399 (4)
O60.50253 (18)0.85773 (17)0.59052 (15)0.0529 (5)
O70.8128 (2)0.29015 (19)0.64176 (13)0.0602 (6)
O80.49447 (18)0.5670 (2)0.82193 (14)0.0557 (5)
N10.73658 (17)0.02158 (16)0.93351 (13)0.0282 (4)
N20.57917 (17)0.11075 (16)0.79681 (13)0.0288 (4)
N30.79152 (17)0.03642 (17)0.59157 (13)0.0287 (4)
N40.87250 (17)0.18502 (17)0.73225 (14)0.0304 (4)
C10.6531 (2)0.09907 (19)0.97055 (15)0.0267 (4)
C20.8247 (2)0.0124 (2)0.99750 (17)0.0348 (5)
H20.88240.06620.97180.042*
C30.8343 (2)0.0280 (2)1.09904 (17)0.0377 (5)
H30.89700.00261.14100.045*
C40.7489 (2)0.1070 (2)1.13697 (17)0.0397 (5)
H40.75290.13611.20540.048*
C50.6570 (2)0.1427 (2)1.07233 (17)0.0365 (5)
H50.59810.19571.09710.044*
C60.5603 (2)0.14002 (19)0.89629 (16)0.0272 (4)
C70.4978 (2)0.1472 (2)0.72820 (18)0.0366 (5)
H70.50970.12570.65930.044*
C80.3976 (2)0.2151 (2)0.75536 (19)0.0396 (5)
H80.34450.24100.70580.048*
C90.3776 (2)0.2439 (2)0.8570 (2)0.0415 (6)
H90.30950.28840.87750.050*
C100.4594 (2)0.2061 (2)0.92850 (18)0.0369 (5)
H100.44710.22470.99780.044*
C110.86840 (19)0.12295 (19)0.55847 (16)0.0272 (4)
C120.7463 (2)0.0352 (2)0.52407 (17)0.0343 (5)
H120.69190.09360.54710.041*
C130.7761 (2)0.0268 (2)0.42227 (17)0.0386 (5)
H130.74310.07850.37730.046*
C140.8560 (2)0.0599 (2)0.38872 (17)0.0382 (5)
H140.87910.06690.32040.046*
C150.9019 (2)0.1368 (2)0.45681 (17)0.0345 (5)
H150.95470.19700.43460.041*
C160.9134 (2)0.2036 (2)0.63649 (16)0.0286 (4)
C170.9074 (2)0.2606 (2)0.80218 (18)0.0378 (5)
H170.87830.24870.86860.045*
C180.9840 (2)0.3544 (2)0.7803 (2)0.0414 (6)
H181.00550.40530.83070.050*
C191.0281 (3)0.3716 (2)0.6829 (2)0.0479 (6)
H191.08140.43340.66620.058*
C200.9924 (2)0.2958 (2)0.6098 (2)0.0453 (6)
H201.02100.30640.54310.054*
C210.8573 (2)0.34568 (19)0.86396 (16)0.0279 (4)
C220.77142 (19)0.39712 (18)0.79997 (16)0.0261 (4)
C230.7662 (2)0.3762 (2)0.68705 (17)0.0328 (5)
C240.70328 (19)0.46704 (19)0.62757 (16)0.0275 (4)
C250.7262 (2)0.4667 (2)0.52374 (17)0.0356 (5)
H250.77320.40670.49230.043*
C260.6798 (2)0.5545 (2)0.46681 (17)0.0385 (5)
H260.69540.55430.39710.046*
C270.6094 (2)0.6439 (2)0.51434 (17)0.0344 (5)
H270.58160.70570.47640.041*
C280.58020 (19)0.64261 (19)0.61615 (16)0.0269 (4)
C290.62537 (19)0.55178 (19)0.67490 (16)0.0262 (4)
C300.5920 (2)0.5344 (2)0.78358 (17)0.0308 (5)
C310.6830 (2)0.47193 (19)0.84556 (16)0.0279 (4)
C320.6774 (2)0.4918 (2)0.95107 (17)0.0358 (5)
H320.61600.53930.98010.043*
C330.7620 (3)0.4417 (2)1.01259 (18)0.0436 (6)
H330.75910.45581.08320.052*
C340.8518 (2)0.3697 (2)0.96818 (17)0.0372 (5)
H340.90990.33671.00990.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03081 (10)0.03273 (10)0.02167 (9)0.00993 (6)0.00363 (6)0.00262 (6)
S10.0275 (3)0.0272 (3)0.0373 (3)0.0088 (2)0.0022 (2)0.0019 (2)
S20.0279 (3)0.0281 (3)0.0418 (3)0.0109 (2)0.0022 (2)0.0007 (2)
O10.0451 (10)0.0372 (9)0.0651 (12)0.0067 (8)0.0230 (9)0.0077 (8)
O20.0375 (9)0.0279 (8)0.0473 (10)0.0077 (7)0.0068 (7)0.0008 (7)
O30.0477 (10)0.0599 (12)0.0507 (11)0.0287 (9)0.0136 (8)0.0065 (9)
O40.0343 (9)0.0393 (9)0.0485 (10)0.0036 (7)0.0039 (7)0.0134 (8)
O50.0265 (8)0.0432 (9)0.0504 (10)0.0110 (7)0.0016 (7)0.0048 (8)
O60.0564 (11)0.0424 (10)0.0667 (12)0.0250 (9)0.0120 (9)0.0186 (9)
O70.0969 (16)0.0589 (12)0.0339 (9)0.0549 (12)0.0067 (10)0.0112 (9)
O80.0515 (11)0.0800 (14)0.0464 (11)0.0417 (10)0.0220 (9)0.0206 (10)
N10.0290 (9)0.0311 (9)0.0250 (9)0.0072 (7)0.0027 (7)0.0002 (7)
N20.0295 (9)0.0299 (9)0.0274 (9)0.0069 (7)0.0019 (7)0.0001 (7)
N30.0308 (9)0.0317 (9)0.0248 (9)0.0101 (7)0.0034 (7)0.0003 (7)
N40.0336 (10)0.0285 (9)0.0295 (10)0.0059 (7)0.0007 (8)0.0007 (7)
C10.0289 (10)0.0265 (10)0.0250 (10)0.0037 (8)0.0072 (8)0.0024 (8)
C20.0358 (12)0.0398 (13)0.0305 (11)0.0133 (10)0.0011 (9)0.0002 (10)
C30.0445 (13)0.0423 (13)0.0275 (11)0.0094 (11)0.0034 (10)0.0051 (10)
C40.0572 (15)0.0431 (13)0.0197 (11)0.0107 (11)0.0026 (10)0.0005 (9)
C50.0453 (13)0.0377 (12)0.0281 (11)0.0126 (10)0.0082 (10)0.0007 (10)
C60.0279 (10)0.0231 (10)0.0301 (11)0.0026 (8)0.0040 (9)0.0005 (8)
C70.0379 (12)0.0421 (13)0.0306 (12)0.0098 (10)0.0025 (10)0.0004 (10)
C80.0348 (12)0.0384 (13)0.0465 (14)0.0091 (10)0.0090 (10)0.0022 (11)
C90.0314 (12)0.0394 (13)0.0546 (15)0.0138 (10)0.0000 (11)0.0060 (11)
C100.0358 (12)0.0382 (12)0.0372 (13)0.0099 (10)0.0061 (10)0.0040 (10)
C110.0252 (10)0.0275 (10)0.0289 (11)0.0039 (8)0.0031 (8)0.0003 (9)
C120.0364 (12)0.0382 (12)0.0307 (12)0.0141 (10)0.0035 (9)0.0033 (10)
C130.0379 (13)0.0499 (14)0.0307 (12)0.0121 (11)0.0001 (10)0.0091 (10)
C140.0409 (13)0.0504 (14)0.0233 (11)0.0062 (11)0.0050 (10)0.0010 (10)
C150.0361 (12)0.0370 (12)0.0308 (12)0.0093 (10)0.0069 (9)0.0040 (10)
C160.0252 (10)0.0284 (11)0.0324 (11)0.0040 (8)0.0034 (9)0.0008 (9)
C170.0479 (14)0.0351 (12)0.0296 (12)0.0025 (10)0.0046 (10)0.0028 (10)
C180.0426 (13)0.0315 (12)0.0507 (15)0.0031 (10)0.0137 (11)0.0100 (11)
C190.0462 (15)0.0433 (14)0.0590 (17)0.0209 (12)0.0053 (12)0.0102 (12)
C200.0475 (14)0.0459 (14)0.0477 (15)0.0226 (12)0.0161 (12)0.0090 (12)
C210.0288 (11)0.0253 (10)0.0302 (11)0.0063 (8)0.0022 (9)0.0002 (8)
C220.0271 (10)0.0222 (10)0.0291 (11)0.0047 (8)0.0022 (8)0.0001 (8)
C230.0364 (12)0.0311 (11)0.0323 (12)0.0140 (9)0.0003 (9)0.0055 (9)
C240.0261 (10)0.0295 (11)0.0271 (11)0.0075 (8)0.0017 (8)0.0034 (8)
C250.0370 (12)0.0433 (13)0.0280 (11)0.0167 (10)0.0010 (9)0.0073 (10)
C260.0417 (13)0.0506 (14)0.0249 (11)0.0139 (11)0.0027 (10)0.0010 (10)
C270.0332 (12)0.0387 (12)0.0333 (12)0.0101 (10)0.0007 (9)0.0057 (10)
C280.0222 (10)0.0276 (10)0.0310 (11)0.0060 (8)0.0008 (8)0.0021 (9)
C290.0230 (10)0.0268 (10)0.0287 (11)0.0047 (8)0.0002 (8)0.0025 (8)
C300.0327 (11)0.0281 (11)0.0330 (11)0.0105 (9)0.0057 (9)0.0001 (9)
C310.0291 (11)0.0255 (10)0.0293 (11)0.0053 (8)0.0039 (9)0.0001 (8)
C320.0406 (13)0.0355 (12)0.0329 (12)0.0138 (10)0.0080 (10)0.0031 (10)
C330.0538 (15)0.0522 (15)0.0266 (12)0.0178 (12)0.0011 (11)0.0035 (11)
C340.0423 (13)0.0407 (13)0.0304 (12)0.0130 (10)0.0032 (10)0.0016 (10)
Geometric parameters (Å, º) top
Cd1—N32.2645 (17)C10—H100.9300
Cd1—N12.3050 (17)C11—C151.383 (3)
Cd1—N22.3356 (17)C11—C161.496 (3)
Cd1—O4i2.3527 (16)C12—C131.373 (3)
Cd1—N42.3882 (17)C12—H120.9300
Cd1—O22.4109 (16)C13—C141.373 (3)
S1—O11.4387 (18)C13—H130.9300
S1—O31.4465 (18)C14—C151.380 (3)
S1—O21.4564 (16)C14—H140.9300
S1—C211.813 (2)C15—H150.9300
S2—O51.4353 (17)C16—C201.389 (3)
S2—O61.4481 (19)C17—C181.374 (3)
S2—O41.4719 (18)C17—H170.9300
S2—C281.806 (2)C18—C191.368 (4)
O4—Cd1ii2.3527 (16)C18—H180.9300
O7—C231.215 (3)C19—C201.379 (4)
O8—C301.211 (3)C19—H190.9300
N1—C21.340 (3)C20—H200.9300
N1—C11.343 (3)C21—C341.377 (3)
N2—C61.342 (3)C21—C221.409 (3)
N2—C71.343 (3)C22—C311.402 (3)
N3—C121.334 (3)C22—C231.483 (3)
N3—C111.348 (3)C23—C241.499 (3)
N4—C161.338 (3)C24—C251.385 (3)
N4—C171.344 (3)C24—C291.405 (3)
C1—C51.383 (3)C25—C261.374 (3)
C1—C61.492 (3)C25—H250.9300
C2—C31.372 (3)C26—C271.391 (3)
C2—H20.9300C26—H260.9300
C3—C41.371 (3)C27—C281.373 (3)
C3—H30.9300C27—H270.9300
C4—C51.381 (3)C28—C291.408 (3)
C4—H40.9300C29—C301.489 (3)
C5—H50.9300C30—C311.494 (3)
C6—C101.387 (3)C31—C321.389 (3)
C7—C81.376 (3)C32—C331.373 (3)
C7—H70.9300C32—H320.9300
C8—C91.371 (4)C33—C341.388 (3)
C8—H80.9300C33—H330.9300
C9—C101.378 (3)C34—H340.9300
C9—H90.9300
N3—Cd1—N1166.26 (6)N3—C11—C16116.78 (18)
N3—Cd1—N2114.20 (6)C15—C11—C16122.14 (19)
N1—Cd1—N271.82 (6)N3—C12—C13123.1 (2)
N3—Cd1—O4i100.05 (6)N3—C12—H12118.4
N1—Cd1—O4i92.77 (6)C13—C12—H12118.4
N2—Cd1—O4i84.02 (6)C12—C13—C14118.1 (2)
N3—Cd1—N471.49 (6)C12—C13—H13120.9
N1—Cd1—N4105.00 (6)C14—C13—H13120.9
N2—Cd1—N4168.49 (6)C13—C14—C15119.7 (2)
O4i—Cd1—N485.11 (6)C13—C14—H14120.1
N3—Cd1—O285.54 (6)C15—C14—H14120.1
N1—Cd1—O281.21 (6)C14—C15—C11119.1 (2)
N2—Cd1—O299.17 (6)C14—C15—H15120.4
O4i—Cd1—O2171.85 (6)C11—C15—H15120.4
N4—Cd1—O291.13 (6)N4—C16—C20121.5 (2)
O1—S1—O3113.39 (12)N4—C16—C11117.42 (18)
O1—S1—O2113.56 (10)C20—C16—C11121.1 (2)
O3—S1—O2111.31 (11)N4—C17—C18123.2 (2)
O1—S1—C21106.45 (10)N4—C17—H17118.4
O3—S1—C21103.90 (10)C18—C17—H17118.4
O2—S1—C21107.45 (9)C19—C18—C17118.7 (2)
O5—S2—O6113.97 (11)C19—C18—H18120.7
O5—S2—O4113.30 (10)C17—C18—H18120.7
O6—S2—O4111.62 (12)C18—C19—C20119.0 (2)
O5—S2—C28108.28 (10)C18—C19—H19120.5
O6—S2—C28104.48 (10)C20—C19—H19120.5
O4—S2—C28104.26 (9)C19—C20—C16119.6 (2)
S1—O2—Cd1148.54 (9)C19—C20—H20120.2
S2—O4—Cd1ii122.01 (10)C16—C20—H20120.2
C2—N1—C1118.40 (18)C34—C21—C22119.58 (19)
C2—N1—Cd1123.63 (14)C34—C21—S1114.81 (16)
C1—N1—Cd1117.25 (13)C22—C21—S1125.42 (16)
C6—N2—C7118.44 (18)C31—C22—C21118.18 (19)
C6—N2—Cd1116.16 (13)C31—C22—C23117.20 (18)
C7—N2—Cd1125.05 (14)C21—C22—C23124.61 (18)
C12—N3—C11118.79 (18)O7—C23—C22122.5 (2)
C12—N3—Cd1121.94 (14)O7—C23—C24119.4 (2)
C11—N3—Cd1119.26 (14)C22—C23—C24118.09 (17)
C16—N4—C17118.06 (19)C25—C24—C29120.49 (19)
C16—N4—Cd1115.03 (14)C25—C24—C23117.80 (18)
C17—N4—Cd1126.90 (15)C29—C24—C23121.70 (19)
N1—C1—C5121.1 (2)C26—C25—C24120.4 (2)
N1—C1—C6117.06 (18)C26—C25—H25119.8
C5—C1—C6121.76 (19)C24—C25—H25119.8
N1—C2—C3123.4 (2)C25—C26—C27119.4 (2)
N1—C2—H2118.3C25—C26—H26120.3
C3—C2—H2118.3C27—C26—H26120.3
C4—C3—C2118.3 (2)C28—C27—C26121.3 (2)
C4—C3—H3120.9C28—C27—H27119.4
C2—C3—H3120.9C26—C27—H27119.4
C3—C4—C5119.2 (2)C27—C28—C29119.72 (19)
C3—C4—H4120.4C27—C28—S2116.19 (16)
C5—C4—H4120.4C29—C28—S2123.97 (16)
C4—C5—C1119.6 (2)C24—C29—C28118.45 (19)
C4—C5—H5120.2C24—C29—C30116.71 (18)
C1—C5—H5120.2C28—C29—C30124.78 (18)
N2—C6—C10121.4 (2)O8—C30—C29122.7 (2)
N2—C6—C1117.14 (17)O8—C30—C31119.8 (2)
C10—C6—C1121.50 (19)C29—C30—C31117.46 (17)
N2—C7—C8122.9 (2)C32—C31—C22121.0 (2)
N2—C7—H7118.6C32—C31—C30117.17 (18)
C8—C7—H7118.6C22—C31—C30121.86 (19)
C9—C8—C7118.7 (2)C33—C32—C31120.3 (2)
C9—C8—H8120.7C33—C32—H32119.9
C7—C8—H8120.7C31—C32—H32119.9
C8—C9—C10119.2 (2)C32—C33—C34119.2 (2)
C8—C9—H9120.4C32—C33—H33120.4
C10—C9—H9120.4C34—C33—H33120.4
C9—C10—C6119.4 (2)C21—C34—C33121.7 (2)
C9—C10—H10120.3C21—C34—H34119.1
C6—C10—H10120.3C33—C34—H34119.1
N3—C11—C15121.1 (2)
O1—S1—O2—Cd1133.06 (19)Cd1—N3—C11—C160.5 (2)
O3—S1—O2—Cd197.5 (2)C11—N3—C12—C131.3 (3)
C21—S1—O2—Cd115.6 (2)Cd1—N3—C12—C13179.92 (18)
N3—Cd1—O2—S1135.7 (2)N3—C12—C13—C140.3 (4)
N1—Cd1—O2—S147.93 (19)C12—C13—C14—C151.0 (4)
N2—Cd1—O2—S121.9 (2)C13—C14—C15—C111.3 (4)
O4i—Cd1—O2—S190.6 (4)N3—C11—C15—C140.3 (3)
N4—Cd1—O2—S1152.9 (2)C16—C11—C15—C14179.4 (2)
O5—S2—O4—Cd1ii153.24 (9)C17—N4—C16—C201.6 (3)
O6—S2—O4—Cd1ii22.97 (14)Cd1—N4—C16—C20179.43 (18)
C28—S2—O4—Cd1ii89.25 (12)C17—N4—C16—C11177.09 (19)
N3—Cd1—N1—C254.1 (3)Cd1—N4—C16—C111.9 (2)
N2—Cd1—N1—C2172.37 (19)N3—C11—C16—N41.0 (3)
O4i—Cd1—N1—C2104.84 (18)C15—C11—C16—N4178.1 (2)
N4—Cd1—N1—C219.17 (19)N3—C11—C16—C20179.7 (2)
O2—Cd1—N1—C269.64 (17)C15—C11—C16—C200.6 (3)
N3—Cd1—N1—C1116.1 (3)C16—N4—C17—C180.8 (3)
N2—Cd1—N1—C12.19 (14)Cd1—N4—C17—C18179.62 (17)
O4i—Cd1—N1—C184.98 (15)N4—C17—C18—C190.6 (4)
N4—Cd1—N1—C1170.65 (14)C17—C18—C19—C201.2 (4)
O2—Cd1—N1—C1100.54 (15)C18—C19—C20—C160.4 (4)
N3—Cd1—N2—C6169.45 (14)N4—C16—C20—C191.1 (4)
N1—Cd1—N2—C62.71 (14)C11—C16—C20—C19177.6 (2)
O4i—Cd1—N2—C692.20 (15)O1—S1—C21—C34125.08 (19)
N4—Cd1—N2—C673.0 (3)O3—S1—C21—C345.1 (2)
O2—Cd1—N2—C680.24 (15)O2—S1—C21—C34112.94 (18)
N3—Cd1—N2—C717.4 (2)O1—S1—C21—C2249.9 (2)
N1—Cd1—N2—C7175.85 (19)O3—S1—C21—C22169.90 (19)
O4i—Cd1—N2—C780.94 (18)O2—S1—C21—C2272.0 (2)
N4—Cd1—N2—C7100.1 (3)C34—C21—C22—C310.2 (3)
O2—Cd1—N2—C7106.62 (18)S1—C21—C22—C31174.63 (16)
N1—Cd1—N3—C12105.1 (3)C34—C21—C22—C23178.8 (2)
N2—Cd1—N3—C128.35 (19)S1—C21—C22—C236.4 (3)
O4i—Cd1—N3—C1296.27 (17)C31—C22—C23—O7160.9 (2)
N4—Cd1—N3—C12177.60 (19)C21—C22—C23—O718.1 (4)
O2—Cd1—N3—C1289.71 (17)C31—C22—C23—C2420.5 (3)
N1—Cd1—N3—C1176.2 (3)C21—C22—C23—C24160.5 (2)
N2—Cd1—N3—C11170.32 (15)O7—C23—C24—C2514.3 (3)
O4i—Cd1—N3—C1182.40 (16)C22—C23—C24—C25164.3 (2)
N4—Cd1—N3—C111.07 (15)O7—C23—C24—C29166.8 (2)
O2—Cd1—N3—C1191.62 (16)C22—C23—C24—C2914.5 (3)
N3—Cd1—N4—C161.55 (14)C29—C24—C25—C264.1 (3)
N1—Cd1—N4—C16164.57 (14)C23—C24—C25—C26174.7 (2)
N2—Cd1—N4—C16123.0 (3)C24—C25—C26—C270.1 (4)
O4i—Cd1—N4—C16103.87 (15)C25—C26—C27—C283.0 (4)
O2—Cd1—N4—C1683.37 (15)C26—C27—C28—C292.0 (3)
N3—Cd1—N4—C17177.3 (2)C26—C27—C28—S2178.08 (18)
N1—Cd1—N4—C1716.59 (19)O5—S2—C28—C27108.37 (18)
N2—Cd1—N4—C1755.8 (4)O6—S2—C28—C2713.4 (2)
O4i—Cd1—N4—C1774.98 (19)O4—S2—C28—C27130.72 (17)
O2—Cd1—N4—C1797.79 (19)O5—S2—C28—C2975.71 (19)
C2—N1—C1—C50.3 (3)O6—S2—C28—C29162.48 (18)
Cd1—N1—C1—C5171.01 (16)O4—S2—C28—C2945.2 (2)
C2—N1—C1—C6177.15 (19)C25—C24—C29—C285.1 (3)
Cd1—N1—C1—C66.4 (2)C23—C24—C29—C28173.74 (19)
C1—N1—C2—C30.1 (3)C25—C24—C29—C30172.3 (2)
Cd1—N1—C2—C3169.98 (18)C23—C24—C29—C308.9 (3)
N1—C2—C3—C40.2 (4)C27—C28—C29—C242.0 (3)
C2—C3—C4—C50.1 (4)S2—C28—C29—C24173.74 (15)
C3—C4—C5—C10.5 (4)C27—C28—C29—C30175.1 (2)
N1—C1—C5—C40.6 (3)S2—C28—C29—C309.1 (3)
C6—C1—C5—C4176.8 (2)C24—C29—C30—O8153.2 (2)
C7—N2—C6—C100.2 (3)C28—C29—C30—O824.0 (3)
Cd1—N2—C6—C10173.46 (16)C24—C29—C30—C3125.7 (3)
C7—N2—C6—C1179.50 (19)C28—C29—C30—C31157.10 (19)
Cd1—N2—C6—C16.9 (2)C21—C22—C31—C321.9 (3)
N1—C1—C6—N29.0 (3)C23—C22—C31—C32177.2 (2)
C5—C1—C6—N2168.4 (2)C21—C22—C31—C30177.53 (19)
N1—C1—C6—C10171.4 (2)C23—C22—C31—C303.4 (3)
C5—C1—C6—C1011.2 (3)O8—C30—C31—C3221.7 (3)
C6—N2—C7—C81.2 (3)C29—C30—C31—C32159.4 (2)
Cd1—N2—C7—C8174.19 (18)O8—C30—C31—C22158.9 (2)
N2—C7—C8—C91.9 (4)C29—C30—C31—C2220.1 (3)
C7—C8—C9—C101.2 (4)C22—C31—C32—C332.2 (4)
C8—C9—C10—C60.1 (4)C30—C31—C32—C33177.2 (2)
N2—C6—C10—C90.8 (3)C31—C32—C33—C340.8 (4)
C1—C6—C10—C9178.8 (2)C22—C21—C34—C331.2 (4)
C12—N3—C11—C150.9 (3)S1—C21—C34—C33176.5 (2)
Cd1—N3—C11—C15179.65 (16)C32—C33—C34—C210.9 (4)
C12—N3—C11—C16178.19 (19)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5iii0.932.483.200 (3)135
C5—H5···O4iii0.932.533.239 (3)133
C14—H14···O2iv0.932.543.267 (3)136
Symmetry codes: (iii) x+1, y+1, z+2; (iv) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C14H6O8S2)(C10H8N2)2]
Mr791.08
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)10.3807 (7), 10.7406 (8), 13.1289 (9)
α, β, γ (°)94.044 (1), 90.239 (1), 97.025 (1)
V3)1449.08 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.24 × 0.23 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.802, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
7435, 5078, 4773
Rint0.010
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.061, 1.01
No. of reflections5078
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.47

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999), SHELXL97 (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N32.2645 (17)Cd1—O4i2.3527 (16)
Cd1—N12.3050 (17)Cd1—N42.3882 (17)
Cd1—N22.3356 (17)Cd1—O22.4109 (16)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5ii0.932.483.200 (3)134.9
C5—H5···O4ii0.932.533.239 (3)133.2
C14—H14···O2iii0.932.543.267 (3)135.6
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+2, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Youth Fund of Baicheng Normal University.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, J. W. (2004). Coord. Chem. Rev. 248, 1061–1083.  Web of Science CSD CrossRef CAS Google Scholar
First citationCai, J. W., Chen, C. H., Liao, C. Z., Yao, J. H., Hu, X. P. & Chen, X. M. (2001). J. Chem. Soc. Dalton Trans. pp. 1137–1142.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, S. S. & Lees, A. J. (2001). Chem. Commun. pp. 103–104.  Web of Science CrossRef Google Scholar
First citationSwiegers, G. F. & Malefetse, T. J. (2000). Chem. Rev. 100, 3483–3537.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVaira, M. D., Orioli, P., Piccioli, F., Bruni, B. & Messori, L. (2003). Inorg. Chem. 42, 3157–3159.  Web of Science PubMed Google Scholar
First citationZhao, J. P., Hu, B. W., Liu, F. C., Hu, X., Zeng, Y. F. & Bu, X. H. (2007). CrystEngComm, 9, 902–906.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1580-m1581
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds