organic compounds
2-C-Phenylerythrono-1,4-lactone
aDiscipline of Chemistry, University of Adelaide, 5005 South Australia, Australia, bDiscipline of Wine and Horticulture, University of Adelaide, Waite Campus, Glen, Osmond 5064, South Australia, Australia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com
The title compound (systematic name: 3,4-dihydroxy-3-phenylfuran-2-one), C10H10O4, features a five-membered γ-lactone ring with an at the C atom carrying the hydroxy group without the phenyl substituent. In the crystal, supramolecular chains mediated by O—H⋯O hydrogen bonding are formed along the a-axis direction. These are consolidated in the by C—H⋯O contacts.
Related literature
For background on the leaf-closing substance of the tropical legume Leucaena leucocephalam, see: Ueda et al. (2001); Gogoi & Argade (2004); Koumbis et al. (2006). For the synthesis of polyhydroxyated compounds from 1,2-dioxines, see: Robinson et al. (2006, 2009); Valente et al. (2009); Pedersen et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809048478/sj2685sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809048478/sj2685Isup2.hkl
For full synthetic procedures and characterization data see Pedersen et al. (2009). To a solution of 2,3-O-isopropylidene-2-C-phenyl-erythrono-1,4-lactone (159 mg, 0.68 mmol) in MeOH (10 ml) was added activated 50 W Dowex X8 resin (~ 1 g), and the mixture was stirred at 343 K until complete by TLC (~2–3 days). The reaction was allowed to cool and then filtered to remove the Dowex. The methanol was removed under reduced pressure and the residue was purified by flash
to furnish (I) (115 mg, 87%) as a colourless solid. The pure material was recrystallized from a small amount of dichloromethane which was allowed to slowly evaporate at ambient temperature producing colourless prisms, m.pt. 381–382 KCarbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the
in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The O–bound H-atoms were located in a difference Fourier map and refined with O–H restraints of 0.840±0.001 Å, and with Uiso(H) = 1.5Ueq(O).Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).C10H10O4 | F(000) = 408 |
Mr = 194.18 | Dx = 1.452 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 3641 reflections |
a = 6.485 (2) Å | θ = 2.2–27.5° |
b = 7.324 (3) Å | µ = 0.11 mm−1 |
c = 18.962 (7) Å | T = 173 K |
β = 99.378 (7)° | Block, colourless |
V = 888.6 (5) Å3 | 0.50 × 0.20 × 0.20 mm |
Z = 4 |
Rigaku AFC12κ/SATURN724 diffractometer | 1834 independent reflections |
Radiation source: fine-focus sealed tube | 1818 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 26.5°, θmin = 2.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −8→7 |
Tmin = 0.778, Tmax = 1.000 | k = −9→9 |
21683 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.21 | w = 1/[σ2(Fo2) + (0.0689P)2 + 0.2568P] where P = (Fo2 + 2Fc2)/3 |
1834 reflections | (Δ/σ)max < 0.001 |
133 parameters | Δρmax = 0.28 e Å−3 |
2 restraints | Δρmin = −0.27 e Å−3 |
C10H10O4 | V = 888.6 (5) Å3 |
Mr = 194.18 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.485 (2) Å | µ = 0.11 mm−1 |
b = 7.324 (3) Å | T = 173 K |
c = 18.962 (7) Å | 0.50 × 0.20 × 0.20 mm |
β = 99.378 (7)° |
Rigaku AFC12κ/SATURN724 diffractometer | 1834 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1818 reflections with I > 2σ(I) |
Tmin = 0.778, Tmax = 1.000 | Rint = 0.028 |
21683 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 2 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.21 | Δρmax = 0.28 e Å−3 |
1834 reflections | Δρmin = −0.27 e Å−3 |
133 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.00052 (16) | 0.88359 (15) | 0.43151 (5) | 0.0315 (3) | |
O2 | −0.14194 (16) | 0.60605 (17) | 0.42959 (6) | 0.0353 (3) | |
O3 | 0.27440 (16) | 0.46977 (14) | 0.44174 (5) | 0.0274 (3) | |
H3O | 0.2312 | 0.4653 | 0.4811 | 0.041* | |
O4 | 0.39267 (17) | 0.77862 (15) | 0.52318 (5) | 0.0299 (3) | |
H4O | 0.4778 | 0.6920 | 0.5321 | 0.045* | |
C2 | 0.0052 (2) | 0.7033 (2) | 0.42422 (7) | 0.0260 (3) | |
C3 | 0.2212 (2) | 0.64295 (18) | 0.41109 (7) | 0.0224 (3) | |
C4 | 0.3562 (2) | 0.80116 (19) | 0.44799 (7) | 0.0242 (3) | |
H4 | 0.4886 | 0.8182 | 0.4282 | 0.029* | |
C5 | 0.2076 (2) | 0.9607 (2) | 0.43117 (8) | 0.0292 (3) | |
H5A | 0.2386 | 1.0574 | 0.4678 | 0.035* | |
H5B | 0.2183 | 1.0132 | 0.3838 | 0.035* | |
C31 | 0.2337 (2) | 0.63650 (18) | 0.33154 (7) | 0.0229 (3) | |
C32 | 0.4037 (2) | 0.5486 (2) | 0.31027 (8) | 0.0287 (3) | |
H32 | 0.5047 | 0.4900 | 0.3448 | 0.034* | |
C33 | 0.4263 (3) | 0.5462 (2) | 0.23878 (8) | 0.0336 (4) | |
H33 | 0.5412 | 0.4839 | 0.2245 | 0.040* | |
C34 | 0.2823 (3) | 0.6341 (2) | 0.18799 (8) | 0.0323 (4) | |
H34 | 0.2993 | 0.6336 | 0.1392 | 0.039* | |
C35 | 0.1141 (3) | 0.7223 (2) | 0.20881 (8) | 0.0313 (4) | |
H35 | 0.0155 | 0.7833 | 0.1742 | 0.038* | |
C36 | 0.0879 (2) | 0.72227 (19) | 0.28042 (8) | 0.0272 (3) | |
H36 | −0.0299 | 0.7811 | 0.2942 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0283 (6) | 0.0361 (6) | 0.0304 (6) | 0.0074 (4) | 0.0055 (4) | −0.0040 (4) |
O2 | 0.0265 (6) | 0.0529 (7) | 0.0274 (5) | −0.0055 (5) | 0.0068 (4) | 0.0059 (5) |
O3 | 0.0346 (6) | 0.0268 (5) | 0.0221 (5) | 0.0030 (4) | 0.0078 (4) | 0.0050 (4) |
O4 | 0.0351 (6) | 0.0355 (6) | 0.0185 (5) | 0.0059 (4) | 0.0027 (4) | −0.0025 (4) |
C2 | 0.0261 (7) | 0.0363 (8) | 0.0158 (6) | 0.0018 (5) | 0.0039 (5) | 0.0016 (5) |
C3 | 0.0239 (7) | 0.0248 (7) | 0.0189 (6) | 0.0020 (5) | 0.0043 (5) | 0.0020 (5) |
C4 | 0.0263 (7) | 0.0280 (7) | 0.0187 (6) | −0.0006 (5) | 0.0048 (5) | −0.0012 (5) |
C5 | 0.0326 (8) | 0.0270 (7) | 0.0277 (7) | 0.0011 (6) | 0.0040 (6) | −0.0018 (5) |
C31 | 0.0267 (7) | 0.0230 (6) | 0.0192 (6) | −0.0029 (5) | 0.0048 (5) | −0.0007 (5) |
C32 | 0.0299 (7) | 0.0326 (7) | 0.0242 (7) | 0.0030 (6) | 0.0060 (5) | 0.0000 (5) |
C33 | 0.0372 (8) | 0.0382 (8) | 0.0281 (7) | 0.0002 (6) | 0.0131 (6) | −0.0041 (6) |
C34 | 0.0471 (9) | 0.0314 (7) | 0.0199 (6) | −0.0079 (6) | 0.0100 (6) | −0.0030 (5) |
C35 | 0.0417 (9) | 0.0281 (7) | 0.0218 (7) | −0.0011 (6) | −0.0015 (6) | 0.0024 (5) |
C36 | 0.0302 (7) | 0.0273 (7) | 0.0236 (7) | 0.0019 (5) | 0.0027 (5) | −0.0007 (5) |
O1—C2 | 1.3286 (19) | C5—H5B | 0.9900 |
O1—C5 | 1.4639 (19) | C31—C36 | 1.389 (2) |
O2—C2 | 1.2085 (18) | C31—C32 | 1.392 (2) |
O3—C3 | 1.4142 (16) | C32—C33 | 1.387 (2) |
O3—H3O | 0.8400 | C32—H32 | 0.9500 |
O4—C4 | 1.4164 (16) | C33—C34 | 1.386 (2) |
O4—H4O | 0.8401 | C33—H33 | 0.9500 |
C2—C3 | 1.5275 (19) | C34—C35 | 1.379 (2) |
C3—C31 | 1.5243 (18) | C34—H34 | 0.9500 |
C3—C4 | 1.5486 (19) | C35—C36 | 1.396 (2) |
C4—C5 | 1.515 (2) | C35—H35 | 0.9500 |
C4—H4 | 1.0000 | C36—H36 | 0.9500 |
C5—H5A | 0.9900 | ||
C2—O1—C5 | 109.94 (11) | O1—C5—H5B | 110.8 |
C3—O3—H3O | 107.8 | C4—C5—H5B | 110.8 |
C4—O4—H4O | 106.6 | H5A—C5—H5B | 108.8 |
O2—C2—O1 | 122.75 (13) | C36—C31—C32 | 119.22 (13) |
O2—C2—C3 | 126.94 (14) | C36—C31—C3 | 122.46 (12) |
O1—C2—C3 | 110.28 (12) | C32—C31—C3 | 118.24 (12) |
O3—C3—C31 | 109.28 (10) | C33—C32—C31 | 120.24 (14) |
O3—C3—C2 | 111.18 (11) | C33—C32—H32 | 119.9 |
C31—C3—C2 | 111.60 (10) | C31—C32—H32 | 119.9 |
O3—C3—C4 | 113.78 (11) | C34—C33—C32 | 120.46 (14) |
C31—C3—C4 | 110.68 (10) | C34—C33—H33 | 119.8 |
C2—C3—C4 | 100.11 (11) | C32—C33—H33 | 119.8 |
O4—C4—C5 | 107.35 (11) | C35—C34—C33 | 119.55 (13) |
O4—C4—C3 | 110.92 (11) | C35—C34—H34 | 120.2 |
C5—C4—C3 | 100.87 (11) | C33—C34—H34 | 120.2 |
O4—C4—H4 | 112.3 | C34—C35—C36 | 120.39 (14) |
C5—C4—H4 | 112.3 | C34—C35—H35 | 119.8 |
C3—C4—H4 | 112.3 | C36—C35—H35 | 119.8 |
O1—C5—C4 | 104.89 (11) | C31—C36—C35 | 120.14 (14) |
O1—C5—H5A | 110.8 | C31—C36—H36 | 119.9 |
C4—C5—H5A | 110.8 | C35—C36—H36 | 119.9 |
C5—O1—C2—O2 | 172.88 (12) | C3—C4—C5—O1 | 33.83 (13) |
C5—O1—C2—C3 | −5.30 (14) | O3—C3—C31—C36 | 139.75 (13) |
O2—C2—C3—O3 | −31.23 (18) | C2—C3—C31—C36 | 16.37 (18) |
O1—C2—C3—O3 | 146.85 (11) | C4—C3—C31—C36 | −94.19 (15) |
O2—C2—C3—C31 | 91.06 (16) | O3—C3—C31—C32 | −43.46 (16) |
O1—C2—C3—C31 | −90.86 (13) | C2—C3—C31—C32 | −166.83 (12) |
O2—C2—C3—C4 | −151.79 (13) | C4—C3—C31—C32 | 82.61 (15) |
O1—C2—C3—C4 | 26.29 (13) | C36—C31—C32—C33 | −0.3 (2) |
O3—C3—C4—O4 | −40.31 (15) | C3—C31—C32—C33 | −177.20 (13) |
C31—C3—C4—O4 | −163.81 (11) | C31—C32—C33—C34 | 1.2 (2) |
C2—C3—C4—O4 | 78.35 (12) | C32—C33—C34—C35 | −0.9 (2) |
O3—C3—C4—C5 | −153.79 (11) | C33—C34—C35—C36 | −0.4 (2) |
C31—C3—C4—C5 | 82.71 (13) | C32—C31—C36—C35 | −1.0 (2) |
C2—C3—C4—C5 | −35.13 (12) | C3—C31—C36—C35 | 175.79 (12) |
C2—O1—C5—C4 | −18.85 (14) | C34—C35—C36—C31 | 1.3 (2) |
O4—C4—C5—O1 | −82.33 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3o···O2i | 0.84 | 1.95 | 2.7717 (19) | 167 |
O4—H4o···O3ii | 0.84 | 1.99 | 2.8188 (19) | 168 |
C34—H34···O4iii | 0.95 | 2.46 | 3.379 (2) | 164 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H10O4 |
Mr | 194.18 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 6.485 (2), 7.324 (3), 18.962 (7) |
β (°) | 99.378 (7) |
V (Å3) | 888.6 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.50 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku AFC12κ/SATURN724 diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.778, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21683, 1834, 1818 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.128, 1.21 |
No. of reflections | 1834 |
No. of parameters | 133 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.27 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3o···O2i | 0.84 | 1.95 | 2.7717 (19) | 167 |
O4—H4o···O3ii | 0.84 | 1.99 | 2.8188 (19) | 168 |
C34—H34···O4iii | 0.95 | 2.46 | 3.379 (2) | 164 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z−1/2. |
Footnotes
‡Additional correspondence author, e-mail: dennis.taylor@adelaide.edu.au.
Acknowledgements
We are grateful to the Australian Research Council for financial support. TVR thanks the Commonwealth Government of Australia for a postgraduate scholarship.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Gogoi, S. & Argade, N. P. (2004). Tetrahedron, 60, 9093–9097. Web of Science CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Koumbis, A. E., Kaitaidis, A. D. & Kotoulas, S. S. (2006). Tetrahedron Lett. 47, 8479–8481. Web of Science CrossRef CAS Google Scholar
Pedersen, D. S., Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 4400–4403. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Robinson, T. V., Pedersen, D. S., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 5093–5096. Web of Science CSD CrossRef PubMed CAS Google Scholar
Robinson, T. V., Taylor, D. K. & Tiekink, E. R. T. (2006). J. Org. Chem. 71, 7236–7244. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ueda, M., Sohtome, Y., Ueda, K. & Yamamura, S. (2001). Tetrahedron Lett. 42, 3109–3111. Web of Science CrossRef CAS Google Scholar
Valente, P., Avery, T. D., Taylor, D. K. & Tiekink, E. R. T. (2009). J. Org. Chem. 74, 274–282. Web of Science CSD CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Our recent investigations into the dihydroxyation of the alkene component of 1,2-dioxines has allowed access to a diverse range of polyhydroxyated compounds (Robinson et al., 2006, 2009; Valente et al., 2009). Application of this methodology to the synthesis of erythrono-γ-lactones, such as the title compound, (I), provided a concise route to potassium (2R,3R)-2,3,4-trihydroxy-2-methylbutanoate (Pedersen et al., 2009), recently identified as a leaf-closing substance of the tropical legume Leucaena leucocephalam (Ueda et al., 2001; Gogoi & Argade, 2004; Koumbis et al., 2006).
The molecular structure of (I), Fig. 1, shows the five-membered γ-lactone ring to adopt an envelope conformation on the C4 atom, with this atom being orientated in the opposite direction to the phenyl ring. Both hydroxy substituents are orientated to the same side of the γ-lactone ring but the hydroxy-H atoms face opposite directions. This arrangement allows each molecule to bridge two neighbouring molecules via O—Hhydroxy···Ohydroxy hydrogen bonds resulting in the formation of ten-membered {···HOC2O}2 synthons and the construction of supramolecular chains aligned along the a direction, Fig. 2 and Table 1. The chains are consolidated in the 3-D crystal structure via C—H···O contacts, Fig. 3 and Table 1.