organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1-Methyl­pyrrolidin-2-yl­­idene)-3H-indole sesquihydrate

aThe School of Chemistry, The University of Manchester, Manchester M13 9PL, England, and bDepartment of Chemistry, Faculty of Science, University of Urmia, Urmia 57135, Iran
*Correspondence e-mail: mmbaradarani@yahoo.com

(Received 28 October 2009; accepted 10 November 2009; online 18 November 2009)

The asymmetric unit of the title compound, C13H14N2·1.5H2O, contains two similar mol­ecules of 3-(1-methyl­pyrrolidin-2-yl­idene)-3H-indole, (I)[link], and three water mol­ecules. (I)[link] is the product of reacting indole with 1-methyl­pyrrolidin-2-one in the presence of phospho­rus oxychloride. Both organic molecules[link] are almost completely planar; the maximum distances above and below the least-squares plane through all the atoms of mol­ecule 1 are 0.050 (8) and −0.045 (8) Å, respectively, and the deviations for mol­ecule 2 are 0.096 (8) and −0.059 (8) Å, respectively. In the crystal, the two crystallographically different mol­ecules alternate in π-stacked columns [centroid–centroid distances = 3.729 (5) and 3.858 (5) Å], which are linked by O—H⋯N hydrogen bonds to a network of hydrogen-bonded water mol­ecules. O—H⋯O inter­actions are also present.

Related literature

For the original synthesis of 3-(1-methyl­pyrrolidin-2-yl­idene)-3H-indole, see: Youngdale et al. (1964[Youngdale, G. A., Anger, D. G., Anthony, W. C., Da Vanzo, J. P., Greig, M. E., Heinzelman, R. V., Keasling, H. H. & Szmuszkovicz, J. (1964). J. Med. Chem. 7, 415-427.]). For a study of its extraordinarily high basicity, see: Harris & Joule (1978[Harris, M. & Joule, J. A. (1978). J. Chem. Res. (S.), pp. 470-483.]) and for examples of its synthetic applications, see: Bishop et al. (1981[Bishop, D. I., Al-Khawaja, I. K. & Joule, J. A. (1981). J. Chem. Res. (S.), pp. 4279-4290.], 1982[Bishop, D. I., Al-Khawaja, I. K., Heatley, F. & Joule, J. A. (1982). J. Chem. Res. (S.), pp. 1766-1776.]); Al-Khawaja et al. (1984[Al-Khawaja, I. K., Beddoes, R. L., Bishop, D. I., Cernik, R. J., Joule, J. A. & Mills, O. S. (1984). J. Chem. Res. (S.), pp. 2738-2767.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2·1.5H2O

  • Mr = 225.29

  • Triclinic, [P \overline 1]

  • a = 7.139 (5) Å

  • b = 10.805 (8) Å

  • c = 15.737 (11) Å

  • α = 88.460 (13)°

  • β = 88.163 (14)°

  • γ = 71.506 (13)°

  • V = 1150.4 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.60 × 0.06 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 4171 measured reflections

  • 1814 independent reflections

  • 1183 reflections with I > 2σ(I)

  • Rint = 0.114

  • θmax = 18.8°

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.154

  • S = 1.10

  • 1814 reflections

  • 318 parameters

  • 304 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2S—H4S⋯N1 0.91 (3) 1.88 (3) 2.781 (7) 170 (7)
O3S—H6S⋯N3i 0.92 (3) 1.87 (4) 2.733 (7) 156 (6)
O3S—H5S⋯O2S 0.91 (3) 1.86 (3) 2.757 (7) 168 (6)
O2S—H3S⋯O1Sii 0.90 (3) 1.94 (3) 2.807 (7) 160 (6)
O1S—H2S⋯O3Siii 0.91 (3) 1.95 (4) 2.840 (7) 166 (7)
O1S—H1S⋯O3Siv 0.91 (3) 1.90 (4) 2.782 (6) 162 (6)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) x, y-1, z; (iv) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Vilsmeier reactions of indole using a tertiary amide in combination with phosphorus oxychloride give rise to 3-acylindoles corresponding to the acyl residue of the amide. However, when 1-methylpyrrolidin-2-one is used as the amide component, 3-(1-methylpyrrolidin-2-ylidene)- 3H-indole (1) is the product (Youngdale et al., 1964). We have discussed this structure and studied its strong basicity (Harris & Joule, 1978) and other reactions (Bishop et al., 1981. Bishop et al., 1982. Al-Khawaja et al., 1984). In order to further understand the chemical reactivity of (1) we felt it was important to crystallographically establish the planar structure, predicted by resonance contributor (2), Fig 3, and also to verify the geometry of the exocyclic double bond.

The asymmetric unit of (1) contains two similar molecules of (1), together with three water molecules. The two molecules are essentially planar; the maximum distances above and below the least squares plane through all the atoms of molecule 1 are 0.050 (8) and -0.045 (8) Å for atoms C12 and C11, respectively; the maximum distances above and below the least squares plane through all the atoms of molecule 2 are 0.096 (8) and -0.059 (8) Å, for atoms C24 and C18, respectively. The two ring systems linked by a double bond in each molecule of (1), are essentially coplanar, with dihedral angles of 0.7 (2) between the atoms C1-C8/N1 and C9-C12/N2 and 2.7 (2)° between the atoms C14-C21/N3 and C22-C25/N4. The conjugation between the two nitrogen atoms, as illustrated by (2) is reflected in the bond lengths: in particular, the C8—N1 double bond at 1.311 (8) Å is long for a double bond between carbon and nitrogen, and the C9—N2 single bond at 1.316 (8) Å is correspondingly short, and almost identical in length to that of the nitrogen-carbon double bond; for molecule 2, the respective corresponding distances are 1.320 (8) and 1.322 (8) Å, for C21—N3 and C22—N4. One intriguing aspect of the crystal packing is shown in Figure 2. The two crystallographically different molecules lie one above the other and are parallel to one another, with a dihedral angle between the molecules of 0.6 (1) °. The molecules stack in such a way as to locate the positively charged end of the resonating system (cf. (2)) over the negatively charged end of the system in the second molecule. Each molecule forms π-stacking interactions with the crystallographically different molecule above and below it, to form columns along a (Figure 2); the perpendicular distance between the ring N2/C9—C12 in molecule 1 to the ring C14—C19 in molecule 2 is 3.404 Å, with a centroid to centroid distance of 3.729 (5) Å (symmetry equivalent x, y, z), whilst the perpendicular distance of the N2/C9—C12 ring in molecule 1 to the C14—C19 in molecule 2 on the other side of molecule 1 is 3.461 Å, with a centroid to centroid distance of 3.858 (5) Å (symmetry equivalent 1 + x, y, z). Between the π-stack columns of molecules 1 and 2 is a network of H-bonded water molecules, which link the columns together via hydrogen bonds between O2S and O3S, and N1 and N3, respectively (see Table 1).

Related literature top

For the original synthesis of 3-(1-methylpyrrolidin-2-ylidene)-3H-indole, see: Youngdale et al. (1964). For a study of its extraordinarily high basicity, see: Harris & Joule (1978) and for examples of its synthetic applications, see: Bishop et al. (1981, 1982); Al-Khawaja et al. (1984). [The scheme should show the hydrate molecules]

Experimental top

To 1-methyl-2-pyrrolidinone (4 mL, 0.04 mol) cooled in an ice bath was added phosphorous oxychloride (4.08 g, 0.026 mol) with stirring during 30 min. The temperature did not exceed 288 K. The mixture was stirred for an additional 10 min, and then a solution of indole (2.80 g, 0.024 mol) in 1-methyl-2-pyrrolidinone (4 mL) was added slowly during 1 h. The temperature rose to 318 K and a solid separated. The mixture was heated at 353 K for 3 h, and then mixed with water (100 mL). The clear solution was made basic by the addition of sodium hydroxide (6 g) in water (30 mL) causing a solid to separate. The solid was filtered off and washed with water. Recrystallization from ethanol-water afforded 3-(1-methylpyrrolidin-2-ylidene)-3H-indole (4.21 g, 90 percent), m.p. 491-492 K.

Refinement top

H atoms bonded to the C atoms were fixed geometrically and treated as riding with C—H = 0.95Å (aromatic), 0.98Å (methyl) and 0.99Å (methylene), with Uiso(H) = 1.2 times those of the parent atoms for the aromatic and methylene H atoms and Uiso(H) = 1.5 times those of the parent atoms for the methyl H atoms. Restraints were applied to the geometry of the water molecules and to the anisotropic thermal parameters of the non-H atoms. The crystal diffracted very weakly, so the data were cut at 1.1 Å resolution.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Plot showing the two crystallographically independent molecules of (1), with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (1) viewed approximately down b, showing the columns of π-stacked molecules linked by a network of hydrogen bonded water molecules. Only H atoms bonded to water have been included
[Figure 3] Fig. 3. The synthesis of 3-(1-methylpyrrolidin-2-ylidene)-3H-indole
3-(1-Methylpyrrolidin-2-ylidene)-3H-indole sesquihydrate top
Crystal data top
C13H14N2·1.5H2OZ = 4
Mr = 225.29F(000) = 484
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.139 (5) ÅCell parameters from 443 reflections
b = 10.805 (8) Åθ = 2.4–24.5°
c = 15.737 (11) ŵ = 0.09 mm1
α = 88.460 (13)°T = 100 K
β = 88.163 (14)°Needle, colourless
γ = 71.506 (13)°0.60 × 0.06 × 0.06 mm
V = 1150.4 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.114
Graphite monochromatorθmax = 18.8°, θmin = 1.3°
ϕ and ω scansh = 66
4171 measured reflectionsk = 99
1814 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0362P)2]
where P = (Fo2 + 2Fc2)/3
1814 reflections(Δ/σ)max = 0.001
318 parametersΔρmax = 0.22 e Å3
304 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H14N2·1.5H2Oγ = 71.506 (13)°
Mr = 225.29V = 1150.4 (15) Å3
Triclinic, P1Z = 4
a = 7.139 (5) ÅMo Kα radiation
b = 10.805 (8) ŵ = 0.09 mm1
c = 15.737 (11) ÅT = 100 K
α = 88.460 (13)°0.60 × 0.06 × 0.06 mm
β = 88.163 (14)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1183 reflections with I > 2σ(I)
4171 measured reflectionsRint = 0.114
1814 independent reflectionsθmax = 18.8°
Refinement top
R[F2 > 2σ(F2)] = 0.078304 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.22 e Å3
1814 reflectionsΔρmin = 0.21 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7963 (8)0.5559 (6)0.3397 (3)0.0218 (13)
N21.1666 (8)0.1553 (5)0.2862 (4)0.0197 (12)
C10.7801 (10)0.5929 (7)0.2549 (5)0.0210 (13)
C20.6760 (10)0.7167 (7)0.2242 (4)0.0232 (15)
H20.60890.78530.26140.028*
C30.6748 (10)0.7354 (7)0.1365 (4)0.0246 (15)
H30.60850.81920.11310.030*
C40.7688 (10)0.6334 (7)0.0826 (5)0.0237 (15)
H40.76430.64810.02280.028*
C50.8696 (10)0.5100 (7)0.1151 (4)0.0218 (15)
H50.93360.44090.07770.026*
C60.8759 (10)0.4885 (7)0.2022 (4)0.0214 (13)
C70.9652 (10)0.3799 (7)0.2581 (4)0.0182 (13)
C80.9041 (10)0.4325 (7)0.3407 (5)0.0218 (14)
H80.93870.38240.39170.026*
C91.0810 (10)0.2546 (7)0.2355 (4)0.0208 (14)
C101.1279 (10)0.2148 (6)0.1464 (4)0.0238 (15)
H10A1.19600.27090.11670.029*
H10B1.00570.22170.11600.029*
C111.2626 (10)0.0733 (7)0.1498 (4)0.0257 (15)
H11A1.20810.01700.11630.031*
H11B1.39650.06620.12710.031*
C121.2691 (10)0.0343 (7)0.2431 (4)0.0247 (15)
H12A1.20100.03150.25420.030*
H12B1.40720.00180.26190.030*
C131.1556 (11)0.1523 (7)0.3784 (4)0.0285 (19)
H13A1.19910.22250.40040.043*
H13B1.24130.06790.39960.043*
H13C1.01900.16460.39750.043*
N30.6780 (8)0.1334 (5)0.3039 (3)0.0217 (13)
N40.3174 (8)0.5470 (5)0.3151 (3)0.0203 (13)
C140.6954 (10)0.1348 (7)0.2164 (4)0.0194 (13)
C150.7912 (10)0.0279 (7)0.1667 (5)0.0233 (15)
H150.85490.05510.19180.028*
C160.7910 (10)0.0458 (7)0.0809 (4)0.0205 (15)
H160.85650.02540.04530.025*
C170.6952 (10)0.1682 (7)0.0447 (5)0.0210 (15)
H170.69580.17830.01540.025*
C180.5994 (9)0.2753 (7)0.0939 (4)0.0179 (14)
H180.53940.35860.06830.022*
C190.5934 (10)0.2576 (7)0.1811 (4)0.0182 (13)
C200.5096 (10)0.3380 (7)0.2535 (4)0.0172 (13)
C210.5704 (10)0.2530 (7)0.3247 (4)0.0188 (14)
H210.53700.27940.38170.023*
C220.3950 (10)0.4706 (7)0.2503 (4)0.0178 (13)
C230.3398 (10)0.5486 (6)0.1704 (4)0.0218 (15)
H23A0.27120.50610.13260.026*
H23B0.45940.55610.14000.026*
C240.2046 (10)0.6821 (7)0.1952 (4)0.0251 (15)
H24A0.06900.69610.17540.030*
H24B0.25360.75140.17030.030*
C250.2075 (11)0.6824 (7)0.2915 (4)0.0261 (15)
H25A0.27510.74310.31120.031*
H25B0.07160.70820.31630.031*
C260.3396 (11)0.5135 (7)0.4050 (4)0.0300 (19)
H26A0.27490.44790.41950.045*
H26B0.27850.59180.43860.045*
H26C0.48030.47820.41770.045*
O1S0.7757 (7)0.1501 (5)0.5280 (3)0.0306 (14)
H1S0.902 (5)0.140 (6)0.543 (4)0.046*
H2S0.779 (9)0.078 (5)0.498 (4)0.046*
O2S0.6375 (7)0.7582 (5)0.4528 (3)0.0291 (14)
H3S0.508 (5)0.768 (6)0.459 (4)0.044*
H4S0.695 (8)0.686 (5)0.421 (4)0.044*
O3S0.8359 (7)0.9358 (5)0.4183 (3)0.0286 (14)
H5S0.762 (9)0.881 (6)0.423 (4)0.043*
H6S0.798 (9)0.984 (6)0.369 (3)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.016 (3)0.023 (3)0.027 (2)0.007 (2)0.006 (2)0.002 (2)
N20.012 (3)0.020 (3)0.028 (2)0.006 (2)0.004 (2)0.001 (2)
C10.012 (3)0.024 (3)0.029 (2)0.008 (2)0.009 (3)0.000 (2)
C20.010 (3)0.027 (3)0.033 (3)0.005 (3)0.009 (3)0.000 (3)
C30.010 (3)0.029 (3)0.035 (3)0.007 (3)0.006 (3)0.003 (3)
C40.010 (3)0.032 (3)0.032 (3)0.009 (3)0.007 (3)0.003 (2)
C50.012 (3)0.026 (3)0.028 (3)0.007 (3)0.008 (3)0.001 (2)
C60.012 (3)0.025 (2)0.027 (2)0.005 (2)0.011 (3)0.001 (2)
C70.010 (3)0.022 (2)0.024 (3)0.007 (2)0.009 (2)0.001 (2)
C80.014 (3)0.025 (3)0.026 (3)0.005 (3)0.010 (3)0.001 (2)
C90.013 (3)0.022 (3)0.027 (3)0.006 (2)0.005 (2)0.003 (2)
C100.016 (3)0.025 (3)0.029 (3)0.005 (3)0.003 (3)0.001 (2)
C110.018 (3)0.026 (3)0.032 (3)0.004 (3)0.007 (3)0.003 (3)
C120.015 (3)0.024 (3)0.034 (3)0.003 (3)0.010 (3)0.003 (2)
C130.026 (4)0.023 (4)0.029 (3)0.001 (4)0.002 (4)0.010 (3)
N30.020 (3)0.023 (3)0.022 (2)0.007 (2)0.010 (3)0.005 (2)
N40.015 (3)0.023 (3)0.022 (2)0.004 (2)0.007 (2)0.001 (2)
C140.015 (3)0.021 (3)0.023 (2)0.007 (2)0.006 (3)0.003 (2)
C150.020 (3)0.021 (3)0.029 (3)0.007 (3)0.005 (3)0.002 (2)
C160.014 (3)0.022 (3)0.030 (3)0.010 (3)0.005 (3)0.003 (3)
C170.013 (3)0.026 (3)0.028 (3)0.010 (3)0.011 (3)0.002 (2)
C180.012 (3)0.021 (3)0.024 (3)0.008 (3)0.009 (3)0.003 (2)
C190.011 (3)0.021 (3)0.022 (2)0.005 (2)0.008 (3)0.004 (2)
C200.013 (3)0.020 (2)0.021 (2)0.009 (2)0.007 (2)0.003 (2)
C210.017 (3)0.023 (3)0.019 (3)0.010 (3)0.008 (3)0.002 (2)
C220.014 (3)0.022 (2)0.020 (2)0.008 (2)0.007 (2)0.000 (2)
C230.019 (3)0.021 (3)0.026 (3)0.005 (3)0.012 (3)0.003 (2)
C240.020 (3)0.023 (3)0.031 (3)0.004 (3)0.008 (3)0.005 (3)
C250.021 (3)0.024 (3)0.030 (3)0.002 (3)0.007 (3)0.002 (2)
C260.035 (5)0.029 (4)0.019 (3)0.001 (4)0.000 (4)0.000 (3)
O1S0.014 (3)0.036 (4)0.041 (4)0.006 (3)0.009 (3)0.008 (3)
O2S0.020 (3)0.034 (4)0.035 (4)0.009 (3)0.005 (3)0.004 (3)
O3S0.021 (3)0.032 (4)0.034 (3)0.009 (3)0.015 (3)0.011 (3)
Geometric parameters (Å, º) top
N1—C81.311 (8)N4—C261.453 (8)
N1—C11.381 (8)N4—C251.468 (8)
N2—C91.316 (8)C14—C151.388 (9)
N2—C131.450 (8)C14—C191.405 (9)
N2—C121.454 (8)C15—C161.358 (9)
C1—C21.390 (9)C15—H150.9500
C1—C61.397 (9)C16—C171.397 (9)
C2—C31.389 (9)C16—H160.9500
C2—H20.9500C17—C181.384 (9)
C3—C41.389 (9)C17—H170.9500
C3—H30.9500C18—C191.382 (9)
C4—C51.391 (9)C18—H180.9500
C4—H40.9500C19—C201.446 (9)
C5—C61.384 (9)C20—C221.407 (9)
C5—H50.9500C20—C211.418 (9)
C6—C71.436 (9)C21—H210.9500
C7—C91.393 (9)C22—C231.486 (9)
C7—C81.431 (9)C23—C241.512 (9)
C8—H80.9500C23—H23A0.9900
C9—C101.475 (9)C23—H23B0.9900
C10—C111.527 (9)C24—C251.518 (9)
C10—H10A0.9900C24—H24A0.9900
C10—H10B0.9900C24—H24B0.9900
C11—C121.514 (9)C25—H25A0.9900
C11—H11A0.9900C25—H25B0.9900
C11—H11B0.9900C26—H26A0.9800
C12—H12A0.9900C26—H26B0.9800
C12—H12B0.9900C26—H26C0.9800
C13—H13A0.9800O1S—H1S0.91 (3)
C13—H13B0.9800O1S—H2S0.91 (3)
C13—H13C0.9800O2S—H3S0.90 (3)
N3—C211.320 (8)O2S—H4S0.91 (3)
N3—C141.379 (8)O3S—H5S0.91 (3)
N4—C221.322 (8)O3S—H6S0.92 (3)
C8—N1—C1105.4 (6)C22—N4—C25114.9 (5)
C9—N2—C13127.0 (6)C26—N4—C25117.8 (5)
C9—N2—C12114.8 (6)N3—C14—C15125.5 (7)
C13—N2—C12118.0 (6)N3—C14—C19111.9 (6)
N1—C1—C2125.1 (7)C15—C14—C19122.4 (7)
N1—C1—C6111.6 (6)C16—C15—C14117.9 (7)
C2—C1—C6123.3 (7)C16—C15—H15121.0
C3—C2—C1116.9 (7)C14—C15—H15121.0
C3—C2—H2121.6C15—C16—C17120.4 (7)
C1—C2—H2121.6C15—C16—H16119.8
C2—C3—C4121.1 (7)C17—C16—H16119.8
C2—C3—H3119.5C18—C17—C16122.0 (7)
C4—C3—H3119.5C18—C17—H17119.0
C3—C4—C5120.8 (7)C16—C17—H17119.0
C3—C4—H4119.6C19—C18—C17118.2 (7)
C5—C4—H4119.6C19—C18—H18120.9
C6—C5—C4119.6 (7)C17—C18—H18120.9
C6—C5—H5120.2C18—C19—C14118.9 (6)
C4—C5—H5120.2C18—C19—C20136.4 (7)
C5—C6—C1118.3 (7)C14—C19—C20104.7 (6)
C5—C6—C7135.7 (7)C22—C20—C21129.8 (6)
C1—C6—C7105.9 (6)C22—C20—C19125.9 (6)
C9—C7—C8129.5 (6)C21—C20—C19104.3 (6)
C9—C7—C6127.5 (6)N3—C21—C20113.4 (6)
C8—C7—C6103.0 (6)N3—C21—H21123.3
N1—C8—C7114.1 (6)C20—C21—H21123.3
N1—C8—H8123.0N4—C22—C20127.5 (6)
C7—C8—H8123.0N4—C22—C23108.2 (6)
N2—C9—C7127.9 (6)C20—C22—C23124.3 (6)
N2—C9—C10109.2 (6)C22—C23—C24107.1 (6)
C7—C9—C10122.9 (6)C22—C23—H23A110.3
C9—C10—C11106.1 (5)C24—C23—H23A110.3
C9—C10—H10A110.5C22—C23—H23B110.3
C11—C10—H10A110.5C24—C23—H23B110.3
C9—C10—H10B110.5H23A—C23—H23B108.5
C11—C10—H10B110.5C23—C24—C25105.0 (5)
H10A—C10—H10B108.7C23—C24—H24A110.7
C12—C11—C10105.0 (6)C25—C24—H24A110.7
C12—C11—H11A110.7C23—C24—H24B110.7
C10—C11—H11A110.7C25—C24—H24B110.7
C12—C11—H11B110.7H24A—C24—H24B108.8
C10—C11—H11B110.7N4—C25—C24104.1 (5)
H11A—C11—H11B108.8N4—C25—H25A110.9
N2—C12—C11104.2 (6)C24—C25—H25A110.9
N2—C12—H12A110.9N4—C25—H25B110.9
C11—C12—H12A110.9C24—C25—H25B110.9
N2—C12—H12B110.9H25A—C25—H25B109.0
C11—C12—H12B110.9N4—C26—H26A109.5
H12A—C12—H12B108.9N4—C26—H26B109.5
N2—C13—H13A109.5H26A—C26—H26B109.5
N2—C13—H13B109.5N4—C26—H26C109.5
H13A—C13—H13B109.5H26A—C26—H26C109.5
N2—C13—H13C109.5H26B—C26—H26C109.5
H13A—C13—H13C109.5H1S—O1S—H2S107 (4)
H13B—C13—H13C109.5H3S—O2S—H4S108 (4)
C21—N3—C14105.7 (6)H5S—O3S—H6S106 (4)
C22—N4—C26127.3 (6)
C8—N1—C1—C2179.4 (7)C21—N3—C14—C15177.6 (7)
C8—N1—C1—C61.7 (8)C21—N3—C14—C191.0 (8)
N1—C1—C2—C3179.4 (7)N3—C14—C15—C16178.7 (6)
C6—C1—C2—C31.9 (11)C19—C14—C15—C162.5 (11)
C1—C2—C3—C41.8 (10)C14—C15—C16—C170.6 (10)
C2—C3—C4—C50.9 (11)C15—C16—C17—C180.7 (11)
C3—C4—C5—C60.1 (11)C16—C17—C18—C192.5 (11)
C4—C5—C6—C10.1 (10)C17—C18—C19—C144.2 (10)
C4—C5—C6—C7178.3 (8)C17—C18—C19—C20178.5 (7)
N1—C1—C6—C5178.9 (6)N3—C14—C19—C18179.0 (6)
C2—C1—C6—C51.1 (11)C15—C14—C19—C184.4 (11)
N1—C1—C6—C72.5 (8)N3—C14—C19—C200.9 (8)
C2—C1—C6—C7179.8 (6)C15—C14—C19—C20177.6 (6)
C5—C6—C7—C90.0 (14)C18—C19—C20—C221.9 (13)
C1—C6—C7—C9178.3 (7)C14—C19—C20—C22179.5 (6)
C5—C6—C7—C8179.5 (8)C18—C19—C20—C21178.0 (8)
C1—C6—C7—C82.1 (7)C14—C19—C20—C210.4 (7)
C1—N1—C8—C70.2 (8)C14—N3—C21—C200.7 (8)
C9—C7—C8—N1179.3 (7)C22—C20—C21—N3179.9 (7)
C6—C7—C8—N11.2 (8)C19—C20—C21—N30.2 (8)
C13—N2—C9—C71.9 (11)C26—N4—C22—C202.9 (12)
C12—N2—C9—C7176.7 (7)C25—N4—C22—C20178.9 (6)
C13—N2—C9—C10178.9 (6)C26—N4—C22—C23177.4 (6)
C12—N2—C9—C104.1 (8)C25—N4—C22—C231.4 (8)
C8—C7—C9—N22.1 (12)C21—C20—C22—N40.3 (12)
C6—C7—C9—N2178.5 (7)C19—C20—C22—N4179.5 (7)
C8—C7—C9—C10178.8 (7)C21—C20—C22—C23179.3 (7)
C6—C7—C9—C100.6 (11)C19—C20—C22—C230.8 (11)
N2—C9—C10—C111.2 (8)N4—C22—C23—C243.9 (8)
C7—C9—C10—C11178.0 (7)C20—C22—C23—C24175.8 (6)
C9—C10—C11—C125.7 (7)C22—C23—C24—C257.3 (8)
C9—N2—C12—C117.7 (8)C22—N4—C25—C246.0 (8)
C13—N2—C12—C11177.0 (6)C26—N4—C25—C24177.6 (6)
C10—C11—C12—N27.6 (7)C23—C24—C25—N47.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2S—H4S···N10.91 (3)1.88 (3)2.781 (7)170 (7)
O3S—H6S···N3i0.92 (3)1.87 (4)2.733 (7)156 (6)
O3S—H5S···O2S0.91 (3)1.86 (3)2.757 (7)168 (6)
O2S—H3S···O1Sii0.90 (3)1.94 (3)2.807 (7)160 (6)
O1S—H2S···O3Siii0.91 (3)1.95 (4)2.840 (7)166 (7)
O1S—H1S···O3Siv0.91 (3)1.90 (4)2.782 (6)162 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H14N2·1.5H2O
Mr225.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.139 (5), 10.805 (8), 15.737 (11)
α, β, γ (°)88.460 (13), 88.163 (14), 71.506 (13)
V3)1150.4 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.06 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4171, 1814, 1183
Rint0.114
θmax (°)18.8
(sin θ/λ)max1)0.454
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.154, 1.10
No. of reflections1814
No. of parameters318
No. of restraints304
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2S—H4S···N10.91 (3)1.88 (3)2.781 (7)170 (7)
O3S—H6S···N3i0.92 (3)1.87 (4)2.733 (7)156 (6)
O3S—H5S···O2S0.91 (3)1.86 (3)2.757 (7)168 (6)
O2S—H3S···O1Sii0.90 (3)1.94 (3)2.807 (7)160 (6)
O1S—H2S···O3Siii0.91 (3)1.95 (4)2.840 (7)166 (7)
O1S—H1S···O3Siv0.91 (3)1.90 (4)2.782 (6)162 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+2, y+1, z+1.
 

Acknowledgements

The authors are grateful to the University of Urmia for financial suport of the preparative aspects of this work.

References

First citationAl-Khawaja, I. K., Beddoes, R. L., Bishop, D. I., Cernik, R. J., Joule, J. A. & Mills, O. S. (1984). J. Chem. Res. (S.), pp. 2738–2767.  Google Scholar
First citationBishop, D. I., Al-Khawaja, I. K., Heatley, F. & Joule, J. A. (1982). J. Chem. Res. (S.), pp. 1766–1776.  Google Scholar
First citationBishop, D. I., Al-Khawaja, I. K. & Joule, J. A. (1981). J. Chem. Res. (S.), pp. 4279–4290.  Google Scholar
First citationBruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHarris, M. & Joule, J. A. (1978). J. Chem. Res. (S.), pp. 470–483.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoungdale, G. A., Anger, D. G., Anthony, W. C., Da Vanzo, J. P., Greig, M. E., Heinzelman, R. V., Keasling, H. H. & Szmuszkovicz, J. (1964). J. Med. Chem. 7, 415–427.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds