organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

De­acetyl tenuazonic acid p-toluene­sulfonyl­hydrazone

aBAM Federal Institute for Materials Research and Testing, Abteilung Analytische Chemie; Referenzmaterialien, Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany
*Correspondence e-mail: david.siegel@bam.de

(Received 6 November 2009; accepted 17 November 2009; online 21 November 2009)

The title compound {systematic name: 4-methyl-N′-[(3E)-2-(1-methyl­prop­yl)-5-oxopyrrolidin-3-yl­idene]benzene­sulfono­hydrazide}, C15H21N3O3S, is the condensation product of deacetyl tenuazonic acid (DTA) and p-toluene­sulfonohydrazide. The crystal structure consists of chains along [100] linked by N—H⋯O hydrogen bonds.

Related literature

For the occurrence of tenuazonic acid (TA) in various food matrices, see: Weidenbörner (2001[Weidenbörner, M. (2001). Encyclopedia of Food Mycotoxins. Berlin: Springer.]). For potential uses of the title compound in food analysis, see: Siegel, Rasenko et al. (2009[Siegel, D., Rasenko, T., Koch, M. & Nehls, I. (2009). J. Chromatogr. A, 1216, 4582-4588.]). For the crystal structure of DTA, see: Siegel, Koch et al. (2009[Siegel, D., Koch, M., Emmerling, F. & Nehls, I. (2009). Acta Cryst. E65, o1201.]) and for its synthesis, see: Lebrun et al. (1988[Lebrun, M. H., Nicolas, L., Boutar, M., Gaudemer, F., Ranomenjanahary, S. & Gaudemer, A. (1988). Phytochemistry, 27, 77-84.]); Stickings (1959[Stickings, C. E. (1959). Biochem. J. 72, 332-340.]). For the structure of p-toluene­sulfonyl­hydrazine, see: Roy & Nangia (2007[Roy, S. & Nangia, A. (2007). Acta Cryst. E63, o3696.]). For the structures of other p-toluene­sulfonyhydrazones, see, for example: Glidewell et al. (2004[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. E60, o520-o522.]); Ng (1997[Ng, S. W. (1997). Z. Kristallogr. New Cryst. Struct. 212, 277-278.]); Yan et al. (2008[Yan, X.-J., Liang, X.-M., Jin, S.-H. & Wang, D.-Q. (2008). Acta Cryst. E64, o657.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21N3O3S

  • Mr = 323.41

  • Orthorhombic, P 21 21 21

  • a = 5.1286 (16) Å

  • b = 8.285 (3) Å

  • c = 38.430 (12) Å

  • V = 1633.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 294 K

  • 0.14 × 0.12 × 0.02 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: ψ scan (SHELXTL; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.995

  • 13112 measured reflections

  • 4755 independent reflections

  • 2233 reflections with I > 2σ(I)

  • Rint = 0.102

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.097

  • S = 0.77

  • 4755 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1905 Friedel pairs

  • Flack parameter: −0.11 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1i 0.86 2.27 3.104 (3) 162
N1—H1⋯O3ii 1.03 2.10 3.063 (3) 156
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Deacetyl tenuazonic acid (DTA) is formed upon boiling the Alternaria. mycotoxin tenuazonic acid (TA) in 0.1 M HCl (Stickings, 1959). As TA is frequently encountered in various food matrices (Weidenbörner, 2001), traces of DTA are expected to occur in these matrices as well. We have recently reported a derivatization procedure for TA quantification in food, which is based on hydrazone formation with 2,4-dinitrophenylhydrazine (Siegel, Rasenko et al., 2009) and are currently evaluating a similar procedure for DTA quantification using p-toluenesulfonyl hydrazide. The title compound is the product of the latter derivatization reaction. The stucture of the title compound, (I), is shown below. Each molecule (Fig.1) is connected to three adjacent molecules via N—H···O hydrogen bonds. As a result isolated ribbons are formed along the a axis, as depicted in Fig. 2.

Related literature top

For the occurrence of tenuazonic acid (TA) in various food matrices, see: Weidenbörner (2001). For potential uses of the title compound in food analysis, see: Siegel, Rasenko et al. (2009). For the crystal structure of DTA, see: Siegel, Koch et al. (2009) and for its synthesis, see: Lebrun et al. (1988); Stickings (1959). For the structure of p-toluenesulfonylhydrazine, see: Roy & Nangia (2007). For the structures of other p-toluenesulfonyhydrazones, see, for example: Glidewell et al. (2004); Ng (1997); Yan et al. (2008).

Experimental top

DTA was supplied by the workgroup of Professor R. Faust (University of Kassel, Germany) by synthesis according to a literature procedure (Lebrun et al., 1988). Its identity was confirmed by x-ray crystallography (Siegel, Koch et al., 2009). The title compound was synthesized by dissolving 20 mg (1 eq., 0.13 mmol) of DTA and a five fold molar excess of p-toluenesulfonyl hydrazide (5 eq., 0.65 mmol, 121 mg) in 50 ml 2 M HCl. After 30 minutes of shaking the precipitate was collected, washed with water, dissolved in ethyl acetate and dried with sodium sulfate. After evaporation of the solvent, a yellow powder was obtained, which was recrystallized from ethanol twice. For single-crystal x-ray crystallography, orange crystals of the title compound were grown by solvent evaporation (methanol:water 50:50 v:v) at ambient temperature over a period of three weeks.

Refinement top

All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were located in difference maps but positioned with idealized geometry and refined using the riding model,with C—H = 0.98–1 Å or N—H = 0.9 Å and Uiso(H) = 1.2 Ueq (C, N) or 1.5 Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the unit cell of the title compound along [100] (upper picture) and [010] (lower picture) showing the hydrogen bond system drawn as dashed lines.
4-methyl-N'-[(3E)-2-(1-methylpropyl)-5-oxopyrrolidin-3- ylidene]benzenesulfonohydrazide top
Crystal data top
C15H21N3O3SF(000) = 688
Mr = 323.41Dx = 1.315 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 122 reflections
a = 5.1286 (16) Åθ = 4–23°
b = 8.285 (3) ŵ = 0.21 mm1
c = 38.430 (12) ÅT = 294 K
V = 1633.0 (9) Å3Needle, colourless
Z = 40.14 × 0.12 × 0.02 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
4755 independent reflections
Radiation source: fine-focus sealed tube2233 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.102
ω/2θ scansθmax = 31.1°, θmin = 2.1°
Absorption correction: ψ scan
(SHELXTL; Bruker, 2001)
h = 77
Tmin = 0.970, Tmax = 0.995k = 1212
13112 measured reflectionsl = 5555
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0333P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.77(Δ/σ)max = 0.008
4755 reflectionsΔρmax = 0.21 e Å3
196 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1983), 1905 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (10)
Crystal data top
C15H21N3O3SV = 1633.0 (9) Å3
Mr = 323.41Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1286 (16) ŵ = 0.21 mm1
b = 8.285 (3) ÅT = 294 K
c = 38.430 (12) Å0.14 × 0.12 × 0.02 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
4755 independent reflections
Absorption correction: ψ scan
(SHELXTL; Bruker, 2001)
2233 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.995Rint = 0.102
13112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.21 e Å3
S = 0.77Δρmin = 0.29 e Å3
4755 reflectionsAbsolute structure: Flack (1983), 1905 Friedel pairs
196 parametersAbsolute structure parameter: 0.11 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74721 (13)0.49291 (7)0.097917 (14)0.04011 (15)
O10.0629 (4)0.3828 (2)0.23977 (4)0.0606 (5)
O20.6752 (4)0.63657 (18)0.08020 (4)0.0527 (5)
O31.0099 (3)0.4666 (2)0.10814 (4)0.0519 (5)
N10.5727 (4)0.4954 (2)0.13411 (4)0.0390 (4)
H10.37690.51320.13020.047*
N20.6024 (4)0.3487 (2)0.15275 (5)0.0383 (5)
N30.2395 (4)0.1958 (2)0.22262 (5)0.0448 (5)
H30.19360.12210.23710.054*
C10.4445 (5)0.3286 (3)0.17784 (6)0.0347 (5)
C20.2331 (6)0.4344 (3)0.19185 (6)0.0462 (6)
H2A0.30380.53540.20050.055*
H2B0.10390.45740.17410.055*
C30.1172 (5)0.3376 (3)0.22082 (6)0.0445 (6)
C40.4556 (5)0.1730 (3)0.19850 (6)0.0364 (6)
H40.61900.17000.21170.044*
C50.4380 (4)0.0220 (3)0.17583 (5)0.0366 (5)
H50.56860.03390.15740.044*
C60.1756 (4)0.0098 (3)0.15812 (6)0.0542 (7)
H6A0.13960.11140.14650.065*
H6B0.04280.00540.17580.065*
C70.1531 (6)0.1253 (4)0.13175 (7)0.0741 (10)
H7A0.28850.11450.11470.111*
H7B0.01390.11970.12050.111*
H7C0.17030.22740.14330.111*
C80.5103 (4)0.1307 (2)0.19639 (5)0.0529 (8)
H8A0.67780.11620.20710.079*
H8B0.51660.22140.18090.079*
H8C0.38160.14980.21410.079*
C90.6413 (3)0.32472 (18)0.07366 (4)0.0374 (6)
C100.7575 (3)0.17800 (18)0.07827 (4)0.0494 (6)
H100.89850.16740.09330.059*
C110.6641 (6)0.0458 (3)0.06047 (7)0.0565 (8)
H110.74400.05390.06370.068*
C120.4556 (6)0.0576 (3)0.03813 (7)0.0529 (7)
C130.3442 (6)0.2071 (4)0.03385 (7)0.0593 (8)
H130.20380.21830.01870.071*
C140.4359 (5)0.3420 (3)0.05156 (6)0.0488 (7)
H140.35830.44240.04830.059*
C150.3523 (7)0.0880 (4)0.01904 (8)0.0868 (11)
H15A0.41740.08800.00440.130*
H15B0.16520.08430.01860.130*
H15C0.40830.18440.03070.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0445 (3)0.0340 (3)0.0418 (3)0.0070 (4)0.0058 (3)0.0019 (3)
O10.0621 (12)0.0658 (13)0.0540 (11)0.0020 (10)0.0229 (11)0.0140 (9)
O20.0702 (14)0.0343 (10)0.0538 (10)0.0042 (9)0.0046 (10)0.0118 (8)
O30.0363 (9)0.0603 (12)0.0590 (10)0.0088 (9)0.0040 (8)0.0056 (9)
N10.0412 (10)0.0320 (10)0.0438 (10)0.0030 (11)0.0070 (9)0.0008 (10)
N20.0399 (11)0.0344 (11)0.0405 (11)0.0056 (9)0.0043 (11)0.0034 (9)
N30.0547 (13)0.0410 (12)0.0387 (11)0.0104 (13)0.0126 (12)0.0005 (9)
C10.0347 (13)0.0331 (13)0.0364 (13)0.0067 (11)0.0005 (12)0.0063 (11)
C20.0526 (16)0.0364 (13)0.0497 (14)0.0069 (14)0.0110 (14)0.0034 (10)
C30.0502 (16)0.0458 (17)0.0375 (14)0.0101 (14)0.0051 (13)0.0131 (12)
C40.0351 (14)0.0401 (14)0.0339 (13)0.0102 (12)0.0025 (11)0.0021 (11)
C50.0367 (13)0.0353 (14)0.0378 (12)0.0002 (12)0.0025 (10)0.0004 (11)
C60.0496 (16)0.0443 (15)0.0685 (17)0.0041 (14)0.0143 (13)0.0161 (15)
C70.088 (3)0.0531 (19)0.082 (2)0.0056 (17)0.0259 (19)0.0128 (16)
C80.061 (2)0.0438 (17)0.0543 (17)0.0015 (14)0.0013 (14)0.0120 (13)
C90.0390 (15)0.0374 (14)0.0357 (14)0.0051 (12)0.0044 (12)0.0051 (11)
C100.0548 (16)0.0423 (14)0.0511 (15)0.0011 (17)0.0117 (15)0.0008 (12)
C110.071 (2)0.0400 (17)0.0582 (17)0.0025 (13)0.0077 (15)0.0011 (12)
C120.0618 (19)0.0510 (18)0.0460 (16)0.0095 (15)0.0003 (15)0.0076 (13)
C130.0557 (19)0.071 (2)0.0515 (17)0.0002 (16)0.0091 (15)0.0086 (15)
C140.0549 (17)0.0453 (16)0.0462 (15)0.0059 (14)0.0019 (14)0.0006 (12)
C150.104 (3)0.068 (2)0.089 (2)0.014 (2)0.015 (2)0.0270 (18)
Geometric parameters (Å, º) top
S1—O31.4200 (17)C6—H6A0.9700
S1—O21.4201 (16)C6—H6B0.9700
S1—N11.6542 (18)C7—H7A0.9600
S1—C91.7624 (18)C7—H7B0.9600
O1—C31.235 (3)C7—H7C0.9600
N1—N21.419 (2)C8—H8A0.9600
N1—H11.0263C8—H8B0.9600
N2—C11.270 (3)C8—H8C0.9600
N3—C31.333 (3)C9—C101.3653
N3—C41.457 (3)C9—C141.361 (3)
N3—H30.8600C10—C111.377 (3)
C1—C21.494 (3)C10—H100.9300
C1—C41.515 (3)C11—C121.375 (4)
C2—C31.495 (3)C11—H110.9300
C2—H2A0.9700C12—C131.374 (4)
C2—H2B0.9700C12—C151.508 (4)
C4—C51.527 (3)C13—C141.391 (3)
C4—H40.9800C13—H130.9300
C5—C61.511 (3)C14—H140.9300
C5—C81.537 (3)C15—H15A0.9600
C5—H50.9800C15—H15B0.9600
C6—C71.515 (3)C15—H15C0.9600
O3—S1—O2120.52 (11)C5—C6—H6B108.6
O3—S1—N1106.41 (10)C7—C6—H6B108.6
O2—S1—N1104.60 (10)H6A—C6—H6B107.6
O3—S1—C9108.51 (10)C6—C7—H7A109.5
O2—S1—C9109.21 (9)C6—C7—H7B109.5
N1—S1—C9106.72 (9)H7A—C7—H7B109.5
N2—N1—S1110.85 (14)C6—C7—H7C109.5
N2—N1—H1107.6H7A—C7—H7C109.5
S1—N1—H1114.1H7B—C7—H7C109.5
C1—N2—N1115.28 (18)C5—C8—H8A109.5
C3—N3—C4116.02 (19)C5—C8—H8B109.5
C3—N3—H3122.0H8A—C8—H8B109.5
C4—N3—H3122.0C5—C8—H8C109.5
N2—C1—C2131.2 (2)H8A—C8—H8C109.5
N2—C1—C4119.1 (2)H8B—C8—H8C109.5
C2—C1—C4109.71 (19)C10—C9—C14120.84 (13)
C3—C2—C1104.0 (2)C10—C9—S1120.06 (6)
C3—C2—H2A111.0C14—C9—S1119.04 (15)
C1—C2—H2A111.0C9—C10—C11119.48 (14)
C3—C2—H2B111.0C9—C10—H10120.3
C1—C2—H2B111.0C11—C10—H10120.3
H2A—C2—H2B109.0C12—C11—C10121.6 (2)
O1—C3—N3126.1 (2)C12—C11—H11119.2
O1—C3—C2125.0 (2)C10—C11—H11119.2
N3—C3—C2108.9 (2)C11—C12—C13117.5 (2)
N3—C4—C1101.24 (19)C11—C12—C15121.4 (3)
N3—C4—C5115.09 (18)C13—C12—C15121.1 (3)
C1—C4—C5113.32 (18)C12—C13—C14121.7 (3)
N3—C4—H4109.0C12—C13—H13119.2
C1—C4—H4109.0C14—C13—H13119.2
C5—C4—H4109.0C9—C14—C13118.8 (2)
C6—C5—C4111.3 (2)C9—C14—H14120.6
C6—C5—C8113.0 (2)C13—C14—H14120.6
C4—C5—C8111.52 (17)C12—C15—H15A109.5
C6—C5—H5106.8C12—C15—H15B109.5
C4—C5—H5106.8H15A—C15—H15B109.5
C8—C5—H5106.8C12—C15—H15C109.5
C5—C6—C7114.8 (2)H15A—C15—H15C109.5
C5—C6—H6A108.6H15B—C15—H15C109.5
C7—C6—H6A108.6
O3—S1—N1—N258.11 (17)N3—C4—C5—C876.8 (2)
O2—S1—N1—N2173.28 (14)C1—C4—C5—C8167.36 (18)
C9—S1—N1—N257.61 (15)C4—C5—C6—C7172.9 (2)
S1—N1—N2—C1169.08 (16)C8—C5—C6—C760.6 (3)
N1—N2—C1—C21.3 (4)O3—S1—C9—C1024.73 (9)
N1—N2—C1—C4177.98 (18)O2—S1—C9—C10157.88 (8)
N2—C1—C2—C3178.5 (2)N1—S1—C9—C1089.58 (8)
C4—C1—C2—C30.8 (2)O3—S1—C9—C14158.08 (16)
C4—N3—C3—O1177.0 (2)O2—S1—C9—C1424.93 (18)
C4—N3—C3—C23.1 (3)N1—S1—C9—C1487.61 (17)
C1—C2—C3—O1178.9 (2)C14—C9—C10—C110.46 (17)
C1—C2—C3—N31.3 (3)S1—C9—C10—C11176.68 (18)
C3—N3—C4—C13.4 (2)C9—C10—C11—C120.1 (3)
C3—N3—C4—C5126.0 (2)C10—C11—C12—C130.6 (4)
N2—C1—C4—N3177.1 (2)C10—C11—C12—C15179.3 (2)
C2—C1—C4—N32.3 (2)C11—C12—C13—C140.5 (4)
N2—C1—C4—C553.3 (3)C15—C12—C13—C14179.4 (3)
C2—C1—C4—C5126.1 (2)C10—C9—C14—C130.5 (3)
N3—C4—C5—C650.5 (3)S1—C9—C14—C13176.63 (18)
C1—C4—C5—C665.4 (3)C12—C13—C14—C90.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.862.273.104 (3)162
N1—H1···O3ii1.032.103.063 (3)156
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H21N3O3S
Mr323.41
Crystal system, space groupOrthorhombic, P212121
Temperature (K)294
a, b, c (Å)5.1286 (16), 8.285 (3), 38.430 (12)
V3)1633.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.14 × 0.12 × 0.02
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionψ scan
(SHELXTL; Bruker, 2001)
Tmin, Tmax0.970, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
13112, 4755, 2233
Rint0.102
(sin θ/λ)max1)0.727
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.097, 0.77
No. of reflections4755
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.29
Absolute structureFlack (1983), 1905 Friedel pairs
Absolute structure parameter0.11 (10)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.862.273.104 (3)162.4
N1—H1···O3ii1.032.103.063 (3)155.5
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x1, y, z.
 

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. E60, o520–o522.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLebrun, M. H., Nicolas, L., Boutar, M., Gaudemer, F., Ranomenjanahary, S. & Gaudemer, A. (1988). Phytochemistry, 27, 77–84.  CrossRef CAS Web of Science Google Scholar
First citationNg, S. W. (1997). Z. Kristallogr. New Cryst. Struct. 212, 277–278.  CAS Google Scholar
First citationRoy, S. & Nangia, A. (2007). Acta Cryst. E63, o3696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiegel, D., Koch, M., Emmerling, F. & Nehls, I. (2009). Acta Cryst. E65, o1201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiegel, D., Rasenko, T., Koch, M. & Nehls, I. (2009). J. Chromatogr. A, 1216, 4582–4588.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStickings, C. E. (1959). Biochem. J. 72, 332–340.  PubMed CAS Web of Science Google Scholar
First citationWeidenbörner, M. (2001). Encyclopedia of Food Mycotoxins. Berlin: Springer.  Google Scholar
First citationYan, X.-J., Liang, X.-M., Jin, S.-H. & Wang, D.-Q. (2008). Acta Cryst. E64, o657.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds