organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Amino-1,3-thia­zol-4-yl)-6-chloro-2H-chromen-2-one

aDepartment of Chemistry, Indian Institute of Science Education and Research, Bhopal 462 023, India, bChemistry Group, Birla Institute of Technology and science, Pilani, Pilani, 333 031, Rajasthan, India, cSchool of Chemistry, University of Kwazulu-Natal, Durban 4000, South Africa, dSchool of Pharmacy and ­Pharmacology, University of Kwazulu-Natal, Durban 4000, South Africa, and eSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: dchopra@iiserbhopal.ac.in

(Received 4 November 2009; accepted 13 November 2009; online 18 November 2009)

The title compound, C12H7ClN2O2S, crystallizes with two mol­ecules in the asymmetric unit. The mol­ecular conformation is roughly planar for both these mol­ecules with maximum deviations of 0.177 (3) and 0.076 (4) Å from their respective mean planes. In the crystal, strong N—H⋯N and weak but highly directional C—H⋯O hydrogen bonds provide the links between the mol­ecules. The structure is further stabilised by aromatic ππ stacking inter­actions with centroid–centroid distances in the range 3.650 (3)–3.960 (3) Å.

Related literature

For applications of coumarin compounds in photochemistry, see: Vishnumurthy et al. (2001[Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2001). Molecular and Supramolecular Photochemistry, p. 427. New York: Mark Dekker Inc.]). For their roles as dyes, laser dyes and in probing ultrafast solvation effects see: Morris & Rusell (1971[Morris, A. & Rusell, A. D. (1971). Med. Chem. 8, 39-59.]); Khalfan et al., (1987[Khalfan, H., Abuknesha, R., Rond-Weaver, M., Price, R. G. & Robinson, R. (1987). Chem. Abstr. 106, 63932.]); Maroncelli & Fleming (1987[Maroncelli, M. & Fleming, G. R. (1987). J. Chem. Phys. 86, 6221-6239.]). For graph set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the synthesis of the title compound, see: Venugopal et al. (2004[Venugopal, K. N., Jayashree, B. S. & Attimarad, M. (2004). Asian J. Chem. 16, 872-876.]). For related structures see: Vishnumurthy et al. (2001[Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2001). Molecular and Supramolecular Photochemistry, p. 427. New York: Mark Dekker Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7ClN2O2S

  • Mr = 278.72

  • Monoclinic, P 21 /c

  • a = 12.494 (8) Å

  • b = 7.350 (5) Å

  • c = 25.013 (15) Å

  • β = 98.156 (12)°

  • V = 2274 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 290 K

  • 0.20 × 0.10 × 0.02 mm

Data collection
  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick (1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.885, Tmax = 0.990

  • 16106 measured reflections

  • 4165 independent reflections

  • 2561 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.118

  • S = 1.01

  • 4165 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3i 0.86 2.31 3.124 (4) 158
N4—H4A⋯N1ii 0.86 2.27 3.116 (4) 168
C7—H7⋯O2iii 0.93 2.54 3.387 (4) 152
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1993[Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarins are an important class of organic compounds and have been extensively studied.Such molecules of vast structural diversity find useful applications in several areas of synthetic chemistry, medicinal chemistry and photochemistry. The formation of [2 + 2] cycloaddition products upon irradiation (Vishnumurthy et al.,2001) of coumarin and its derivatives has contributed immensely to the area of solid-state chemistry. Several substituted coumarin derivatives find applications in the dye industry (Morris & Rusell, 1971) and in the area of LASER dyes (Khalfan et al., 1987) based on the fact that such compounds show state dependent variations in their static dipole moments. These have also been used to probe ultrafast solvation effects (Maroncelli & Fleming, 1987). The geometry and molecular packing patterns of several coumarin derivatives have been studied to evaluate the features of non-covalent interactions (Vishnumurthy et al., 2001). Against this background, and to obtain more information on such compounds the solid-state structure of the title compound is reported here.

In the title compound, we have a chloro substituted coumarin ring crystallizing in monoclinic centrosymmetric space group with two unique molecules in the asymmetric unit [(A) and (B)]. Both the molecules are essentially planar with the dihedral angles between the least squares planes passing through the coumarin ring and thiazoyl ring being 9.1 (1) and 4.9 (1)Å in A and B respectively. The largest displacement is observed for the atom C11 being -0.020 (3)Å for molecule A and atom C13 being -0.041 (4)Å for molecule B from the weighted least squares planes through C1/O2 and C13/O3 respectively. Aromatic π···π stacking interactions are found with distances Cg2···Cg6 = 3.942 (3) Å, Cg2···Cg7 = 3.650 (3) Å, and Cg3···Cg7 = 3.960 (3)Å between the molecules A and B. Cg2, Cg3, Cg6 and Cg7 are the centroids of the six-membered rings O2/C8, C4/C9, O3/C20 and C16/C21 (Figure 1). Molecules A are linked by alternating C—H···O interactions (involving H7 and O2) forming R22(8) ring dimers [Bernstein et al., 1995]. N—H···N hydrogen bonds form hetero-dimeric motifs linking A and B molecules. (Figure 2, Table 1). Thus the supramolecular assembly is built up by an interplay of strong N—H···N, weak C—H···O and π···π van der Waals interactions. A short Cl···S contact of distance 3.532 (2)Å ( symmetry code: x, -y+1+1/2, z-1/2) is also present in the crystal lattice

Related literature top

For applications of coumarin compounds in photochemistry, see: Vishnumurthy et al. (2001). For their roles as dyes, laser dyes and in probing ultrafast solvation effects see: Morris & Rusell (1971); Khalfan et al., (1987); Maroncelli & Fleming (1987). For graph set motifs, see: Bernstein et al. (1995). For the synthesis of the title compound, see: Venugopal et al. (2004). For related structures see: Vishnumurthy et al. (2001).

Experimental top

The compounds were synthesized in accordance with the procedure reported in the literature (Venugopal et al., 2004). Single crystals of the compound were grown from chloroform:methanol (1:1) by slow evaporation at 275–277 K.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C) for aromatic and 0.86Å, Uiso = 1.2Ueq (N) for the NH atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The structure of the title compound drawn with 50% ellipsoidal probability showing the two molecules in the asymmetric unit (Molecules A and B). The dotted lines indicate inter-molecular centroid···centroid interactions. Cg2, Cg3, Cg6 and Cg7 are the centroids of the pyranone ring O2/C9 and the phenyl ring C4/C9 in Molecule A, and the pyranone ring O3/C15 and phenyl ring C16/C21 in Molecule B.
[Figure 2] Fig. 2. : Packing of the title compound highlighting the C—H···O dimers and N—H···N heterodimeric units. Only participating H atoms have been shown, others have been omitted for clarity.
3-(2-amino-1,3-thiazol-4-yl)-6-chloro-2H-chromen-2-one top
Crystal data top
C12H7ClN2O2SF(000) = 1136
Mr = 278.72Dx = 1.628 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 845 reflections
a = 12.494 (8) Åθ = 1.6–25.8°
b = 7.350 (5) ŵ = 0.51 mm1
c = 25.013 (15) ÅT = 290 K
β = 98.156 (12)°Plate, yellow
V = 2274 (3) Å30.20 × 0.10 × 0.02 mm
Z = 8
Data collection top
Bruker SMART CCD area detector
diffractometer
4165 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 25.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick (1996)
h = 1515
Tmin = 0.885, Tmax = 0.990k = 88
16106 measured reflectionsl = 2930
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
4165 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H7ClN2O2SV = 2274 (3) Å3
Mr = 278.72Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.494 (8) ŵ = 0.51 mm1
b = 7.350 (5) ÅT = 290 K
c = 25.013 (15) Å0.20 × 0.10 × 0.02 mm
β = 98.156 (12)°
Data collection top
Bruker SMART CCD area detector
diffractometer
4165 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick (1996)
2561 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.990Rint = 0.054
16106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.01Δρmax = 0.28 e Å3
4165 reflectionsΔρmin = 0.27 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23200 (7)0.90698 (12)0.22923 (3)0.0415 (2)
S20.28374 (8)0.49152 (15)0.13304 (4)0.0563 (3)
Cl10.07808 (7)0.52598 (14)0.60106 (3)0.0559 (3)
Cl20.12399 (7)0.11642 (12)0.50115 (3)0.0533 (3)
O10.44938 (19)0.7077 (4)0.37710 (10)0.0724 (8)
O20.39831 (17)0.6431 (3)0.45510 (9)0.0475 (6)
O30.45453 (17)0.2376 (3)0.36083 (9)0.0485 (6)
O40.50908 (19)0.3322 (4)0.28593 (10)0.0684 (8)
N10.12697 (19)0.8694 (3)0.31039 (10)0.0338 (6)
N20.0231 (3)0.9983 (5)0.23312 (13)0.0502 (9)
N30.1780 (2)0.4062 (3)0.21072 (10)0.0365 (6)
N40.0660 (3)0.4837 (5)0.13067 (14)0.0530 (9)
C10.3740 (3)0.6983 (5)0.40182 (14)0.0436 (9)
C20.2602 (2)0.7400 (4)0.38192 (12)0.0308 (7)
C30.1857 (3)0.7177 (4)0.41557 (13)0.0332 (8)
C40.1379 (3)0.6270 (4)0.50590 (13)0.0366 (8)
C50.1731 (3)0.5640 (4)0.55710 (13)0.0370 (8)
C60.2809 (3)0.5279 (5)0.57507 (15)0.0444 (9)
C70.3557 (3)0.5552 (5)0.54048 (14)0.0436 (9)
C80.3206 (2)0.6182 (4)0.48857 (13)0.0353 (8)
C90.2130 (2)0.6547 (4)0.47006 (12)0.0319 (7)
C100.2323 (2)0.8062 (4)0.32644 (12)0.0317 (7)
C110.1171 (3)0.9292 (4)0.26057 (13)0.0352 (8)
C120.2989 (3)0.8191 (4)0.28810 (13)0.0388 (8)
C130.4323 (3)0.3045 (5)0.30836 (14)0.0443 (9)
C140.3174 (2)0.3330 (4)0.28654 (12)0.0340 (8)
C150.2416 (3)0.3064 (4)0.31904 (13)0.0346 (8)
C160.1909 (3)0.2176 (4)0.40798 (13)0.0354 (8)
C170.2229 (3)0.1554 (4)0.45952 (13)0.0378 (8)
C180.3301 (3)0.1209 (5)0.47895 (14)0.0441 (9)
C190.4068 (3)0.1491 (5)0.44523 (15)0.0484 (10)
C200.3756 (3)0.2112 (4)0.39311 (13)0.0384 (8)
C210.2678 (2)0.2457 (4)0.37355 (12)0.0315 (7)
C220.2884 (2)0.3895 (4)0.23001 (13)0.0357 (8)
C230.1654 (3)0.4575 (4)0.16061 (13)0.0375 (8)
C240.3552 (3)0.4296 (5)0.19410 (14)0.0487 (10)
H2A0.03331.00750.24920.062*
H2B0.02141.03760.20080.062*
H30.11380.74420.40280.039*
H40.06480.65050.49500.044*
H4A0.00830.46640.14500.063*
H4B0.06140.51850.09760.063*
H60.30280.48490.60990.053*
H70.42890.53230.55150.052*
H120.37120.78460.29280.047*
H150.16940.32730.30530.041*
H160.11810.24060.39600.042*
H180.35020.07950.51400.053*
H190.47990.12620.45750.057*
H240.43030.42390.20100.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0423 (5)0.0528 (6)0.0305 (5)0.0011 (4)0.0088 (4)0.0006 (4)
S20.0480 (6)0.0865 (8)0.0360 (5)0.0034 (5)0.0115 (4)0.0097 (5)
Cl10.0482 (6)0.0858 (8)0.0339 (5)0.0029 (5)0.0069 (4)0.0074 (5)
Cl20.0571 (6)0.0611 (6)0.0452 (6)0.0043 (5)0.0192 (5)0.0086 (5)
N10.0300 (14)0.0429 (17)0.0278 (15)0.0001 (12)0.0019 (12)0.0017 (12)
N20.039 (2)0.076 (3)0.0348 (19)0.0068 (18)0.0018 (15)0.0118 (18)
N30.0352 (16)0.0448 (17)0.0299 (16)0.0003 (13)0.0055 (12)0.0012 (13)
N40.045 (2)0.076 (3)0.037 (2)0.0023 (18)0.0042 (17)0.0137 (18)
O10.0354 (15)0.132 (3)0.0524 (17)0.0247 (16)0.0163 (13)0.0260 (17)
O20.0306 (12)0.0713 (17)0.0400 (14)0.0133 (12)0.0030 (11)0.0089 (13)
O30.0298 (13)0.0725 (17)0.0423 (15)0.0043 (12)0.0021 (11)0.0100 (12)
O40.0332 (14)0.118 (2)0.0566 (17)0.0055 (15)0.0144 (13)0.0211 (16)
C10.039 (2)0.052 (2)0.041 (2)0.0098 (17)0.0071 (17)0.0030 (18)
C20.0300 (17)0.0317 (19)0.0310 (18)0.0053 (14)0.0054 (14)0.0028 (14)
C30.0269 (19)0.0353 (19)0.035 (2)0.0018 (15)0.0019 (16)0.0002 (15)
C40.0264 (19)0.040 (2)0.040 (2)0.0022 (15)0.0052 (16)0.0005 (16)
C50.039 (2)0.038 (2)0.0329 (19)0.0025 (16)0.0025 (15)0.0023 (15)
C60.047 (2)0.051 (2)0.032 (2)0.0050 (18)0.0068 (17)0.0015 (18)
C70.032 (2)0.055 (2)0.041 (2)0.0079 (18)0.0040 (17)0.0004 (18)
C80.0329 (18)0.0380 (19)0.0345 (19)0.0044 (15)0.0032 (15)0.0041 (16)
C90.0303 (18)0.0296 (18)0.0350 (19)0.0034 (14)0.0024 (15)0.0001 (14)
C100.0322 (18)0.0339 (19)0.0285 (18)0.0001 (15)0.0027 (14)0.0030 (15)
C110.0360 (19)0.0357 (19)0.0333 (19)0.0048 (15)0.0025 (15)0.0029 (15)
C120.035 (2)0.045 (2)0.038 (2)0.0007 (17)0.0097 (16)0.0035 (16)
C130.035 (2)0.058 (2)0.039 (2)0.0054 (17)0.0053 (17)0.0029 (18)
C140.0294 (18)0.0353 (19)0.0372 (19)0.0003 (14)0.0044 (15)0.0022 (15)
C150.0269 (19)0.039 (2)0.036 (2)0.0015 (16)0.0037 (15)0.0005 (16)
C160.034 (2)0.034 (2)0.038 (2)0.0010 (16)0.0022 (17)0.0013 (16)
C170.046 (2)0.0333 (19)0.036 (2)0.0013 (16)0.0108 (16)0.0002 (15)
C180.048 (2)0.050 (2)0.033 (2)0.0004 (18)0.0014 (18)0.0029 (18)
C190.030 (2)0.064 (3)0.048 (2)0.0042 (18)0.0097 (18)0.0080 (19)
C200.0322 (19)0.043 (2)0.038 (2)0.0008 (16)0.0008 (15)0.0002 (16)
C210.0293 (17)0.0329 (19)0.0313 (19)0.0010 (14)0.0006 (14)0.0019 (14)
C220.0324 (18)0.038 (2)0.037 (2)0.0023 (15)0.0052 (15)0.0010 (16)
C230.037 (2)0.040 (2)0.034 (2)0.0023 (15)0.0020 (16)0.0031 (16)
C240.040 (2)0.065 (3)0.042 (2)0.0030 (19)0.0088 (18)0.0055 (19)
Geometric parameters (Å, º) top
S1—C121.713 (4)C13—C141.475 (4)
S1—C111.738 (3)C7—C61.376 (5)
Cl2—C171.749 (3)C7—H70.9300
Cl1—C51.750 (3)C2—C101.464 (4)
S2—C241.714 (4)C2—C11.470 (5)
S2—C231.736 (3)C15—C141.347 (4)
C3—C21.349 (4)C15—H150.9300
C3—C91.436 (4)C22—C241.347 (4)
C3—H30.9300C22—C141.467 (4)
O3—C201.371 (4)C23—N41.369 (4)
O3—C131.392 (4)C10—C121.364 (4)
O2—C81.381 (4)C5—C41.375 (4)
O2—C11.385 (4)C5—C61.388 (5)
N3—C231.298 (4)C1—O11.200 (4)
N3—C221.402 (4)C18—C191.381 (5)
C8—C91.385 (4)C18—C171.385 (5)
C8—C71.387 (4)C18—H180.9300
C16—C171.372 (4)C11—N21.369 (4)
C16—C211.395 (4)C6—H60.9300
C16—H160.9300C4—H40.9300
C21—C201.392 (4)C24—H240.9300
C21—C151.429 (4)C19—H190.9300
C9—C41.402 (4)C12—H120.9300
C20—C191.385 (4)N4—H4A0.8600
N1—C111.311 (4)N4—H4B0.8600
N1—C101.401 (4)N2—H2A0.8600
C13—O41.196 (4)N2—H2B0.8600
C12—S1—C1189.03 (16)C12—C10—N1114.5 (3)
C24—S2—C2388.61 (17)C12—C10—C2127.5 (3)
C2—C3—C9122.6 (3)N1—C10—C2118.0 (3)
C2—C3—H3118.7C15—C14—C22121.5 (3)
C9—C3—H3118.7C15—C14—C13119.1 (3)
C20—O3—C13122.8 (3)C22—C14—C13119.3 (3)
C8—O2—C1123.1 (3)C4—C5—C6122.3 (3)
C23—N3—C22109.8 (3)C4—C5—Cl1118.9 (3)
O2—C8—C9120.2 (3)C6—C5—Cl1118.8 (3)
O2—C8—C7117.0 (3)O1—C1—O2115.5 (3)
C9—C8—C7122.8 (3)O1—C1—C2127.3 (3)
C17—C16—C21119.6 (3)O2—C1—C2117.1 (3)
C17—C16—H16120.2C19—C18—C17119.0 (3)
C21—C16—H16120.2C19—C18—H18120.5
C20—C21—C16118.3 (3)C17—C18—H18120.5
C20—C21—C15118.2 (3)N1—C11—N2123.8 (3)
C16—C21—C15123.4 (3)N1—C11—S1115.1 (2)
C8—C9—C4117.7 (3)N2—C11—S1121.0 (3)
C8—C9—C3118.0 (3)C16—C17—C18122.0 (3)
C4—C9—C3124.2 (3)C16—C17—Cl2118.5 (3)
O3—C20—C19118.0 (3)C18—C17—Cl2119.5 (3)
O3—C20—C21120.4 (3)C7—C6—C5119.0 (3)
C19—C20—C21121.6 (3)C7—C6—H6120.5
C11—N1—C10110.0 (3)C5—C6—H6120.5
O4—C13—O3115.8 (3)C5—C4—C9119.3 (3)
O4—C13—C14127.3 (3)C5—C4—H4120.4
O3—C13—C14116.9 (3)C9—C4—H4120.4
C6—C7—C8118.9 (3)C22—C24—S2111.1 (3)
C6—C7—H7120.5C22—C24—H24124.4
C8—C7—H7120.5S2—C24—H24124.4
C3—C2—C10122.6 (3)C18—C19—C20119.9 (3)
C3—C2—C1118.9 (3)C18—C19—H19120.2
C10—C2—C1118.5 (3)C20—C19—H19120.2
C14—C15—C21122.3 (3)C10—C12—S1111.2 (2)
C14—C15—H15118.8C10—C12—H12124.4
C21—C15—H15118.8S1—C12—H12124.4
C24—C22—N3114.9 (3)C23—N4—H4A120.0
C24—C22—C14128.1 (3)C23—N4—H4B120.0
N3—C22—C14117.0 (3)H4A—N4—H4B120.0
N3—C23—N4123.2 (3)C11—N2—H2A120.0
N3—C23—S2115.5 (3)C11—N2—H2B120.0
N4—C23—S2121.3 (3)H2A—N2—H2B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.862.313.124 (4)158
N4—H4A···N1ii0.862.273.116 (4)168
C7—H7···O2iii0.932.543.387 (4)152
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H7ClN2O2S
Mr278.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)12.494 (8), 7.350 (5), 25.013 (15)
β (°) 98.156 (12)
V3)2274 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.20 × 0.10 × 0.02
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick (1996)
Tmin, Tmax0.885, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
16106, 4165, 2561
Rint0.054
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.118, 1.01
No. of reflections4165
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N3i0.862.313.124 (4)158
N4—H4A···N1ii0.862.273.116 (4)168
C7—H7···O2iii0.932.543.387 (4)152
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

We thank the Department of Science and Technology, India, for the data collection at the CCD facility set up under the IRHPA–DST program.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKhalfan, H., Abuknesha, R., Rond-Weaver, M., Price, R. G. & Robinson, R. (1987). Chem. Abstr. 106, 63932.  Google Scholar
First citationMaroncelli, M. & Fleming, G. R. (1987). J. Chem. Phys. 86, 6221–6239.  CrossRef CAS Web of Science Google Scholar
First citationMorris, A. & Rusell, A. D. (1971). Med. Chem. 8, 39–59.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenugopal, K. N., Jayashree, B. S. & Attimarad, M. (2004). Asian J. Chem. 16, 872–876.  Google Scholar
First citationVishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2001). Molecular and Supramolecular Photochemistry, p. 427. New York: Mark Dekker Inc.  Google Scholar
First citationWatkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds