organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3245-o3246

(E)-4-Meth­­oxy-2-[3-(tri­fluoro­meth­yl)phenyl­imino­meth­yl]phenol

aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, bSinop University, Sinop Faculty of Education, Sinop, Turkey, and cChemistry Program, Denizli Higher Vocational School, Pamukkale University, TR-20159 Denizli, Turkey
*Correspondence e-mail: orhanb@omu.edu.tr

(Received 5 November 2009; accepted 23 November 2009; online 28 November 2009)

The title compound, C15H12F3NO2, adopts the phenol–imine tautomeric form, with the H atom attached to oxygen rather than to nitro­gen. There are two independent mol­ecules aligned nearly parallel in the asymmetric unit with their trifloramethyl groups pointing in opposite directions. The dihedral angles between the aromatic rings are 40.43 (1)° in the first mol­ecule and 36.12 (1)° in the second. Strong intra­molecular O—H⋯N hydrogen bonding generates S(6) ring motifs. Weak inter­molecular C—H⋯O hydrogen bonds link the independent mol­ecules separately into sheets normal to [010]. In addition, C—H⋯π inter­actions are also observed. The F atoms of the trifluoro­methyl groups are disordered over two sets of sites with refined site occupancies of 0.59 (2)/0.41 (2) and 0.62 (3)/0.38 (3), respectively.

Related literature

For the photochromic and thermochromic characteristics of Schiff base compounds, see: Williams (1972[Williams, D. R. (1972). Chem. Rev. 72, 203-213.]); Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Gavronic et al. (1996[Gavronic, M., Kaitner, B. & Mestrovic, J. (1996). J. Chem. Crystallogr. 26, 836-837.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Temel et al. (2007[Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o374-o376.]); Odabaşoğlu & Büyükgüngör (2006[Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4151-o4153.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12F3NO2

  • Mr = 295.26

  • Monoclinic, P 21 /c

  • a = 13.4771 (7) Å

  • b = 6.4526 (2) Å

  • c = 31.7097 (15) Å

  • β = 92.647 (4)°

  • V = 2754.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.80 × 0.43 × 0.15 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.739, Tmax = 0.944

  • 23526 measured reflections

  • 5197 independent reflections

  • 3536 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.205

  • S = 1.07

  • 5197 reflections

  • 444 parameters

  • 144 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.91 (4) 1.79 (4) 2.619 (4) 150 (4)
O1A—H1A⋯N1A 0.87 (4) 1.87 (4) 2.623 (3) 143 (4)
C10—H10⋯O1i 0.93 2.58 3.444 (3) 154
C10A—H10A⋯O1Ai 0.93 2.54 3.413 (3) 157
C3—H3⋯Cg3ii 0.93 2.86 3.526 (3) 130
C3A—H3ACg1ii 0.93 2.88 3.518 (3) 127
C11—H11⋯Cg4iii 0.93 2.85 3.529 (3) 131
C11A—H11ACg2iii 0.93 2.97 3.646 (3) 131
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C9-C14, C1A–C6A and C9A–C14A rings, respectively.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Most Schiff bases have antibacterial, anticancer, antinflammatory and antitoxic properties (Williams, 1972). In addition to that, Schiff bases have been used widely as ligands in the field of coordination chemistry (Calligaris et al., 1972). The Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Hadjoudis et al., 1987).

Photochromism is produced by an intramolecular proton transfer associated with a change in the π-electron configuration. Studies on photochromic compounds have been increasing ever since the potential applications of photochromic materials were realised in various areas, such as the control and measurement of radiation intensity, optical computers and display systems. Two types of intramolecular hydrogen bonds [either N—H···O (keto form) or N···H—O (enol form)] can exist in Schiff bases. The Schiff bases derived from salicyaldehyde always form the N···H–O type of hydrogen bonding, regardless of the nature of the N substituent (alkyl or aryl) (Gavronic et al., 1996).

The asymmetric unit of (I) contains two independent molecules aligned in opposite direction (Fig. 1.) and intermolecular hydrogen bonds C10—H10···O1 and C10A—H10A···O1A linked both independent molecules separately into sheets along [010] (Table 1. and Fig. 2.). The similar packing were observed in the structure (E)-3-[2-(Trifluoromethyl)phenyliminomethyl]-benzene-1,2-diol (Temel et al., 2007) but with O—H···O intermolecular hydrogen bonds. Intramolecular O—H···N hydrogen bonds generating S(6) ring motif (Bernstein et al., 1995) are observed in both molecules. The two mutual aromatic rings of the molecules in the asymmetric unit inclined at 2.56 (2)° and 12.37 (12)°. The dihedral angles between the two benzene rings are 40.43 (1)° in the first molecule and 36.12 (1)° in the second molecule numbered with label A.

The crystal packing is also stabilized by C11—H11···Cg4, C3A—H3A···Cg1 and C11A—H11A···Cg2 π-ring interactions (Fig.3, Table 1). Similar results were observed in 3-[3-(Trifluoromethyl)anilino]isobenzofuran-1(3H)-one (Odabaşoğlu & Büyükgüngör (2006).

The CF3 group shows rotational disorder; the F atoms of the trifluoromethyl groups are disordered over two positions with refined site occupancies of 0.59 (2)/0.41 (2) and 0.62 (3)/0.38 (3), respectively.

Related literature top

For the photochromic and thermochromic characteristics of Schiff base compounds, see: Williams (1972); Calligaris et al. (1972); Gavronic et al. (1996); Hadjoudis et al. (1987). For graph-set motifs, see: Bernstein et al. (1995). For related structures, see: Temel et al. (2007); Odabaşoğlu & Büyükgüngör (2006). Cg1, Cg2, Cg3 and Cg4 are the centroids of the C1–C6, C9-C14, C1A–C6A and C9A–C14A rings, respectively.

Experimental top

The compound(I) was prepared by stirring for 1 h under reflux, the mixture of 5-methoxysalicylaldehyde (0.5 g, 3.3 mmol) in ethanol (20 ml) and 3-trifluoromethylaniline (0.53 g, 3.3 mmol) in ethanol (20 ml). The crystals suitable for X-ray analysis were obtained from methanol by slow evaporation (yield; 74%, m.p.; 344–345 K).

Refinement top

The hydroxyl H atoms were located in difference Fourier map and were refined freely. All other H-atoms were refined using a riding model with d(C—H) = 0.93Å (Uiso=1.2Ueq of the parent atom) for aromatic C atoms and d(C—H) = 0.96Å (Uiso=1.5Ueq of the parent atom) for methyl C atoms. The CF3 group shows rotational disorder with occupancy factors of 0.59 (2)/0.41 (2) and 0.62 (3)/0.38 (3) for both molecules in the asymmetric unit. Similar Uij and isotropic Uij restraints applied to these F atoms. The bond distances of C—F were fixed to 1.346 Å with 0.02 e.s.d. in the refinement.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I), with the atom-numbering scheme and 20% probability displacement ellipsoids. The minor disorder components of the trifluoromethyl F atoms were omitted. Dashed lines indicate H-bonds.
[Figure 2] Fig. 2. A packing diagram for (I), showing the C—H···O hydrogen bonds. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. [Symmetry codes; (i): x,-1 + y,z].
[Figure 3] Fig. 3. A packing diagram for (I), showing the C—H···π interactions. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. [Symmetry codes; (i): 1 - x, 1/2 + y, 1/2 - z; (ii): 1 - x, -1/2 + y, 1/2 - z]. (Cg1,Cg2 and Cg3, Cg4 are the centroids of the C1—C6, C9—C14; C1A—C6A, C9A—C14A rings, respectively).
(E)-4-Methoxy-2-[3-(trifluoromethyl)phenyliminomethyl]phenol top
Crystal data top
C15H12F3NO2F(000) = 1216
Mr = 295.26Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 20067 reflections
a = 13.4771 (7) Åθ = 1.3–25.7°
b = 6.4526 (2) ŵ = 0.12 mm1
c = 31.7097 (15) ÅT = 296 K
β = 92.647 (4)°Prism, yellow
V = 2754.6 (2) Å30.80 × 0.43 × 0.15 mm
Z = 8
Data collection top
Stoe IPDS II
diffractometer
5197 independent reflections
Radiation source: fine-focus sealed tube3536 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.075
Detector resolution: 6.67 pixels mm-1θmax = 25.7°, θmin = 1.3°
rotation method scansh = 1616
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 77
Tmin = 0.739, Tmax = 0.944l = 3838
23526 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.205 w = 1/[σ2(Fo2) + (0.0875P)2 + 1.1131P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
5197 reflectionsΔρmax = 0.20 e Å3
444 parametersΔρmin = 0.25 e Å3
144 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (5)
Crystal data top
C15H12F3NO2V = 2754.6 (2) Å3
Mr = 295.26Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.4771 (7) ŵ = 0.12 mm1
b = 6.4526 (2) ÅT = 296 K
c = 31.7097 (15) Å0.80 × 0.43 × 0.15 mm
β = 92.647 (4)°
Data collection top
Stoe IPDS II
diffractometer
5197 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3536 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.944Rint = 0.075
23526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065144 restraints
wR(F2) = 0.205H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.20 e Å3
5197 reflectionsΔρmin = 0.25 e Å3
444 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1A0.1216 (9)0.4505 (8)0.46713 (17)0.126 (3)0.592 (15)
F2A0.1877 (10)0.1908 (17)0.5018 (2)0.155 (4)0.592 (15)
F3A0.0307 (7)0.218 (2)0.4785 (4)0.187 (5)0.592 (15)
F1B0.1963 (14)0.406 (2)0.4751 (4)0.165 (5)0.408 (15)
F2B0.1215 (13)0.1269 (16)0.5008 (3)0.126 (4)0.408 (15)
F3B0.0359 (10)0.324 (3)0.4722 (6)0.181 (6)0.408 (15)
C1A0.61622 (19)0.2839 (4)0.27472 (8)0.0492 (6)
C2A0.6470 (2)0.4936 (5)0.27532 (9)0.0522 (7)
C3A0.6768 (2)0.5824 (5)0.31314 (9)0.0596 (7)
H3A0.69730.72010.31370.072*
C4A0.6770 (2)0.4718 (5)0.35037 (10)0.0629 (8)
H4A0.69740.53520.37560.075*
C5A0.6471 (2)0.2668 (5)0.35018 (9)0.0607 (8)
C6A0.6160 (2)0.1754 (5)0.31277 (8)0.0564 (7)
H6A0.59440.03850.31280.068*
C7A0.6930 (4)0.2192 (8)0.42341 (11)0.1045 (14)
H7A10.68750.11790.44540.157*
H7A20.66050.34480.43140.157*
H7A30.76180.24690.41920.157*
C8A0.59249 (19)0.1754 (5)0.23556 (8)0.0517 (7)
H8A0.57680.03520.23650.062*
C9A0.5837 (2)0.1543 (4)0.16155 (8)0.0502 (6)
C10A0.6170 (2)0.0492 (5)0.15797 (9)0.0561 (7)
H10A0.64200.11930.18180.067*
C11A0.6127 (2)0.1466 (5)0.11934 (10)0.0631 (8)
H11A0.63420.28310.11740.076*
C12A0.5771 (2)0.0451 (5)0.08346 (10)0.0636 (8)
H12A0.57430.11180.05740.076*
C13A0.5455 (2)0.1581 (5)0.08704 (9)0.0596 (7)
C14A0.5483 (2)0.2566 (5)0.12565 (9)0.0567 (7)
H14A0.52630.39270.12760.068*
C15A0.5104 (3)0.2720 (5)0.04844 (10)0.0829 (11)
N1A0.59247 (17)0.2674 (4)0.19956 (7)0.0529 (6)
O1A0.64877 (18)0.6071 (4)0.23935 (7)0.0691 (6)
O2A0.6472 (2)0.1424 (4)0.38544 (7)0.0873 (8)
C10.10504 (19)0.2748 (5)0.24086 (9)0.0527 (7)
C20.1374 (2)0.4839 (5)0.23806 (9)0.0564 (7)
C30.1381 (2)0.5767 (5)0.19883 (11)0.0649 (8)
H30.15890.71360.19680.078*
C40.1089 (2)0.4713 (6)0.16290 (11)0.0692 (9)
H40.10980.53730.13690.083*
C50.0776 (2)0.2655 (6)0.16503 (10)0.0642 (8)
C60.0749 (2)0.1719 (5)0.20390 (9)0.0584 (7)
H60.05230.03610.20550.070*
C70.0736 (3)0.2186 (9)0.09038 (11)0.1054 (15)
H7A0.05010.12110.06940.158*
H7B0.14430.23330.08920.158*
H7C0.04240.35050.08520.158*
C80.1080 (2)0.1653 (5)0.28078 (9)0.0549 (7)
H80.09050.02580.28120.066*
C90.1463 (2)0.1420 (5)0.35335 (9)0.0559 (7)
C100.1841 (2)0.0589 (5)0.35468 (10)0.0620 (8)
H100.19780.12670.32970.074*
C110.2011 (3)0.1575 (6)0.39286 (11)0.0741 (9)
H110.22560.29220.39350.089*
C120.1821 (3)0.0587 (6)0.42978 (11)0.0795 (10)
H120.19410.12580.45550.095*
C130.1451 (3)0.1413 (6)0.42881 (10)0.0749 (9)
C140.1274 (2)0.2419 (5)0.39071 (9)0.0655 (8)
H140.10280.37660.39020.079*
C150.1269 (5)0.2510 (8)0.46891 (13)0.1131 (16)
N10.13402 (17)0.2560 (4)0.31550 (7)0.0555 (6)
O10.16842 (17)0.5928 (4)0.27249 (8)0.0710 (6)
O20.0501 (2)0.1466 (5)0.13076 (7)0.0893 (8)
F4A0.5051 (12)0.4750 (10)0.0524 (3)0.089 (2)0.62 (3)
F5A0.5747 (12)0.2314 (18)0.0164 (3)0.109 (3)0.62 (3)
F6A0.4221 (8)0.220 (2)0.0334 (4)0.126 (3)0.62 (3)
F4B0.5467 (18)0.466 (2)0.0490 (6)0.094 (4)0.38 (3)
F5B0.5269 (19)0.191 (2)0.0124 (3)0.104 (4)0.38 (3)
F6B0.4096 (8)0.275 (4)0.0467 (8)0.137 (6)0.38 (3)
H10.162 (3)0.506 (7)0.2948 (13)0.095 (14)*
H1A0.627 (3)0.535 (7)0.2175 (13)0.091 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.211 (8)0.094 (4)0.074 (3)0.016 (4)0.022 (4)0.028 (2)
F2A0.204 (8)0.175 (7)0.083 (4)0.046 (6)0.034 (4)0.028 (4)
F3A0.230 (8)0.181 (8)0.159 (7)0.003 (6)0.113 (6)0.048 (6)
F1B0.216 (10)0.161 (9)0.120 (6)0.031 (8)0.029 (7)0.066 (6)
F2B0.189 (9)0.140 (7)0.051 (4)0.014 (6)0.029 (5)0.005 (4)
F3B0.219 (10)0.174 (11)0.154 (8)0.067 (8)0.059 (7)0.026 (8)
C1A0.0495 (14)0.0506 (16)0.0478 (14)0.0021 (12)0.0037 (11)0.0036 (12)
C2A0.0495 (14)0.0529 (17)0.0542 (16)0.0006 (12)0.0020 (11)0.0071 (13)
C3A0.0552 (16)0.0545 (18)0.0692 (19)0.0009 (13)0.0029 (13)0.0075 (14)
C4A0.0592 (17)0.076 (2)0.0533 (16)0.0008 (15)0.0001 (13)0.0100 (15)
C5A0.0610 (17)0.072 (2)0.0489 (15)0.0024 (15)0.0060 (12)0.0053 (14)
C6A0.0654 (17)0.0543 (17)0.0500 (15)0.0006 (14)0.0063 (12)0.0068 (13)
C7A0.131 (4)0.130 (4)0.052 (2)0.001 (3)0.009 (2)0.008 (2)
C8A0.0520 (15)0.0523 (17)0.0507 (15)0.0048 (12)0.0012 (11)0.0065 (12)
C9A0.0506 (14)0.0516 (16)0.0480 (14)0.0060 (12)0.0010 (11)0.0061 (12)
C10A0.0616 (17)0.0522 (17)0.0539 (16)0.0013 (13)0.0029 (12)0.0081 (13)
C11A0.076 (2)0.0478 (17)0.0650 (18)0.0028 (15)0.0039 (14)0.0017 (14)
C12A0.081 (2)0.0553 (19)0.0534 (16)0.0049 (16)0.0049 (14)0.0045 (14)
C13A0.079 (2)0.0516 (18)0.0479 (15)0.0000 (15)0.0057 (13)0.0042 (13)
C14A0.0707 (18)0.0469 (17)0.0521 (15)0.0007 (14)0.0017 (13)0.0047 (12)
C15A0.132 (4)0.060 (2)0.0557 (19)0.008 (2)0.015 (2)0.0002 (16)
N1A0.0560 (13)0.0553 (14)0.0470 (12)0.0017 (11)0.0007 (10)0.0053 (10)
O1A0.0904 (16)0.0550 (14)0.0612 (13)0.0100 (11)0.0048 (11)0.0140 (11)
O2A0.117 (2)0.098 (2)0.0461 (12)0.0097 (15)0.0007 (12)0.0132 (12)
C10.0472 (14)0.0555 (18)0.0560 (16)0.0006 (12)0.0074 (11)0.0035 (13)
C20.0504 (15)0.0551 (18)0.0643 (18)0.0013 (13)0.0082 (12)0.0015 (14)
C30.0597 (17)0.0587 (19)0.077 (2)0.0005 (14)0.0098 (15)0.0070 (16)
C40.0597 (18)0.080 (2)0.0683 (19)0.0061 (16)0.0077 (14)0.0163 (18)
C50.0538 (16)0.080 (2)0.0587 (17)0.0008 (16)0.0008 (13)0.0015 (16)
C60.0547 (16)0.0586 (18)0.0622 (17)0.0046 (13)0.0052 (13)0.0003 (14)
C70.110 (3)0.150 (4)0.057 (2)0.004 (3)0.002 (2)0.000 (2)
C80.0522 (15)0.0533 (17)0.0596 (17)0.0017 (13)0.0062 (12)0.0023 (13)
C90.0528 (15)0.0599 (19)0.0553 (16)0.0041 (14)0.0065 (12)0.0040 (14)
C100.0619 (17)0.0594 (19)0.0648 (18)0.0021 (14)0.0035 (14)0.0109 (15)
C110.079 (2)0.063 (2)0.081 (2)0.0049 (17)0.0050 (17)0.0017 (18)
C120.096 (3)0.075 (2)0.067 (2)0.004 (2)0.0064 (18)0.0115 (18)
C130.093 (2)0.076 (2)0.0571 (18)0.0038 (19)0.0165 (16)0.0019 (16)
C140.078 (2)0.0609 (19)0.0581 (17)0.0026 (16)0.0119 (14)0.0062 (14)
C150.169 (5)0.110 (4)0.062 (2)0.017 (4)0.020 (3)0.005 (2)
N10.0572 (13)0.0584 (15)0.0511 (13)0.0012 (11)0.0063 (10)0.0062 (11)
O10.0809 (15)0.0589 (14)0.0735 (15)0.0107 (11)0.0076 (12)0.0116 (12)
O20.1061 (19)0.109 (2)0.0523 (13)0.0176 (16)0.0021 (12)0.0022 (13)
F4A0.143 (6)0.060 (3)0.063 (3)0.019 (3)0.010 (4)0.0089 (19)
F5A0.159 (7)0.117 (5)0.052 (3)0.019 (4)0.010 (3)0.020 (3)
F6A0.149 (6)0.120 (6)0.102 (5)0.017 (4)0.072 (4)0.019 (4)
F4B0.137 (9)0.065 (5)0.077 (5)0.011 (5)0.020 (7)0.023 (4)
F5B0.158 (10)0.091 (6)0.059 (4)0.013 (6)0.028 (5)0.012 (4)
F6B0.151 (8)0.134 (10)0.118 (10)0.021 (6)0.064 (6)0.019 (7)
Geometric parameters (Å, º) top
F1A—C151.290 (6)C15A—F6A1.306 (7)
F2A—C151.352 (7)C15A—F4A1.318 (7)
F3A—C151.362 (9)C15A—F4B1.345 (9)
F1B—C151.376 (9)C15A—F6B1.358 (10)
F2B—C151.295 (7)C15A—F5A1.389 (7)
F3B—C151.323 (10)O1A—H1A0.87 (4)
C1A—C6A1.395 (4)C1—C61.391 (4)
C1A—C2A1.415 (4)C1—C21.422 (4)
C1A—C8A1.448 (4)C1—C81.449 (4)
C2A—O1A1.356 (3)C2—O11.348 (4)
C2A—C3A1.372 (4)C2—C31.381 (4)
C3A—C4A1.379 (4)C3—C41.369 (5)
C3A—H3A0.9300C3—H30.9300
C4A—C5A1.383 (5)C4—C51.396 (5)
C4A—H4A0.9300C4—H40.9300
C5A—C6A1.373 (4)C5—O21.367 (4)
C5A—O2A1.377 (4)C5—C61.375 (4)
C6A—H6A0.9300C6—H60.9300
C7A—O2A1.417 (4)C7—O21.412 (4)
C7A—H7A10.9600C7—H7A0.9600
C7A—H7A20.9600C7—H7B0.9600
C7A—H7A30.9600C7—H7C0.9600
C8A—N1A1.287 (3)C8—N11.282 (4)
C8A—H8A0.9300C8—H80.9300
C9A—C14A1.382 (4)C9—C141.383 (4)
C9A—C10A1.393 (4)C9—C101.393 (4)
C9A—N1A1.410 (3)C9—N11.411 (4)
C10A—C11A1.376 (4)C10—C111.377 (5)
C10A—H10A0.9300C10—H100.9300
C11A—C12A1.380 (4)C11—C121.367 (5)
C11A—H11A0.9300C11—H110.9300
C12A—C13A1.385 (4)C12—C131.383 (5)
C12A—H12A0.9300C12—H120.9300
C13A—C14A1.378 (4)C13—C141.383 (5)
C13A—C15A1.486 (4)C13—C151.486 (6)
C14A—H14A0.9300C14—H140.9300
C15A—F5B1.285 (9)O1—H10.91 (4)
C6A—C1A—C2A118.7 (3)C6—C1—C8119.9 (3)
C6A—C1A—C8A119.3 (3)C2—C1—C8121.4 (3)
C2A—C1A—C8A121.8 (2)O1—C2—C3119.2 (3)
O1A—C2A—C3A119.6 (3)O1—C2—C1121.9 (3)
O1A—C2A—C1A121.4 (3)C3—C2—C1118.8 (3)
C3A—C2A—C1A119.0 (3)C4—C3—C2121.4 (3)
C2A—C3A—C4A121.4 (3)C4—C3—H3119.3
C2A—C3A—H3A119.3C2—C3—H3119.3
C4A—C3A—H3A119.3C3—C4—C5120.5 (3)
C3A—C4A—C5A120.1 (3)C3—C4—H4119.7
C3A—C4A—H4A119.9C5—C4—H4119.7
C5A—C4A—H4A119.9O2—C5—C6116.7 (3)
C6A—C5A—O2A116.1 (3)O2—C5—C4124.5 (3)
C6A—C5A—C4A119.5 (3)C6—C5—C4118.8 (3)
O2A—C5A—C4A124.4 (3)C5—C6—C1121.8 (3)
C5A—C6A—C1A121.3 (3)C5—C6—H6119.1
C5A—C6A—H6A119.4C1—C6—H6119.1
C1A—C6A—H6A119.4O2—C7—H7A109.5
O2A—C7A—H7A1109.5O2—C7—H7B109.5
O2A—C7A—H7A2109.5H7A—C7—H7B109.5
H7A1—C7A—H7A2109.5O2—C7—H7C109.5
O2A—C7A—H7A3109.5H7A—C7—H7C109.5
H7A1—C7A—H7A3109.5H7B—C7—H7C109.5
H7A2—C7A—H7A3109.5N1—C8—C1121.5 (3)
N1A—C8A—C1A121.9 (3)N1—C8—H8119.2
N1A—C8A—H8A119.1C1—C8—H8119.2
C1A—C8A—H8A119.1C14—C9—C10119.3 (3)
C14A—C9A—C10A118.9 (3)C14—C9—N1117.8 (3)
C14A—C9A—N1A118.0 (3)C10—C9—N1122.7 (3)
C10A—C9A—N1A122.9 (2)C11—C10—C9120.1 (3)
C11A—C10A—C9A120.2 (3)C11—C10—H10119.9
C11A—C10A—H10A119.9C9—C10—H10119.9
C9A—C10A—H10A119.9C12—C11—C10120.5 (3)
C10A—C11A—C12A121.1 (3)C12—C11—H11119.8
C10A—C11A—H11A119.5C10—C11—H11119.8
C12A—C11A—H11A119.5C11—C12—C13119.8 (3)
C11A—C12A—C13A118.6 (3)C11—C12—H12120.1
C11A—C12A—H12A120.7C13—C12—H12120.1
C13A—C12A—H12A120.7C14—C13—C12120.3 (3)
C14A—C13A—C12A120.9 (3)C14—C13—C15119.7 (4)
C14A—C13A—C15A119.9 (3)C12—C13—C15119.9 (3)
C12A—C13A—C15A119.2 (3)C13—C14—C9119.9 (3)
C13A—C14A—C9A120.4 (3)C13—C14—H14120.0
C13A—C14A—H14A119.8C9—C14—H14120.0
C9A—C14A—H14A119.8F1A—C15—F2B130.2 (6)
F5B—C15A—F6A76.3 (8)F1A—C15—F3B66.3 (8)
F5B—C15A—F4A120.2 (8)F2B—C15—F3B94.1 (11)
F6A—C15A—F4A103.8 (7)F1A—C15—F2A110.6 (6)
F5B—C15A—F4B108.3 (10)F3B—C15—F2A124.9 (10)
F6A—C15A—F4B124.8 (9)F1A—C15—F3A96.5 (8)
F5B—C15A—F6B100.6 (9)F2B—C15—F3A68.9 (8)
F4A—C15A—F6B86.0 (9)F2A—C15—F3A109.4 (8)
F4B—C15A—F6B110.4 (11)F1A—C15—F1B47.0 (7)
F6A—C15A—F5A105.9 (6)F2B—C15—F1B113.6 (8)
F4A—C15A—F5A107.2 (6)F3B—C15—F1B111.0 (11)
F4B—C15A—F5A87.0 (9)F2A—C15—F1B73.5 (8)
F6B—C15A—F5A129.1 (8)F3A—C15—F1B136.9 (9)
F5B—C15A—C13A118.0 (7)F1A—C15—C13116.7 (4)
F6A—C15A—C13A115.0 (6)F2B—C15—C13113.1 (6)
F4A—C15A—C13A115.4 (5)F3B—C15—C13115.3 (10)
F4B—C15A—C13A110.4 (8)F2A—C15—C13113.9 (5)
F6B—C15A—C13A108.6 (9)F3A—C15—C13108.2 (6)
F5A—C15A—C13A108.9 (5)F1B—C15—C13109.3 (6)
C8A—N1A—C9A121.1 (3)C8—N1—C9120.6 (3)
C2A—O1A—H1A111 (3)C2—O1—H1106 (3)
C5A—O2A—C7A118.1 (3)C5—O2—C7118.2 (3)
C6—C1—C2118.6 (3)
C6A—C1A—C2A—O1A180.0 (3)C6—C1—C2—O1179.4 (3)
C8A—C1A—C2A—O1A4.9 (4)C8—C1—C2—O12.7 (4)
C6A—C1A—C2A—C3A0.8 (4)C6—C1—C2—C30.3 (4)
C8A—C1A—C2A—C3A174.3 (3)C8—C1—C2—C3176.4 (3)
O1A—C2A—C3A—C4A179.4 (3)O1—C2—C3—C4178.9 (3)
C1A—C2A—C3A—C4A0.1 (4)C1—C2—C3—C40.3 (4)
C2A—C3A—C4A—C5A0.1 (5)C2—C3—C4—C50.2 (5)
C3A—C4A—C5A—C6A0.8 (4)C3—C4—C5—O2177.9 (3)
C3A—C4A—C5A—O2A178.2 (3)C3—C4—C5—C61.2 (5)
O2A—C5A—C6A—C1A177.6 (3)O2—C5—C6—C1177.3 (3)
C4A—C5A—C6A—C1A1.5 (5)C4—C5—C6—C11.8 (4)
C2A—C1A—C6A—C5A1.5 (4)C2—C1—C6—C51.4 (4)
C8A—C1A—C6A—C5A173.8 (3)C8—C1—C6—C5175.4 (3)
C6A—C1A—C8A—N1A179.4 (3)C6—C1—C8—N1179.0 (3)
C2A—C1A—C8A—N1A4.3 (4)C2—C1—C8—N14.3 (4)
C14A—C9A—C10A—C11A1.1 (4)C14—C9—C10—C110.8 (4)
N1A—C9A—C10A—C11A175.4 (3)N1—C9—C10—C11175.4 (3)
C9A—C10A—C11A—C12A0.9 (5)C9—C10—C11—C120.7 (5)
C10A—C11A—C12A—C13A0.1 (5)C10—C11—C12—C130.3 (6)
C11A—C12A—C13A—C14A0.8 (5)C11—C12—C13—C140.1 (6)
C11A—C12A—C13A—C15A177.8 (3)C11—C12—C13—C15178.4 (4)
C12A—C13A—C14A—C9A0.6 (5)C12—C13—C14—C90.3 (5)
C15A—C13A—C14A—C9A178.0 (3)C15—C13—C14—C9178.5 (4)
C10A—C9A—C14A—C13A0.4 (4)C10—C9—C14—C130.6 (5)
N1A—C9A—C14A—C13A174.9 (3)N1—C9—C14—C13175.5 (3)
C14A—C13A—C15A—F5B166.6 (13)C14—C13—C15—F1A18.4 (9)
C12A—C13A—C15A—F5B12.0 (14)C12—C13—C15—F1A159.9 (8)
C14A—C13A—C15A—F6A106.2 (9)C14—C13—C15—F2B163.3 (10)
C12A—C13A—C15A—F6A75.2 (9)C12—C13—C15—F2B18.5 (11)
C14A—C13A—C15A—F4A14.6 (10)C14—C13—C15—F3B56.6 (12)
C12A—C13A—C15A—F4A164.0 (9)C12—C13—C15—F3B125.1 (12)
C14A—C13A—C15A—F4B41.4 (14)C14—C13—C15—F2A149.1 (9)
C12A—C13A—C15A—F4B137.3 (13)C12—C13—C15—F2A29.1 (10)
C14A—C13A—C15A—F6B79.9 (13)C14—C13—C15—F3A89.0 (9)
C12A—C13A—C15A—F6B101.5 (12)C12—C13—C15—F3A92.7 (9)
C14A—C13A—C15A—F5A135.2 (8)C14—C13—C15—F1B69.1 (11)
C12A—C13A—C15A—F5A43.4 (9)C12—C13—C15—F1B109.1 (11)
C1A—C8A—N1A—C9A170.5 (2)C1—C8—N1—C9173.4 (2)
C14A—C9A—N1A—C8A156.8 (3)C14—C9—N1—C8149.7 (3)
C10A—C9A—N1A—C8A28.8 (4)C10—C9—N1—C835.6 (4)
C6A—C5A—O2A—C7A170.3 (3)C6—C5—O2—C7165.4 (3)
C4A—C5A—O2A—C7A8.7 (5)C4—C5—O2—C713.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (4)1.79 (4)2.619 (4)150 (4)
O1A—H1A···N1A0.87 (4)1.87 (4)2.623 (3)143 (4)
C10—H10···O1i0.932.583.444 (3)154
C10A—H10A···O1Ai0.932.543.413 (3)157
C3—H3···Cg3ii0.932.863.526 (3)130
C3A—H3A···Cg1ii0.932.883.518 (3)127
C11—H11···Cg4iii0.932.853.529 (3)131
C11A—H11A···Cg2iii0.932.973.646 (3)131
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12F3NO2
Mr295.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.4771 (7), 6.4526 (2), 31.7097 (15)
β (°) 92.647 (4)
V3)2754.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.80 × 0.43 × 0.15
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.739, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
23526, 5197, 3536
Rint0.075
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.205, 1.07
No. of reflections5197
No. of parameters444
No. of restraints144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.91 (4)1.79 (4)2.619 (4)150 (4)
O1A—H1A···N1A0.87 (4)1.87 (4)2.623 (3)143 (4)
C10—H10···O1i0.932.583.444 (3)154
C10A—H10A···O1Ai0.932.543.413 (3)157
C3—H3···Cg3ii0.932.863.526 (3)130
C3A—H3A···Cg1ii0.932.883.518 (3)127
C11—H11···Cg4iii0.932.853.529 (3)131
C11A—H11A···Cg2iii0.932.973.646 (3)131
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGavronic, M., Kaitner, B. & Mestrovic, J. (1996). J. Chem. Crystallogr. 26, 836–837.  Google Scholar
First citationHadjoudis, E., Vittorakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o4151–o4153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o374–o376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWilliams, D. R. (1972). Chem. Rev. 72, 203–213.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3245-o3246
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds