metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1624-m1625

Undeca­carbonyl-1κ3C,2κ4C,3κ4C-[tris­­(4-methyl­phen­yl)arsine-1κAs]-triangulo-triruthenium(0)

aChemical Sciences Programme, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: omarsa@usm.my

(Received 3 November 2009; accepted 6 November 2009; online 21 November 2009)

In the title triangulo-triruthenium compound, [Ru3(C21H21As)(CO)11], one equatorial carbonyl group has been substituted by the monodentate arsine ligand, leaving one equatorial and two axial carbonyl substituents on the Ru atom. The remaining two Ru atoms each carry two equatorial and two axial terminal carbonyl ligands. The three arsine-substituted phenyl rings make dihedral angles of 73.2 (2), 71.0 (2) and 75.3 (2)° with each other. In the crystal packing, mol­ecules are stacked down the b axis and each mol­ecule is stabilized by an intra­molecular C—H⋯O hydrogen bond.

Related literature

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985[Bruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127-131.], 1988a[Bruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181-205.],b[Bruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207-235.]); Shawkataly et al. (1998[Shawkataly, O. bin., Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211-1216.], 2004[Shawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387-394.]). For related structures, see: Shawkataly et al. (2006[Shawkataly, O. bin, Chong, M-L, Fun, H.-K., Didierjean, C. & Aubry, A. (2006). Acta Cryst. E62, m168-m169.], 2009a[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009a). Acta Cryst. E65, m1620-m1621.],b[Shawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009b). Acta Cryst. E65, o2772-o2773.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru3(C21H21As)(CO)11]

  • Mr = 959.62

  • Triclinic, [P \overline 1]

  • a = 10.5081 (3) Å

  • b = 11.2922 (3) Å

  • c = 14.4625 (4) Å

  • α = 98.326 (1)°

  • β = 94.056 (2)°

  • γ = 98.923 (1)°

  • V = 1669.83 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 100 K

  • 0.33 × 0.16 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.511, Tmax = 0.838

  • 39493 measured reflections

  • 9594 independent reflections

  • 7073 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.133

  • S = 1.06

  • 9594 reflections

  • 427 parameters

  • H-atom parameters constrained

  • Δρmax = 2.32 e Å−3

  • Δρmin = −1.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O3 0.93 2.48 3.385 (5) 165

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tri-angulotriruthenium clusters are known for their interesting structural variations and related catalytic activity. A large number of substituted derivatives, Ru3(CO)12-nLn (L=15 group ligand) have been reported (Bruce et al., 1988a,b; Bruce et al., 1985). In continuation of our interest in the substituted clusters (Shawkataly, Ramalingam et al., 1998, 2004; Shawkataly et al., 2005, 2009a) we report here the synthesis and structure of Ru3(CO)11(As(4-CH3C6H4)3).

The bond lengths and angles of title compound (Fig. 1) are comparable to those found in related structures (Shawkataly et al., 2006, 2009a,b). The tri-angulotriruthenium is bonded to a monodentate arsine ligand. The arsine ligand is equatorial with respect to the Ru3 triangle. Additionally, the Ru2 and Ru3 atoms each carry two equatorial and two axial terminal carbonyl ligands except for arsine-bonded Ru1 atom which binds one equatorial and two axial terminal carbonyl ligands. The three arsine-substituted benzene rings make dihedral angles of 73.2 (2), 71.0 (2) and 75.3 (2)° with each other.

In the crystal packing, the molecules are stacked down b axis (Fig. 2) and each molecule is stabilized by an intramolecular C14—H14A···O3 hydrogen bond (Table 1).

Related literature top

For general background to triangulo-triruthenium derivatives, see: Bruce et al. (1985, 1988a,b); Shawkataly et al. (1998, 2004). For related structures, see: Shawkataly et al. (2006, 2009a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The reactions were conducted under an atmosphere of high purity nitrogen using standard Schlenk techniques and tetrahydrofuran (THF) was dried over sodium metal. Tris(4-methylphenyl)arsine (Maybridge) is used as received. Ru3(CO)12 (100 mg, 0.16 mmol) and tris(4-methylphenyl)arsine (56 mg, 0.16 mmol) were stirred in THF (25 ml) under nitrogen. About 0.2 ml of diphenylketyl radical anion initiator was introduced into the reaction mixture under a current of nitrogen. The reaction mixture turned intense red. After 10 minutes of stirring the solvent was removed under vacuum. The reaction mixture was separated by TLC (acetone:hexane, 10:90); three bands appeared. The major band (red) Rf = 0.78 yielded the title compound which was crystallized from CH2Cl2—CH3OH, yield = 100 mg, 57%, m.p. 137 °C. IR(cyclohexane).ν(CO) 2173 s, 2045 s, 2030 s, 1988 s, cm-1. 1H NMR (CDCl3) δ 7.29 (6 H, d, J = 7.98 Hz), δ 7.24 (6 H, d, J = 7.86 Hz), δ 2.40 (s, 9 H, 3CH3).

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis, showing the molecules stacked down b axis.
Undecacarbonyl-1κ3C,2κ4C,3κ4C-[tris(4- methylphenyl)arsine-1κAs]-triangulo-triruthenium(0) top
Crystal data top
[Ru3(C21H21As)(CO)11]Z = 2
Mr = 959.62F(000) = 932
Triclinic, P1Dx = 1.909 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5081 (3) ÅCell parameters from 9957 reflections
b = 11.2922 (3) Åθ = 2.5–29.8°
c = 14.4625 (4) ŵ = 2.38 mm1
α = 98.326 (1)°T = 100 K
β = 94.056 (2)°Block, brown
γ = 98.923 (1)°0.33 × 0.16 × 0.08 mm
V = 1669.83 (8) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9594 independent reflections
Radiation source: fine-focus sealed tube7073 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 29.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.511, Tmax = 0.838k = 1515
39493 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.6277P]
where P = (Fo2 + 2Fc2)/3
9594 reflections(Δ/σ)max = 0.001
427 parametersΔρmax = 2.32 e Å3
0 restraintsΔρmin = 1.20 e Å3
Crystal data top
[Ru3(C21H21As)(CO)11]γ = 98.923 (1)°
Mr = 959.62V = 1669.83 (8) Å3
Triclinic, P1Z = 2
a = 10.5081 (3) ÅMo Kα radiation
b = 11.2922 (3) ŵ = 2.38 mm1
c = 14.4625 (4) ÅT = 100 K
α = 98.326 (1)°0.33 × 0.16 × 0.08 mm
β = 94.056 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9594 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7073 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.838Rint = 0.051
39493 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.06Δρmax = 2.32 e Å3
9594 reflectionsΔρmin = 1.20 e Å3
427 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. IR spectra was recorded with a Matson 1000 FTIR spectrometer in a NaCl solution cell (0.1 mm). NMR spectra recorded in CDCl3 with a Bruker 400 MHz s pectrometer.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.23059 (3)0.12873 (3)0.66692 (2)0.01823 (9)
Ru20.33724 (4)0.23746 (3)0.51800 (2)0.02163 (10)
Ru30.23882 (4)0.38423 (3)0.66627 (3)0.02160 (10)
As10.13525 (4)0.08572 (4)0.81172 (3)0.01913 (11)
O10.4975 (3)0.1608 (3)0.7762 (2)0.0293 (8)
O20.2735 (4)0.1180 (3)0.5748 (3)0.0360 (9)
O30.0494 (3)0.0798 (3)0.5754 (2)0.0306 (8)
O40.6137 (4)0.2848 (3)0.6172 (3)0.0336 (8)
O50.3994 (4)0.0132 (4)0.3972 (3)0.0488 (11)
O60.0618 (4)0.1858 (4)0.4178 (2)0.0370 (9)
O70.4120 (4)0.4309 (4)0.3970 (3)0.0399 (9)
O80.0382 (4)0.3463 (4)0.5683 (3)0.0538 (12)
O90.1278 (4)0.4566 (3)0.8512 (3)0.0351 (8)
O100.5054 (4)0.4325 (3)0.7784 (3)0.0379 (9)
O110.3037 (4)0.6226 (4)0.5889 (3)0.0493 (11)
C10.2562 (4)0.1045 (4)0.9228 (3)0.0223 (9)
C20.3300 (5)0.2195 (4)0.9560 (3)0.0280 (10)
H2A0.32350.28360.92310.034*
C30.4123 (5)0.2374 (5)1.0376 (3)0.0328 (11)
H3A0.45910.31441.05980.039*
C40.4267 (5)0.1425 (5)1.0873 (3)0.0327 (11)
C50.3553 (5)0.0296 (5)1.0535 (4)0.0326 (11)
H5A0.36510.03501.08510.039*
C60.2684 (5)0.0097 (4)0.9728 (3)0.0264 (10)
H6A0.21900.06660.95260.032*
C70.0462 (4)0.0807 (4)0.8001 (3)0.0210 (9)
C80.0832 (4)0.1076 (4)0.8174 (3)0.0238 (9)
H8A0.12720.04530.83920.029*
C90.1461 (4)0.2265 (4)0.8022 (3)0.0247 (10)
H9A0.23240.24280.81400.030*
C100.0839 (5)0.3228 (4)0.7697 (3)0.0257 (10)
C110.0470 (4)0.2935 (4)0.7533 (3)0.0260 (10)
H11A0.09160.35550.73200.031*
C120.1103 (4)0.1751 (4)0.7680 (3)0.0238 (9)
H12A0.19670.15820.75630.029*
C130.0045 (4)0.1772 (4)0.8591 (3)0.0220 (9)
C140.0947 (5)0.1967 (4)0.7974 (3)0.0251 (10)
H14A0.09830.16590.73380.030*
C150.1886 (5)0.2618 (4)0.8300 (3)0.0277 (10)
H15A0.25510.27330.78800.033*
C160.1850 (5)0.3104 (4)0.9248 (3)0.0269 (10)
C170.0850 (5)0.2906 (4)0.9860 (3)0.0296 (11)
H17A0.08050.32221.04940.036*
C180.0087 (5)0.2241 (4)0.9538 (3)0.0237 (9)
H18A0.07430.21100.99580.028*
C190.5165 (5)0.1637 (6)1.1765 (4)0.0462 (15)
H19A0.54760.08991.18460.069*
H19B0.47070.18881.22900.069*
H19C0.58850.22601.17260.069*
C200.1530 (5)0.4518 (4)0.7531 (4)0.0362 (12)
H20A0.24200.45340.76450.054*
H20B0.11300.49710.79480.054*
H20C0.14800.48730.68930.054*
C210.2861 (5)0.3826 (5)0.9587 (4)0.0380 (13)
H21A0.29860.37361.02260.057*
H21B0.36610.35370.92000.057*
H21C0.25810.46680.95510.057*
C220.4009 (5)0.1548 (4)0.7333 (3)0.0240 (10)
C230.2559 (5)0.0277 (4)0.6123 (3)0.0258 (10)
C240.0568 (5)0.1036 (4)0.6070 (3)0.0239 (9)
C250.5090 (5)0.2675 (4)0.5847 (3)0.0272 (10)
C260.3754 (5)0.0942 (5)0.4432 (4)0.0333 (12)
C270.1617 (5)0.2062 (4)0.4593 (3)0.0291 (11)
C280.3839 (5)0.3601 (4)0.4424 (3)0.0284 (10)
C290.0661 (6)0.3529 (5)0.6015 (4)0.0371 (12)
C300.1685 (5)0.4274 (4)0.7818 (4)0.0278 (10)
C310.4087 (5)0.4051 (4)0.7326 (3)0.0279 (10)
C320.2800 (5)0.5349 (5)0.6172 (4)0.0349 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02275 (18)0.01272 (16)0.01969 (18)0.00001 (13)0.00294 (14)0.00684 (12)
Ru20.0286 (2)0.01625 (17)0.02074 (18)0.00008 (14)0.00498 (15)0.00777 (13)
Ru30.0266 (2)0.01339 (17)0.0261 (2)0.00331 (14)0.00339 (15)0.00697 (13)
As10.0225 (2)0.0156 (2)0.0200 (2)0.00051 (17)0.00296 (17)0.00779 (16)
O10.0243 (18)0.0347 (19)0.0322 (19)0.0051 (15)0.0022 (15)0.0163 (15)
O20.048 (2)0.0194 (17)0.044 (2)0.0094 (16)0.0120 (18)0.0070 (15)
O30.0290 (19)0.038 (2)0.0229 (18)0.0029 (16)0.0010 (15)0.0033 (15)
O40.031 (2)0.037 (2)0.035 (2)0.0020 (16)0.0028 (16)0.0131 (16)
O50.071 (3)0.033 (2)0.044 (2)0.013 (2)0.019 (2)0.0005 (18)
O60.038 (2)0.042 (2)0.0274 (19)0.0079 (18)0.0041 (16)0.0119 (16)
O70.038 (2)0.044 (2)0.038 (2)0.0087 (18)0.0036 (17)0.0252 (18)
O80.040 (2)0.044 (3)0.072 (3)0.018 (2)0.016 (2)0.010 (2)
O90.041 (2)0.0279 (18)0.038 (2)0.0051 (16)0.0135 (17)0.0072 (15)
O100.034 (2)0.031 (2)0.045 (2)0.0017 (17)0.0032 (18)0.0058 (17)
O110.062 (3)0.029 (2)0.069 (3)0.015 (2)0.024 (2)0.031 (2)
C10.023 (2)0.025 (2)0.020 (2)0.0025 (18)0.0032 (17)0.0098 (17)
C20.031 (3)0.027 (2)0.026 (2)0.002 (2)0.003 (2)0.0085 (19)
C30.029 (3)0.038 (3)0.028 (3)0.002 (2)0.005 (2)0.004 (2)
C40.021 (2)0.053 (3)0.026 (3)0.014 (2)0.0001 (19)0.007 (2)
C50.035 (3)0.038 (3)0.031 (3)0.018 (2)0.005 (2)0.012 (2)
C60.028 (2)0.028 (2)0.026 (2)0.007 (2)0.0063 (19)0.0085 (19)
C70.024 (2)0.020 (2)0.019 (2)0.0006 (17)0.0005 (17)0.0089 (16)
C80.027 (2)0.021 (2)0.026 (2)0.0052 (18)0.0089 (19)0.0075 (18)
C90.021 (2)0.022 (2)0.032 (2)0.0026 (18)0.0076 (19)0.0077 (18)
C100.028 (2)0.021 (2)0.029 (2)0.0006 (19)0.000 (2)0.0118 (18)
C110.026 (2)0.020 (2)0.037 (3)0.0076 (19)0.005 (2)0.0145 (19)
C120.021 (2)0.021 (2)0.034 (3)0.0072 (18)0.0046 (19)0.0133 (19)
C130.025 (2)0.018 (2)0.024 (2)0.0009 (17)0.0044 (18)0.0096 (17)
C140.031 (2)0.026 (2)0.018 (2)0.0010 (19)0.0014 (19)0.0054 (17)
C150.023 (2)0.030 (3)0.030 (3)0.0014 (19)0.0019 (19)0.010 (2)
C160.028 (2)0.024 (2)0.029 (2)0.0022 (19)0.003 (2)0.0078 (19)
C170.039 (3)0.027 (2)0.024 (2)0.005 (2)0.006 (2)0.0048 (19)
C180.027 (2)0.026 (2)0.021 (2)0.0073 (19)0.0003 (18)0.0102 (18)
C190.031 (3)0.070 (4)0.036 (3)0.015 (3)0.006 (2)0.003 (3)
C200.035 (3)0.021 (2)0.054 (3)0.000 (2)0.008 (2)0.012 (2)
C210.035 (3)0.047 (3)0.037 (3)0.016 (3)0.004 (2)0.010 (2)
C220.033 (3)0.014 (2)0.027 (2)0.0016 (18)0.008 (2)0.0114 (17)
C230.036 (3)0.019 (2)0.024 (2)0.002 (2)0.005 (2)0.0096 (18)
C240.034 (3)0.020 (2)0.020 (2)0.0051 (19)0.0072 (19)0.0061 (17)
C250.036 (3)0.025 (2)0.024 (2)0.007 (2)0.008 (2)0.0117 (19)
C260.045 (3)0.027 (3)0.028 (3)0.003 (2)0.009 (2)0.007 (2)
C270.039 (3)0.025 (2)0.024 (2)0.000 (2)0.007 (2)0.0107 (19)
C280.030 (3)0.025 (2)0.029 (2)0.002 (2)0.000 (2)0.0074 (19)
C290.043 (3)0.023 (3)0.044 (3)0.013 (2)0.003 (3)0.002 (2)
C300.032 (3)0.016 (2)0.037 (3)0.0036 (19)0.002 (2)0.0096 (19)
C310.041 (3)0.016 (2)0.028 (2)0.002 (2)0.007 (2)0.0083 (18)
C320.040 (3)0.029 (3)0.039 (3)0.008 (2)0.012 (2)0.010 (2)
Geometric parameters (Å, º) top
Ru1—C231.893 (5)C4—C191.510 (7)
Ru1—C241.927 (5)C5—C61.399 (7)
Ru1—C221.929 (5)C5—H5A0.9300
Ru1—As12.4629 (5)C6—H6A0.9300
Ru1—Ru22.8430 (5)C7—C121.389 (6)
Ru1—Ru32.8745 (5)C7—C81.395 (6)
Ru2—C281.912 (5)C8—C91.381 (6)
Ru2—C261.925 (5)C8—H8A0.9300
Ru2—C271.933 (6)C9—C101.396 (6)
Ru2—C251.942 (5)C9—H9A0.9300
Ru2—Ru32.8690 (5)C10—C111.409 (6)
Ru3—C301.905 (5)C10—C201.500 (7)
Ru3—C311.929 (6)C11—C121.378 (6)
Ru3—C321.937 (5)C11—H11A0.9300
Ru3—C291.940 (6)C12—H12A0.9300
As1—C11.942 (5)C13—C141.389 (6)
As1—C71.943 (4)C13—C181.389 (6)
As1—C131.948 (4)C14—C151.389 (7)
O1—C221.139 (6)C14—H14A0.9300
O2—C231.132 (5)C15—C161.396 (7)
O3—C241.150 (6)C15—H15A0.9300
O4—C251.142 (6)C16—C171.392 (7)
O5—C261.122 (6)C16—C211.503 (7)
O6—C271.145 (6)C17—C181.394 (6)
O7—C281.124 (6)C17—H17A0.9300
O8—C291.151 (7)C18—H18A0.9300
O9—C301.142 (6)C19—H19A0.9600
O10—C311.147 (6)C19—H19B0.9600
O11—C321.124 (6)C19—H19C0.9600
C1—C61.392 (6)C20—H20A0.9600
C1—C21.405 (6)C20—H20B0.9600
C2—C31.384 (7)C20—H20C0.9600
C2—H2A0.9300C21—H21A0.9600
C3—C41.395 (8)C21—H21B0.9600
C3—H3A0.9300C21—H21C0.9600
C4—C51.378 (8)
C23—Ru1—C2492.0 (2)C1—C6—H6A120.1
C23—Ru1—C2289.4 (2)C5—C6—H6A120.1
C24—Ru1—C22176.97 (18)C12—C7—C8119.1 (4)
C23—Ru1—As1101.53 (13)C12—C7—As1119.2 (3)
C24—Ru1—As187.54 (13)C8—C7—As1121.6 (3)
C22—Ru1—As189.57 (13)C9—C8—C7120.1 (4)
C23—Ru1—Ru292.35 (13)C9—C8—H8A119.9
C24—Ru1—Ru292.87 (13)C7—C8—H8A119.9
C22—Ru1—Ru289.73 (12)C8—C9—C10121.9 (4)
As1—Ru1—Ru2166.094 (19)C8—C9—H9A119.0
C23—Ru1—Ru3152.51 (13)C10—C9—H9A119.0
C24—Ru1—Ru387.74 (13)C9—C10—C11116.9 (4)
C22—Ru1—Ru392.21 (13)C9—C10—C20121.6 (4)
As1—Ru1—Ru3105.919 (17)C11—C10—C20121.4 (4)
Ru2—Ru1—Ru360.235 (12)C12—C11—C10121.5 (4)
C28—Ru2—C26102.5 (2)C12—C11—H11A119.2
C28—Ru2—C2790.7 (2)C10—C11—H11A119.2
C26—Ru2—C2791.0 (2)C11—C12—C7120.4 (4)
C28—Ru2—C2592.3 (2)C11—C12—H12A119.8
C26—Ru2—C2590.7 (2)C7—C12—H12A119.8
C27—Ru2—C25176.23 (18)C14—C13—C18119.2 (4)
C28—Ru2—Ru1158.50 (15)C14—C13—As1119.6 (3)
C26—Ru2—Ru198.74 (15)C18—C13—As1121.2 (3)
C27—Ru2—Ru185.47 (13)C13—C14—C15120.3 (4)
C25—Ru2—Ru190.94 (13)C13—C14—H14A119.8
C28—Ru2—Ru398.21 (15)C15—C14—H14A119.8
C26—Ru2—Ru3159.03 (15)C14—C15—C16121.2 (5)
C27—Ru2—Ru385.33 (14)C14—C15—H15A119.4
C25—Ru2—Ru391.90 (14)C16—C15—H15A119.4
Ru1—Ru2—Ru360.427 (12)C17—C16—C15118.0 (4)
C30—Ru3—C3189.9 (2)C17—C16—C21121.5 (4)
C30—Ru3—C32105.2 (2)C15—C16—C21120.5 (5)
C31—Ru3—C3292.2 (2)C16—C17—C18121.1 (4)
C30—Ru3—C2989.7 (2)C16—C17—H17A119.5
C31—Ru3—C29176.4 (2)C18—C17—H17A119.5
C32—Ru3—C2991.3 (2)C13—C18—C17120.3 (4)
C30—Ru3—Ru2159.15 (14)C13—C18—H18A119.9
C31—Ru3—Ru286.66 (14)C17—C18—H18A119.9
C32—Ru3—Ru295.54 (15)C4—C19—H19A109.5
C29—Ru3—Ru292.39 (16)C4—C19—H19B109.5
C30—Ru3—Ru199.92 (14)H19A—C19—H19B109.5
C31—Ru3—Ru186.07 (14)C4—C19—H19C109.5
C32—Ru3—Ru1154.87 (15)H19A—C19—H19C109.5
C29—Ru3—Ru190.44 (16)H19B—C19—H19C109.5
Ru2—Ru3—Ru159.337 (12)C10—C20—H20A109.5
C1—As1—C7103.68 (19)C10—C20—H20B109.5
C1—As1—C13101.46 (19)H20A—C20—H20B109.5
C7—As1—C13101.89 (18)C10—C20—H20C109.5
C1—As1—Ru1115.94 (13)H20A—C20—H20C109.5
C7—As1—Ru1112.36 (12)H20B—C20—H20C109.5
C13—As1—Ru1119.40 (12)C16—C21—H21A109.5
C6—C1—C2119.0 (4)C16—C21—H21B109.5
C6—C1—As1122.5 (4)H21A—C21—H21B109.5
C2—C1—As1118.5 (3)C16—C21—H21C109.5
C3—C2—C1119.9 (5)H21A—C21—H21C109.5
C3—C2—H2A120.0H21B—C21—H21C109.5
C1—C2—H2A120.0O1—C22—Ru1173.5 (4)
C2—C3—C4121.5 (5)O2—C23—Ru1175.6 (4)
C2—C3—H3A119.2O3—C24—Ru1173.8 (4)
C4—C3—H3A119.2O4—C25—Ru2174.6 (4)
C5—C4—C3118.1 (5)O5—C26—Ru2177.4 (5)
C5—C4—C19121.1 (5)O6—C27—Ru2174.5 (4)
C3—C4—C19120.8 (5)O7—C28—Ru2179.0 (5)
C4—C5—C6121.6 (5)O8—C29—Ru3172.5 (5)
C4—C5—H5A119.2O9—C30—Ru3178.1 (4)
C6—C5—H5A119.2O10—C31—Ru3170.3 (4)
C1—C6—C5119.8 (5)O11—C32—Ru3179.8 (5)
C23—Ru1—Ru2—C28170.9 (4)C23—Ru1—Ru3—Ru24.6 (3)
C24—Ru1—Ru2—C2878.8 (4)C24—Ru1—Ru3—Ru294.61 (12)
C22—Ru1—Ru2—C2899.7 (4)C22—Ru1—Ru3—Ru288.42 (13)
As1—Ru1—Ru2—C2812.6 (4)As1—Ru1—Ru3—Ru2178.60 (2)
Ru3—Ru1—Ru2—C287.0 (4)C23—Ru1—As1—C193.0 (2)
C23—Ru1—Ru2—C260.4 (2)C24—Ru1—As1—C1175.5 (2)
C24—Ru1—Ru2—C2691.7 (2)C22—Ru1—As1—C13.6 (2)
C22—Ru1—Ru2—C2689.8 (2)Ru2—Ru1—As1—C183.48 (17)
As1—Ru1—Ru2—C26176.92 (19)Ru3—Ru1—As1—C188.53 (15)
Ru3—Ru1—Ru2—C26177.48 (17)C23—Ru1—As1—C726.0 (2)
C23—Ru1—Ru2—C2790.7 (2)C24—Ru1—As1—C765.6 (2)
C24—Ru1—Ru2—C271.45 (19)C22—Ru1—As1—C7115.3 (2)
C22—Ru1—Ru2—C27179.89 (19)Ru2—Ru1—As1—C7157.54 (16)
As1—Ru1—Ru2—C2792.79 (17)Ru3—Ru1—As1—C7152.49 (15)
Ru3—Ru1—Ru2—C2787.19 (15)C23—Ru1—As1—C13145.2 (2)
C23—Ru1—Ru2—C2590.5 (2)C24—Ru1—As1—C1353.6 (2)
C24—Ru1—Ru2—C25177.40 (19)C22—Ru1—As1—C13125.5 (2)
C22—Ru1—Ru2—C251.05 (19)Ru2—Ru1—As1—C1338.38 (18)
As1—Ru1—Ru2—C2586.05 (16)Ru3—Ru1—As1—C1333.32 (16)
Ru3—Ru1—Ru2—C2591.65 (14)C7—As1—C1—C62.4 (4)
C23—Ru1—Ru2—Ru3177.87 (15)C13—As1—C1—C6107.8 (4)
C24—Ru1—Ru2—Ru385.74 (13)Ru1—As1—C1—C6121.3 (3)
C22—Ru1—Ru2—Ru392.71 (13)C7—As1—C1—C2174.9 (3)
As1—Ru1—Ru2—Ru35.60 (8)C13—As1—C1—C269.5 (4)
C28—Ru2—Ru3—C30176.1 (5)Ru1—As1—C1—C261.5 (4)
C26—Ru2—Ru3—C3013.4 (6)C6—C1—C2—C30.6 (7)
C27—Ru2—Ru3—C3093.9 (5)As1—C1—C2—C3176.8 (4)
C25—Ru2—Ru3—C3083.6 (5)C1—C2—C3—C41.6 (7)
Ru1—Ru2—Ru3—C306.4 (4)C2—C3—C4—C50.7 (7)
C28—Ru2—Ru3—C3195.2 (2)C2—C3—C4—C19179.7 (5)
C26—Ru2—Ru3—C3194.4 (5)C3—C4—C5—C61.3 (7)
C27—Ru2—Ru3—C31174.85 (19)C19—C4—C5—C6177.7 (5)
C25—Ru2—Ru3—C312.59 (18)C2—C1—C6—C51.3 (6)
Ru1—Ru2—Ru3—C3187.41 (13)As1—C1—C6—C5178.6 (3)
C28—Ru2—Ru3—C323.2 (2)C4—C5—C6—C12.3 (7)
C26—Ru2—Ru3—C32173.7 (5)C1—As1—C7—C1274.5 (4)
C27—Ru2—Ru3—C3293.2 (2)C13—As1—C7—C12179.6 (4)
C25—Ru2—Ru3—C3289.3 (2)Ru1—As1—C7—C1251.4 (4)
Ru1—Ru2—Ru3—C32179.35 (18)C1—As1—C7—C8109.7 (4)
C28—Ru2—Ru3—C2988.3 (2)C13—As1—C7—C84.6 (4)
C26—Ru2—Ru3—C2982.1 (5)Ru1—As1—C7—C8124.4 (3)
C27—Ru2—Ru3—C291.7 (2)C12—C7—C8—C90.3 (7)
C25—Ru2—Ru3—C29179.1 (2)As1—C7—C8—C9175.5 (3)
Ru1—Ru2—Ru3—C2989.09 (17)C7—C8—C9—C100.1 (7)
C28—Ru2—Ru3—Ru1177.43 (15)C8—C9—C10—C110.2 (7)
C26—Ru2—Ru3—Ru17.0 (5)C8—C9—C10—C20179.8 (5)
C27—Ru2—Ru3—Ru187.44 (13)C9—C10—C11—C120.4 (7)
C25—Ru2—Ru3—Ru190.00 (13)C20—C10—C11—C12179.6 (5)
C23—Ru1—Ru3—C30177.7 (4)C10—C11—C12—C70.3 (7)
C24—Ru1—Ru3—C3087.7 (2)C8—C7—C12—C110.1 (7)
C22—Ru1—Ru3—C3089.3 (2)As1—C7—C12—C11175.8 (4)
As1—Ru1—Ru3—C300.93 (16)C1—As1—C13—C14173.4 (4)
Ru2—Ru1—Ru3—C30177.67 (16)C7—As1—C13—C1479.8 (4)
C23—Ru1—Ru3—C3193.0 (4)Ru1—As1—C13—C1444.6 (4)
C24—Ru1—Ru3—C31176.95 (18)C1—As1—C13—C186.3 (4)
C22—Ru1—Ru3—C310.02 (18)C7—As1—C13—C18100.5 (4)
As1—Ru1—Ru3—C3190.16 (14)Ru1—As1—C13—C18135.1 (3)
Ru2—Ru1—Ru3—C3188.44 (14)C18—C13—C14—C150.2 (7)
C23—Ru1—Ru3—C326.1 (5)As1—C13—C14—C15179.9 (3)
C24—Ru1—Ru3—C3296.1 (4)C13—C14—C15—C160.8 (7)
C22—Ru1—Ru3—C3286.9 (4)C14—C15—C16—C170.6 (7)
As1—Ru1—Ru3—C32177.1 (4)C14—C15—C16—C21178.9 (5)
Ru2—Ru1—Ru3—C321.5 (4)C15—C16—C17—C180.1 (7)
C23—Ru1—Ru3—C2987.9 (4)C21—C16—C17—C18179.6 (5)
C24—Ru1—Ru3—C292.1 (2)C14—C13—C18—C170.5 (7)
C22—Ru1—Ru3—C29179.1 (2)As1—C13—C18—C17179.2 (3)
As1—Ru1—Ru3—C2988.88 (17)C16—C17—C18—C130.7 (7)
Ru2—Ru1—Ru3—C2992.52 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O30.932.483.385 (5)165

Experimental details

Crystal data
Chemical formula[Ru3(C21H21As)(CO)11]
Mr959.62
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.5081 (3), 11.2922 (3), 14.4625 (4)
α, β, γ (°)98.326 (1), 94.056 (2), 98.923 (1)
V3)1669.83 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.33 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.511, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
39493, 9594, 7073
Rint0.051
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.06
No. of reflections9594
No. of parameters427
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.32, 1.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O30.93002.48003.385 (5)165.00
 

Footnotes

On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant 1001/PJJAUH/811115. IAK is grateful to USM for a Postdoctoral Fellowship and to Gokhale Centenary College, Ankola, Karnataka, India, for study leave. HKF thanks USM for the Research University Golden Goose grant 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship.

References

First citationBruce, M. I., Liddell, M. J., Hughes, C. A., Patrick, J. M., Skelton, B. W. & White, A. H. (1988a). J. Organomet. Chem. 347, 181–205.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Liddell, M. J., Shawkataly, O. bin, Hughes, C. A., Skelton, B. W. & White, A. H. (1988b). J. Organomet. Chem. 347, 207–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruce, M. I., Shawkataly, O. bin & Williams, M. L. (1985). J. Organomet. Chem. 287, 127–131.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShawkataly, O. bin, Chong, M-L, Fun, H.-K., Didierjean, C. & Aubry, A. (2006). Acta Cryst. E62, m168–m169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009a). Acta Cryst. E65, m1620–m1621.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Khan, I. A., Yeap, C. S. & Fun, H.-K. (2009b). Acta Cryst. E65, o2772–o2773.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShawkataly, O. bin, Ramalingam, K., Fun, H.-K., Abdul Rahman, A., & Razak, I. A. (2004). J. Cluster Sci. 15, 387–394.  Web of Science CSD CrossRef Google Scholar
First citationShawkataly, O. bin., Ramalingam, K., Lee, S. T., Parameswary, M., Fun, H.-K. & Sivakumar, K. (1998). Polyhedron, 17, 1211–1216.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1624-m1625
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds