metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-Eth­­oxy-6-[2-(piperidinium-1-yl)ethyl­imino­meth­yl]phenolato}di­iodidozinc(II)

aDepartment of Chemistry, Baicheng Normal College, Baicheng 137000, People's Republic of China
*Correspondence e-mail: lijingyan56@126.com

(Received 12 November 2009; accepted 15 November 2009; online 21 November 2009)

The title Schiff base complex, [ZnI2(C16H24N2O2)], is a mononuclear zinc(II) compound. The Zn atom is four-coordinated in a distorted tetra­hedral geometry by one phenolate O atom and one imine N atom of the Schiff base ligand and by two iodide ions. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains running along the a axis.

Related literature

For background to the applications of Schiff bases, see: Averseng et al. (2001[Averseng, F., Lacroix, P. G., Malfant, I., Périssé, N. & Lepetit, C. (2001). Inorg. Chem. 40, 3797-3804.]); Patra et al. (2002[Patra, A. K., Olmstead, M. M. & Mascharak, P. K. (2002). Inorg. Chem. 41, 5403-5409.]); Chen et al. (2003[Chen, C., Huang, D., Zhang, X., Chen, F., Zhu, H., Liu, Q., Zhang, C., Liao, D., Li, L. & Sun, L. (2003). Inorg. Chem. 42, 3540-3548.]); Ruck & Jacobsen (2002[Ruck, R. T. & Jacobsen, E. N. (2002). J. Am. Chem. Soc. 124, 2882-2883.]). For the structures of related Schiff base zinc complexes, see: Wei et al. (2007[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654-m655.]); Zhu, Yang et al. (2009[Zhu, X.-W., Yang, X.-Z., Zhang, C.-X., Li, G.-S. & Yin, Z.-G. (2009). Acta Cryst. E65, m1332-m1333.]); Zhu, Yin, Li et al. (2009[Zhu, X.-W., Yin, Z.-G., Li, G.-S., Yang, X.-Z. & Zhang, C.-X. (2009). Acta Cryst. E65, m1226-m1227.]); Zhu, Yin, Yang et al. (2009[Zhu, X.-W., Yin, Z.-G., Yang, X.-Z., Li, G.-S. & Zhang, C.-X. (2009). Acta Cryst. E65, m1293-m1294.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnI2(C16H24N2O2)]

  • Mr = 595.54

  • Orthorhombic, P n a 21

  • a = 13.5934 (10) Å

  • b = 10.2381 (8) Å

  • c = 14.7871 (11) Å

  • V = 2057.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.20 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.518, Tmax = 0.535

  • 11751 measured reflections

  • 4438 independent reflections

  • 3763 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.068

  • S = 1.02

  • 4438 reflections

  • 212 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.88 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2111 Friedel pairs

  • Flack parameter: 0.02 (2)

Table 1
Selected bond lengths (Å)

Zn1—O1 1.950 (2)
Zn1—N1 2.021 (3)
Zn1—I1 2.5448 (9)
Zn1—I2 2.5651 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (4) 2.61 (5) 3.237 (5) 127 (4)
N2—H2⋯O1i 0.90 (4) 2.01 (5) 2.867 (5) 159 (5)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases are versatile ligands for the preparation in the preparation of metal complexes (Averseng et al., 2001; Patra et al., 2002; Chen et al., 2003; Ruck & Jacobsen, 2002). In this paper, the new zinc(II)title complex with the Schiff base ligand 2-ethoxy-6-[(2-piperidin-1-ylethylimino)methyl]phenol is reported.

In the title complex, Fig. 1, the Zn atom is four-coordinated by one phenolate O and one imine N atoms of the Schiff base ligand, and by two iodide atoms, forming a tetrahedral coordination. The coordinate bond lengths (Table 1) and angles are comparable to those of similar zinc complexes (Wei et al., 2007; Zhu, Yang et al., 2009; Zhu, Yin, Li et al., 2009; Zhu, Yin, Yang et al., 2009).

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 2), forming chains running along the a axis (Fig. 2).

Related literature top

For background to the applications of Schiff bases, see: Averseng et al. (2001); Patra et al. (2002); Chen et al. (2003); Ruck & Jacobsen (2002). For the structures of related Schiff base zinc complexes, see: Wei et al. (2007); Zhu, Yang et al. (2009); Zhu, Yin, Li et al. (2009); Zhu, Yin, Yang et al. (2009).

Experimental top

2-Ethoxysalicylaldehyde (1.0 mmol, 166 mg), 2-piperidin-1-ylethylamine (1.0 mmol, 128 mg), and ZnI2 (1.0 mmol, 319 mg) were mixed in a methanol solution (50 ml). The mixture was stirred at reflux for 30 min to give a colourless solution. The solution was left in air for a few days, yielding colourless block-shaped crystals.

Refinement top

The H2 atom was located from a difference Fourier map and refined isotropically, with Uiso restrained to 0.08 Å2. Other H atoms were constrained to ideal geometries, with d(C–H) = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C), 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 30% displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.
{2-Ethoxy-6-[2-(piperidinium-1-yl)ethyliminomethyl]phenolato}diiodidozinc(II) top
Crystal data top
[ZnI2(C16H24N2O2)]F(000) = 1144
Mr = 595.54Dx = 1.922 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4921 reflections
a = 13.5934 (10) Åθ = 2.4–27.9°
b = 10.2381 (8) ŵ = 4.20 mm1
c = 14.7871 (11) ÅT = 298 K
V = 2057.9 (3) Å3Block, colourless
Z = 40.18 × 0.17 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4438 independent reflections
Radiation source: fine-focus sealed tube3763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1617
Tmin = 0.518, Tmax = 0.535k = 913
11751 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0339P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4438 reflectionsΔρmax = 0.58 e Å3
212 parametersΔρmin = 0.88 e Å3
2 restraintsAbsolute structure: Flack (1983), 2111 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[ZnI2(C16H24N2O2)]V = 2057.9 (3) Å3
Mr = 595.54Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.5934 (10) ŵ = 4.20 mm1
b = 10.2381 (8) ÅT = 298 K
c = 14.7871 (11) Å0.18 × 0.17 × 0.17 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4438 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3763 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.535Rint = 0.029
11751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Δρmax = 0.58 e Å3
S = 1.02Δρmin = 0.88 e Å3
4438 reflectionsAbsolute structure: Flack (1983), 2111 Friedel pairs
212 parametersAbsolute structure parameter: 0.02 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.02523 (3)0.78151 (4)0.73753 (7)0.03660 (10)
I10.07635 (3)0.89935 (4)0.881593 (19)0.05811 (13)
I20.07707 (3)0.89530 (5)0.590518 (18)0.06408 (15)
N10.1209 (2)0.7453 (3)0.7350 (4)0.0383 (6)
N20.2829 (3)0.9941 (4)0.8503 (2)0.0380 (8)
O10.06258 (15)0.5977 (2)0.7346 (4)0.0386 (5)
O20.1483 (3)0.3910 (3)0.6564 (2)0.0567 (9)
C10.1005 (3)0.5138 (4)0.7039 (3)0.0405 (10)
C20.0040 (3)0.5075 (4)0.7033 (3)0.0373 (9)
C30.0463 (4)0.3937 (4)0.6658 (4)0.0491 (11)
C40.0100 (5)0.2871 (5)0.6416 (4)0.0660 (15)
H40.02020.21120.62100.079*
C50.1109 (5)0.2932 (5)0.6478 (4)0.0677 (16)
H50.14850.22070.63220.081*
C60.1556 (4)0.4029 (5)0.6762 (3)0.0549 (13)
H60.22400.40630.67780.066*
C70.1560 (3)0.6312 (4)0.7217 (3)0.0415 (12)
H70.22410.62290.72380.050*
C80.1907 (3)0.8546 (4)0.7423 (5)0.0457 (9)
H8A0.16120.93290.71740.055*
H8B0.24950.83490.70780.055*
C90.2174 (3)0.8774 (4)0.8385 (3)0.0417 (10)
H9A0.25060.80070.86190.050*
H9B0.15780.89010.87350.050*
C100.2269 (4)1.1197 (4)0.8443 (4)0.0549 (12)
H10A0.17501.11990.88930.066*
H10B0.19651.12650.78510.066*
C110.2937 (5)1.2366 (5)0.8595 (4)0.0739 (17)
H11A0.34121.24180.81060.089*
H11B0.25471.31590.85860.089*
C120.3470 (5)1.2274 (6)0.9474 (4)0.0751 (17)
H12A0.30021.23200.99680.090*
H12B0.39211.30030.95320.090*
C130.4043 (5)1.0991 (6)0.9531 (5)0.0674 (16)
H13A0.45531.09840.90730.081*
H13B0.43571.09271.01180.081*
C140.3384 (4)0.9850 (5)0.9397 (3)0.0504 (12)
H14A0.29160.98070.98910.060*
H14B0.37720.90550.94050.060*
C150.1804 (5)0.4628 (8)0.5756 (4)0.083 (2)
H15A0.25140.47250.57710.099*
H15B0.15160.54950.57640.099*
C160.1523 (7)0.3969 (10)0.4922 (6)0.126 (4)
H16A0.08190.39110.48890.189*
H16B0.17640.44560.44130.189*
H16C0.18000.31070.49140.189*
H20.333 (3)0.987 (6)0.811 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02854 (19)0.0357 (2)0.0455 (2)0.00197 (15)0.0007 (4)0.0052 (4)
I10.0524 (3)0.0591 (2)0.0628 (3)0.0002 (2)0.0065 (2)0.0281 (2)
I20.0628 (4)0.0766 (3)0.0528 (3)0.0076 (2)0.0024 (2)0.0169 (2)
N10.0261 (13)0.0474 (16)0.0414 (15)0.0071 (11)0.003 (3)0.002 (3)
N20.0350 (19)0.0452 (19)0.0338 (18)0.0077 (16)0.0043 (15)0.0033 (15)
O10.0316 (12)0.0381 (13)0.0460 (13)0.0049 (9)0.007 (2)0.005 (2)
O20.059 (2)0.053 (2)0.058 (2)0.0245 (15)0.0061 (18)0.0095 (16)
C10.040 (2)0.045 (2)0.037 (2)0.0128 (19)0.0005 (16)0.0015 (17)
C20.042 (2)0.034 (2)0.036 (2)0.0008 (18)0.0030 (16)0.0012 (15)
C30.062 (3)0.039 (3)0.046 (3)0.006 (2)0.007 (2)0.004 (2)
C40.096 (5)0.038 (3)0.064 (4)0.002 (3)0.009 (3)0.006 (2)
C50.092 (5)0.045 (3)0.067 (4)0.028 (3)0.006 (3)0.009 (3)
C60.058 (3)0.060 (3)0.047 (3)0.025 (2)0.002 (2)0.000 (2)
C70.0279 (18)0.061 (2)0.036 (3)0.0033 (16)0.0049 (18)0.004 (2)
C80.0343 (18)0.055 (2)0.048 (2)0.0151 (16)0.001 (3)0.001 (4)
C90.037 (2)0.044 (2)0.045 (2)0.0062 (19)0.0032 (19)0.0025 (18)
C100.067 (3)0.049 (3)0.049 (3)0.008 (2)0.011 (3)0.002 (2)
C110.118 (5)0.046 (3)0.058 (3)0.005 (3)0.015 (3)0.002 (2)
C120.110 (5)0.059 (3)0.056 (3)0.020 (3)0.014 (3)0.007 (3)
C130.058 (4)0.084 (4)0.060 (4)0.019 (3)0.014 (3)0.012 (3)
C140.047 (3)0.059 (3)0.046 (3)0.002 (2)0.017 (2)0.000 (2)
C150.050 (4)0.122 (6)0.076 (4)0.021 (4)0.002 (3)0.030 (4)
C160.073 (5)0.214 (12)0.091 (5)0.007 (6)0.018 (5)0.051 (6)
Geometric parameters (Å, º) top
Zn1—O11.950 (2)C8—H8A0.9700
Zn1—N12.021 (3)C8—H8B0.9700
Zn1—I12.5448 (9)C9—H9A0.9700
Zn1—I22.5651 (9)C9—H9B0.9700
N1—C71.277 (5)C10—C111.520 (7)
N1—C81.471 (4)C10—H10A0.9700
N2—C101.498 (6)C10—H10B0.9700
N2—C91.500 (5)C11—C121.491 (8)
N2—C141.524 (5)C11—H11A0.9700
N2—H20.90 (4)C11—H11B0.9700
O1—C21.304 (5)C12—C131.529 (8)
O2—C31.394 (6)C12—H12A0.9700
O2—C151.470 (8)C12—H12B0.9700
C1—C61.421 (6)C13—C141.485 (7)
C1—C21.421 (6)C13—H13A0.9700
C1—C71.444 (6)C13—H13B0.9700
C2—C31.412 (6)C14—H14A0.9700
C3—C41.381 (7)C14—H14B0.9700
C4—C51.376 (9)C15—C161.457 (9)
C4—H40.9300C15—H15A0.9700
C5—C61.345 (7)C15—H15B0.9700
C5—H50.9300C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
C8—C91.486 (8)
O1—Zn1—N194.50 (10)N2—C9—H9A109.1
O1—Zn1—I1113.89 (16)C8—C9—H9B109.1
N1—Zn1—I1111.78 (16)N2—C9—H9B109.1
O1—Zn1—I2110.37 (17)H9A—C9—H9B107.8
N1—Zn1—I2109.73 (17)N2—C10—C11111.3 (4)
I1—Zn1—I2114.776 (17)N2—C10—H10A109.4
C7—N1—C8117.8 (3)C11—C10—H10A109.4
C7—N1—Zn1122.5 (3)N2—C10—H10B109.4
C8—N1—Zn1119.5 (2)C11—C10—H10B109.4
C10—N2—C9112.0 (3)H10A—C10—H10B108.0
C10—N2—C14110.8 (4)C12—C11—C10111.7 (5)
C9—N2—C14110.3 (3)C12—C11—H11A109.3
C10—N2—H2115 (4)C10—C11—H11A109.3
C9—N2—H2108 (4)C12—C11—H11B109.3
C14—N2—H2101 (4)C10—C11—H11B109.3
C2—O1—Zn1122.1 (2)H11A—C11—H11B107.9
C3—O2—C15111.5 (4)C11—C12—C13110.5 (5)
C6—C1—C2119.3 (4)C11—C12—H12A109.6
C6—C1—C7116.2 (4)C13—C12—H12A109.6
C2—C1—C7124.1 (4)C11—C12—H12B109.6
O1—C2—C3118.4 (4)C13—C12—H12B109.6
O1—C2—C1125.1 (4)H12A—C12—H12B108.1
C3—C2—C1116.5 (4)C14—C13—C12111.2 (5)
C4—C3—O2120.7 (4)C14—C13—H13A109.4
C4—C3—C2121.9 (5)C12—C13—H13A109.4
O2—C3—C2117.4 (4)C14—C13—H13B109.4
C5—C4—C3120.0 (5)C12—C13—H13B109.4
C5—C4—H4120.0H13A—C13—H13B108.0
C3—C4—H4120.0C13—C14—N2111.5 (4)
C6—C5—C4120.6 (5)C13—C14—H14A109.3
C6—C5—H5119.7N2—C14—H14A109.3
C4—C5—H5119.7C13—C14—H14B109.3
C5—C6—C1121.3 (5)N2—C14—H14B109.3
C5—C6—H6119.4H14A—C14—H14B108.0
C1—C6—H6119.4C16—C15—O2112.3 (7)
N1—C7—C1126.5 (4)C16—C15—H15A109.1
N1—C7—H7116.8O2—C15—H15A109.1
C1—C7—H7116.8C16—C15—H15B109.1
N1—C8—C9110.4 (5)O2—C15—H15B109.1
N1—C8—H8A109.6H15A—C15—H15B107.9
C9—C8—H8A109.6C15—C16—H16A109.5
N1—C8—H8B109.6C15—C16—H16B109.5
C9—C8—H8B109.6H16A—C16—H16B109.5
H8A—C8—H8B108.1C15—C16—H16C109.5
C8—C9—N2112.5 (3)H16A—C16—H16C109.5
C8—C9—H9A109.1H16B—C16—H16C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (4)2.61 (5)3.237 (5)127 (4)
N2—H2···O1i0.90 (4)2.01 (5)2.867 (5)159 (5)
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[ZnI2(C16H24N2O2)]
Mr595.54
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)13.5934 (10), 10.2381 (8), 14.7871 (11)
V3)2057.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.20
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.518, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
11751, 4438, 3763
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.02
No. of reflections4438
No. of parameters212
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.88
Absolute structureFlack (1983), 2111 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O11.950 (2)Zn1—I12.5448 (9)
Zn1—N12.021 (3)Zn1—I22.5651 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (4)2.61 (5)3.237 (5)127 (4)
N2—H2···O1i0.90 (4)2.01 (5)2.867 (5)159 (5)
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

The author thanks Baicheng Normal College for support of this work.

References

First citationAverseng, F., Lacroix, P. G., Malfant, I., Périssé, N. & Lepetit, C. (2001). Inorg. Chem. 40, 3797-3804.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C., Huang, D., Zhang, X., Chen, F., Zhu, H., Liu, Q., Zhang, C., Liao, D., Li, L. & Sun, L. (2003). Inorg. Chem. 42, 3540–3548.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPatra, A. K., Olmstead, M. M. & Mascharak, P. K. (2002). Inorg. Chem. 41, 5403–5409.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRuck, R. T. & Jacobsen, E. N. (2002). J. Am. Chem. Soc. 124, 2882–2883.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-W., Yang, X.-Z., Zhang, C.-X., Li, G.-S. & Yin, Z.-G. (2009). Acta Cryst. E65, m1332–m1333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-W., Yin, Z.-G., Li, G.-S., Yang, X.-Z. & Zhang, C.-X. (2009). Acta Cryst. E65, m1226–m1227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-W., Yin, Z.-G., Yang, X.-Z., Li, G.-S. & Zhang, C.-X. (2009). Acta Cryst. E65, m1293–m1294.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds