metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-O-Ethyl-N-(o-tol­yl)thio­carbamato-κS](tri­phenyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 November 2009; accepted 15 November 2009; online 21 November 2009)

The title compound, [Au(C10H12NOS)(C18H15P)], features a linear geometry for the Au atom defined by the S and P donor atoms. A small deviation from the ideal geometry is noted and is ascribed to an intra­molecular Au⋯O contact [2.936 (4) Å]. Inversion dimers are formed in the crystal structure mediated by C—H⋯π inter­actions between centrosymmetrically related o-tolyl residues [C⋯Cg = 3.532 (6) Å].

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C10H12NOS)(C18H15P)]

  • Mr = 653.50

  • Triclinic, [P \overline 1]

  • a = 9.3378 (6) Å

  • b = 10.1665 (6) Å

  • c = 13.9711 (8) Å

  • α = 95.514 (1)°

  • β = 103.371 (1)°

  • γ = 98.334 (1)°

  • V = 1265.11 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.98 mm−1

  • T = 223 K

  • 0.24 × 0.13 × 0.03 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]) Tmin = 0.311, Tmax = 1

  • 8823 measured reflections

  • 5772 independent reflections

  • 5279 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.104

  • S = 1.07

  • 5772 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 1.62 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au—S1 2.3105 (11)
Au—P1 2.2509 (11)
P1—Au—S1 177.00 (4)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The title compound, Ph3Au[SC(OEt)N(o-tolyl), (I), was synthesized during the course of systematic studies of phosphinegold(I) thiocarbamides (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008)..

The gold atom in (I) exists in a linear geometry defined by an S,P donor set, Table 1 and Fig. 1. The small deviation from linearity is due to the close approach of the O1 atom to Au [Au···O = 2.936 (4) Å]. The anion, having C1—S1 = 1.768 (5) Å and C1N1 = 1.254 (6) Å, coordinates as a thiolate ligand. The configuration about the C1N1 double bond is Z.

In the crystal structure of (I), supramolecular dimers are formed between centrosymmetric pairs of o-tolyl residues owing to the presence of C—H···π interactions whereby the π system is defined by the (C2–C7) ring; C8–H8c···Cgi = 2.67 Å, C8···Cgi = 3.532 (6) Å with an angle at H8c = 148 ° for i: -1 - x, 1 - y, -z.

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see Hall et al. (1993).

Experimental top

Compound (I) was prepared following the standard literature procedure from the reaction of Ph3AuCl and EtOC(S)N(H)(o-tolyl) in the presence of base (Hall et al., 1993).

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.62 and 1.26 e Å-3, respectively, were located 0.81 Å and 0.92 Å from the Au atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009\bbr09).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The supramolecular dimer in (I) mediated by C—H···π contacts (purple dashed lines). Colour code: Au, orange; S, yellow; P, pink; O, red; N, blue; C, grey; and H, green.
[(Z)-O-Ethyl-N-(o-tolyl)thiocarbamato- κS](triphenylphosphine-κP)gold(I) top
Crystal data top
[Au(C10H12NOS)(C18H15P)]Z = 2
Mr = 653.50F(000) = 640
Triclinic, P1Dx = 1.716 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.3378 (6) ÅCell parameters from 5740 reflections
b = 10.1665 (6) Åθ = 2.3–29.9°
c = 13.9711 (8) ŵ = 5.98 mm1
α = 95.514 (1)°T = 223 K
β = 103.371 (1)°Block, colourless
γ = 98.334 (1)°0.24 × 0.13 × 0.03 mm
V = 1265.11 (13) Å3
Data collection top
Bruker SMART CCD
diffractometer
5772 independent reflections
Radiation source: fine-focus sealed tube5279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1211
Tmin = 0.311, Tmax = 1k = 1013
8823 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0692P)2]
where P = (Fo2 + 2Fc2)/3
5772 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 1.62 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
[Au(C10H12NOS)(C18H15P)]γ = 98.334 (1)°
Mr = 653.50V = 1265.11 (13) Å3
Triclinic, P1Z = 2
a = 9.3378 (6) ÅMo Kα radiation
b = 10.1665 (6) ŵ = 5.98 mm1
c = 13.9711 (8) ÅT = 223 K
α = 95.514 (1)°0.24 × 0.13 × 0.03 mm
β = 103.371 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5772 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5279 reflections with I > 2σ(I)
Tmin = 0.311, Tmax = 1Rint = 0.023
8823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.07Δρmax = 1.62 e Å3
5772 reflectionsΔρmin = 1.26 e Å3
299 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.147930 (18)0.358507 (16)0.308910 (12)0.03424 (8)
S10.00461 (14)0.49405 (12)0.22765 (9)0.0352 (2)
P10.28887 (13)0.21714 (12)0.38273 (9)0.0305 (2)
O10.1318 (4)0.2462 (3)0.1600 (3)0.0419 (8)
N10.2434 (5)0.3967 (4)0.0724 (3)0.0392 (9)
C10.1424 (5)0.3740 (5)0.1420 (3)0.0340 (9)
C20.2509 (5)0.5300 (5)0.0506 (4)0.0368 (10)
C30.3452 (5)0.6059 (5)0.0885 (3)0.0375 (10)
C40.3575 (6)0.7297 (5)0.0590 (4)0.0435 (11)
H40.41980.78130.08400.052*
C50.2799 (6)0.7804 (6)0.0070 (4)0.0483 (13)
H50.28930.86580.02560.058*
C60.1902 (6)0.7060 (6)0.0448 (4)0.0447 (12)
H60.13900.73950.09030.054*
C70.1747 (5)0.5813 (6)0.0160 (4)0.0412 (11)
H70.11200.53070.04170.049*
C80.4332 (6)0.5472 (6)0.1575 (4)0.0461 (12)
H8A0.49310.61070.17650.069*
H8B0.36480.52890.21640.069*
H8C0.49810.46450.12380.069*
C90.2431 (6)0.1389 (5)0.0974 (4)0.0476 (12)
H9A0.19960.05720.09230.057*
H9B0.27350.16370.03050.057*
C100.3760 (7)0.1122 (7)0.1382 (5)0.0568 (15)
H10A0.44840.04000.09520.085*
H10B0.42030.19250.14200.085*
H10C0.34620.08660.20400.085*
C110.4873 (5)0.2811 (5)0.4272 (4)0.0336 (9)
C120.5675 (6)0.2763 (5)0.5233 (4)0.0425 (11)
H120.51660.24420.56940.051*
C130.7199 (6)0.3175 (6)0.5527 (4)0.0490 (13)
H130.77240.31390.61820.059*
C140.7945 (6)0.3639 (6)0.4854 (5)0.0523 (14)
H140.89890.39020.50470.063*
C150.7178 (6)0.3723 (6)0.3895 (5)0.0509 (13)
H150.76970.40560.34430.061*
C160.5622 (6)0.3310 (5)0.3600 (4)0.0449 (11)
H160.50920.33720.29510.054*
C170.2775 (5)0.0655 (4)0.2989 (3)0.0317 (9)
C180.3943 (6)0.0073 (5)0.3093 (4)0.0413 (11)
H180.48320.02410.35870.050*
C190.3800 (7)0.1259 (6)0.2472 (4)0.0479 (13)
H190.45990.17360.25340.058*
C200.2469 (8)0.1739 (6)0.1757 (5)0.0550 (14)
H200.23550.25590.13510.066*
C210.1319 (7)0.1011 (7)0.1645 (5)0.0578 (15)
H210.04270.13310.11550.069*
C220.1467 (6)0.0183 (6)0.2245 (4)0.0436 (11)
H220.06850.06820.21530.052*
C230.2305 (5)0.1605 (5)0.4895 (3)0.0328 (9)
C240.2240 (6)0.0302 (5)0.5088 (4)0.0389 (10)
H240.24650.03480.46470.047*
C250.1840 (6)0.0054 (6)0.5941 (4)0.0478 (12)
H250.17770.09490.60680.057*
C260.1532 (6)0.0910 (6)0.6604 (4)0.0467 (12)
H260.12880.06700.71880.056*
C270.1583 (7)0.2195 (6)0.6411 (4)0.0502 (13)
H270.13700.28430.68600.060*
C280.1950 (6)0.2562 (5)0.5551 (4)0.0425 (11)
H280.19590.34490.54120.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03477 (12)0.03251 (12)0.03386 (12)0.01184 (8)0.00062 (8)0.00697 (7)
S10.0354 (6)0.0300 (5)0.0369 (6)0.0114 (4)0.0012 (5)0.0052 (4)
P10.0305 (5)0.0294 (6)0.0300 (6)0.0095 (4)0.0012 (4)0.0054 (4)
O10.0446 (19)0.0308 (17)0.0437 (19)0.0065 (14)0.0023 (15)0.0060 (14)
N10.038 (2)0.037 (2)0.041 (2)0.0108 (17)0.0020 (17)0.0072 (17)
C10.035 (2)0.030 (2)0.036 (2)0.0089 (18)0.0053 (19)0.0039 (18)
C20.028 (2)0.040 (3)0.036 (2)0.0070 (19)0.0033 (18)0.0013 (19)
C30.039 (2)0.041 (3)0.030 (2)0.011 (2)0.0010 (19)0.0030 (19)
C40.044 (3)0.044 (3)0.040 (3)0.012 (2)0.005 (2)0.001 (2)
C50.052 (3)0.038 (3)0.047 (3)0.003 (2)0.000 (2)0.008 (2)
C60.044 (3)0.045 (3)0.043 (3)0.004 (2)0.004 (2)0.012 (2)
C70.034 (2)0.047 (3)0.043 (3)0.016 (2)0.004 (2)0.007 (2)
C80.048 (3)0.053 (3)0.039 (3)0.015 (2)0.011 (2)0.005 (2)
C90.053 (3)0.031 (2)0.050 (3)0.007 (2)0.002 (2)0.001 (2)
C100.047 (3)0.053 (3)0.065 (4)0.005 (3)0.002 (3)0.013 (3)
C110.030 (2)0.029 (2)0.038 (2)0.0040 (17)0.0017 (18)0.0047 (18)
C120.042 (3)0.038 (3)0.041 (3)0.000 (2)0.002 (2)0.005 (2)
C130.039 (3)0.042 (3)0.052 (3)0.005 (2)0.013 (2)0.001 (2)
C140.034 (3)0.038 (3)0.077 (4)0.000 (2)0.002 (3)0.004 (3)
C150.046 (3)0.040 (3)0.068 (4)0.002 (2)0.023 (3)0.007 (3)
C160.047 (3)0.041 (3)0.047 (3)0.010 (2)0.010 (2)0.010 (2)
C170.033 (2)0.028 (2)0.034 (2)0.0051 (17)0.0085 (18)0.0054 (17)
C180.046 (3)0.041 (3)0.036 (2)0.009 (2)0.008 (2)0.003 (2)
C190.063 (4)0.039 (3)0.049 (3)0.016 (3)0.023 (3)0.007 (2)
C200.075 (4)0.039 (3)0.051 (3)0.005 (3)0.023 (3)0.006 (2)
C210.057 (3)0.058 (4)0.047 (3)0.002 (3)0.002 (3)0.007 (3)
C220.036 (2)0.049 (3)0.037 (3)0.001 (2)0.000 (2)0.001 (2)
C230.032 (2)0.036 (2)0.031 (2)0.0124 (18)0.0045 (17)0.0039 (18)
C240.044 (3)0.037 (2)0.039 (3)0.014 (2)0.009 (2)0.010 (2)
C250.056 (3)0.045 (3)0.046 (3)0.010 (2)0.015 (2)0.013 (2)
C260.044 (3)0.058 (3)0.041 (3)0.010 (2)0.014 (2)0.010 (2)
C270.050 (3)0.059 (4)0.042 (3)0.014 (3)0.016 (2)0.007 (3)
C280.047 (3)0.037 (3)0.045 (3)0.015 (2)0.011 (2)0.001 (2)
Geometric parameters (Å, º) top
Au—S12.3105 (11)C12—C131.375 (7)
Au—P12.2509 (11)C12—H120.9400
S1—C11.768 (5)C13—C141.373 (9)
P1—C111.812 (5)C13—H130.9400
P1—C231.817 (5)C14—C151.382 (9)
P1—C171.819 (5)C14—H140.9400
O1—C11.360 (6)C15—C161.403 (8)
O1—C91.450 (6)C15—H150.9400
N1—C11.254 (6)C16—H160.9400
N1—C21.425 (6)C17—C181.392 (7)
C2—C71.391 (7)C17—C221.396 (6)
C2—C31.410 (7)C18—C191.386 (8)
C3—C41.374 (7)C18—H180.9400
C3—C81.514 (7)C19—C201.392 (9)
C4—C51.390 (8)C19—H190.9400
C4—H40.9400C20—C211.379 (9)
C5—C61.366 (8)C20—H200.9400
C5—H50.9400C21—C221.377 (8)
C6—C71.384 (7)C21—H210.9400
C6—H60.9400C22—H220.9400
C7—H70.9400C23—C241.372 (7)
C8—H8A0.9700C23—C281.401 (7)
C8—H8B0.9700C24—C251.393 (7)
C8—H8C0.9700C24—H240.9400
C9—C101.482 (9)C25—C261.390 (8)
C9—H9A0.9800C25—H250.9400
C9—H9B0.9800C26—C271.356 (9)
C10—H10A0.9700C26—H260.9400
C10—H10B0.9700C27—C281.392 (8)
C10—H10C0.9700C27—H270.9400
C11—C161.387 (7)C28—H280.9400
C11—C121.387 (7)
P1—Au—S1177.00 (4)C13—C12—C11121.4 (5)
C1—S1—Au101.39 (16)C13—C12—H12119.3
C11—P1—C23105.3 (2)C11—C12—H12119.3
C11—P1—C17104.4 (2)C14—C13—C12119.4 (5)
C23—P1—C17105.6 (2)C14—C13—H13120.3
C11—P1—Au116.15 (15)C12—C13—H13120.3
C23—P1—Au112.80 (15)C13—C14—C15120.7 (5)
C17—P1—Au111.68 (15)C13—C14—H14119.6
C1—O1—C9117.5 (4)C15—C14—H14119.6
C1—N1—C2120.8 (4)C14—C15—C16119.7 (5)
N1—C1—O1120.6 (4)C14—C15—H15120.1
N1—C1—S1127.0 (4)C16—C15—H15120.1
O1—C1—S1112.4 (3)C11—C16—C15119.5 (5)
C7—C2—C3119.5 (5)C11—C16—H16120.2
C7—C2—N1119.5 (5)C15—C16—H16120.2
C3—C2—N1120.7 (5)C18—C17—C22119.2 (5)
C4—C3—C2118.4 (5)C18—C17—P1121.5 (4)
C4—C3—C8122.2 (5)C22—C17—P1119.3 (4)
C2—C3—C8119.3 (5)C19—C18—C17120.4 (5)
C3—C4—C5121.6 (5)C19—C18—H18119.8
C3—C4—H4119.2C17—C18—H18119.8
C5—C4—H4119.2C18—C19—C20119.8 (6)
C6—C5—C4119.9 (5)C18—C19—H19120.1
C6—C5—H5120.1C20—C19—H19120.1
C4—C5—H5120.1C21—C20—C19119.9 (5)
C5—C6—C7120.0 (5)C21—C20—H20120.0
C5—C6—H6120.0C19—C20—H20120.0
C7—C6—H6120.0C22—C21—C20120.5 (6)
C6—C7—C2120.6 (5)C22—C21—H21119.7
C6—C7—H7119.7C20—C21—H21119.7
C2—C7—H7119.7C21—C22—C17120.2 (5)
C3—C8—H8A109.5C21—C22—H22119.9
C3—C8—H8B109.5C17—C22—H22119.9
H8A—C8—H8B109.5C24—C23—C28119.6 (5)
C3—C8—H8C109.5C24—C23—P1122.8 (4)
H8A—C8—H8C109.5C28—C23—P1117.6 (4)
H8B—C8—H8C109.5C23—C24—C25119.9 (5)
O1—C9—C10111.1 (5)C23—C24—H24120.1
O1—C9—H9A109.4C25—C24—H24120.1
C10—C9—H9A109.4C26—C25—C24120.2 (5)
O1—C9—H9B109.4C26—C25—H25119.9
C10—C9—H9B109.4C24—C25—H25119.9
H9A—C9—H9B108.0C27—C26—C25120.1 (5)
C9—C10—H10A109.5C27—C26—H26119.9
C9—C10—H10B109.5C25—C26—H26119.9
H10A—C10—H10B109.5C26—C27—C28120.4 (5)
C9—C10—H10C109.5C26—C27—H27119.8
H10A—C10—H10C109.5C28—C27—H27119.8
H10B—C10—H10C109.5C27—C28—C23119.8 (5)
C16—C11—C12119.2 (5)C27—C28—H28120.1
C16—C11—P1117.8 (4)C23—C28—H28120.1
C12—C11—P1123.0 (4)
C2—N1—C1—O1177.2 (4)C12—C11—C16—C151.7 (8)
C2—N1—C1—S14.3 (7)P1—C11—C16—C15175.3 (4)
C9—O1—C1—N11.4 (7)C14—C15—C16—C110.5 (8)
C9—O1—C1—S1177.3 (4)C11—P1—C17—C1826.2 (4)
Au—S1—C1—N1171.6 (4)C23—P1—C17—C1884.6 (4)
Au—S1—C1—O19.8 (4)Au—P1—C17—C18152.4 (4)
C1—N1—C2—C789.5 (6)C11—P1—C17—C22156.2 (4)
C1—N1—C2—C396.3 (6)C23—P1—C17—C2293.0 (4)
C7—C2—C3—C40.7 (7)Au—P1—C17—C2229.9 (4)
N1—C2—C3—C4174.9 (4)C22—C17—C18—C190.7 (7)
C7—C2—C3—C8177.4 (5)P1—C17—C18—C19177.0 (4)
N1—C2—C3—C83.1 (7)C17—C18—C19—C201.5 (8)
C2—C3—C4—C50.2 (8)C18—C19—C20—C212.3 (9)
C8—C3—C4—C5177.8 (5)C19—C20—C21—C220.9 (10)
C3—C4—C5—C60.7 (8)C20—C21—C22—C171.3 (9)
C4—C5—C6—C71.1 (8)C18—C17—C22—C212.1 (8)
C5—C6—C7—C20.6 (8)P1—C17—C22—C21175.6 (4)
C3—C2—C7—C60.3 (7)C11—P1—C23—C2493.8 (4)
N1—C2—C7—C6174.6 (5)C17—P1—C23—C2416.3 (5)
C1—O1—C9—C1088.1 (6)Au—P1—C23—C24138.5 (4)
C23—P1—C11—C16179.7 (4)C11—P1—C23—C2884.5 (4)
C17—P1—C11—C1668.7 (4)C17—P1—C23—C28165.4 (4)
Au—P1—C11—C1654.7 (4)Au—P1—C23—C2843.2 (4)
C23—P1—C11—C122.8 (5)C28—C23—C24—C250.8 (8)
C17—P1—C11—C12108.2 (4)P1—C23—C24—C25177.5 (4)
Au—P1—C11—C12128.4 (4)C23—C24—C25—C261.1 (8)
C16—C11—C12—C131.3 (8)C24—C25—C26—C271.7 (9)
P1—C11—C12—C13175.5 (4)C25—C26—C27—C280.3 (9)
C11—C12—C13—C140.3 (9)C26—C27—C28—C231.6 (9)
C12—C13—C14—C151.4 (9)C24—C23—C28—C272.2 (8)
C13—C14—C15—C161.0 (9)P1—C23—C28—C27176.2 (4)

Experimental details

Crystal data
Chemical formula[Au(C10H12NOS)(C18H15P)]
Mr653.50
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)9.3378 (6), 10.1665 (6), 13.9711 (8)
α, β, γ (°)95.514 (1), 103.371 (1), 98.334 (1)
V3)1265.11 (13)
Z2
Radiation typeMo Kα
µ (mm1)5.98
Crystal size (mm)0.24 × 0.13 × 0.03
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.311, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
8823, 5772, 5279
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.104, 1.07
No. of reflections5772
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.62, 1.26

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009\bbr09).

Selected geometric parameters (Å, º) top
Au—S12.3105 (11)Au—P12.2509 (11)
P1—Au—S1177.00 (4)
 

Acknowledgements

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds