organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-[4-(Di­methyl­amino)benzyl­­idene]-3-methyl­isoxazol-5(4H)-one

aHuaihai Institute of Technology, Lianyungang 222005, People's Republic of China
*Correspondence e-mail: cheng_qingfang@yahoo.com.cn

(Received 22 October 2009; accepted 8 November 2009; online 14 November 2009)

The title compound, C13H14N2O2, an isoxazol-5-one derivative, was synthesized by a one-pot, three-component condensation reaction of methyl acetoacetate, hydroxy­lamine hydro­chloride and 4-(dimethyl­amino)benzaldehyde. All the non-H atoms are co-planar [r.m.s deviation = 0.0039 Å], with a Z configuration about the C=C bond. The dihedral angle between the phenyl ring and the isoxazole ring is 2.58 (19)°.

Related literature

For the biological activity of aryl­methyl­ene isoxazolone deriv­atives, see: Ishioka et al. (2002[Ishioka, T., Kubo, A., Koiso, Y., Nagasawa, K., Itai, A. & Hashimoto, Y. (2002). Bioorg. Med. Chem. 10, 1555-1566.]); Liu et al. (2005[Liu, Z. G., Han, B., Liu, Q., Zhang, W., Yang, L., Liu, Z. L. & Yu, W. (2005). Synlett, pp. 1579-1580.]). For details of the synthesis of related compounds, see: Cocivera et al. (1976[Cocivera, M., Effio, A., Chen, H. E. & Vaish, S. (1976). J. Am. Chem. Soc. 98, 7362-7366.]); Zhang et al. (2008[Zhang, Y. Q., Ma, J. J., Wang, C., Li, J. C., Zhang, D. N., Zang, X. H. & Li, J. (2008). Chin. J. Org. Chem. 28, 914-917.]); Villemin et al. (1993[Villemin, D., Martin, B. & Garrigues, B. (1993). Synth. Commun. 23, 2251-2257.]). For related structures, see: Kay et al. (2001[Kay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Wyss, C. P., Giffin, S. M., McKinnie, I. T. & Barnes, T. H. (2001). J. Mater. Chem. 11, 2271-2281.]); Wolf et al. (1995[Wolf, R., Wong, M. W., Kennard, C. H. L. & Wentrup, C. (1995). J. Am. Chem. Soc. 117, 6789-6790.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2O2

  • Mr = 230.26

  • Triclinic, [P \overline 1]

  • a = 6.4201 (10) Å

  • b = 7.8239 (12) Å

  • c = 12.1901 (15) Å

  • α = 100.272 (2)°

  • β = 97.319 (1)°

  • γ = 101.461 (2)°

  • V = 582.01 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.13 × 0.09 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.988, Tmax = 0.993

  • 2990 measured reflections

  • 2020 independent reflections

  • 943 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.178

  • S = 1.03

  • 2020 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Arylmethylene isoxazolone derivatives are effective anti-psychotics in the treatment of depression and schizophrenia. Studies on these compounds have mainly concentrated on their biological activities (Ishioka et al., 2002; Liu et al., 2005), and syntheses (Cocivera et al., 1976; Zhang et al., 2008; Villemin et al., 1993). However, structural studies have rarely been reported (Kay et al., 2001; Wolf et al., 1995). As part of our investigations on arylmethylene isoxazolone derivatives, we report herein on the structure of the title compound. It was synthesized by a three component condensation reaction of methyl acetoacetate, hydroxylamine with 4-dimethylaminobenzaldehyde, in aqueous media under ultrasonic irradiation.

The molecular structure of the title compound is illustrated in Fig. 1, and geometrical parameters are given in the archived CIF. The bond lengths and angles agree well with those reported for the related compound 4-(N-(2,4,6-Tri-t-butylphenyl)iminomethylene)-3-t-butylisoxazol-5(4H)-one (Wolf et al., 1995). The molecular structure adopts a planar conformation with Z-configuration about the C2C5 double bond.

Related literature top

For the biological activity of arylmethylene isoxazolone derivatives, see: Ishioka et al. (2002); Liu et al. (2005). For details of the synthesis of related compounds, see: Cocivera et al. (1976); Zhang et al. (2008); Villemin et al. (1993). For related structures, see: Kay et al. (2001); Wolf et al. (1995).

Experimental top

A mixture of methyl acetoacetate (4 mol), hydroxylamine hydrochloride (4 mmol), and pyridine(4 mmol) in distilled water(10 ml) was irradiated in the water bath of an ultrasonic cleaner for 10 min, then 4-dimethylaminobenzaldehyde(4 mmol) was slowly added to the mixture. The resulting mixture was irradiated in the water bath of an ultrasonic cleaner for 0.5 h. The solution was kept at r.t. overnight, giving a turbid solution. It was filtered to give a solid that was washed with cold water and ethanol. The crude product was recrystallized from ethanol to afford the title compound as a yellow solid. Single crystals, suitable for X-ray analysis, were obtained by slow evaporation of an aqueous ethanol (95%) solution at ambient temperature after 4 d. Elemental analysis, calculated for C13H14N2O2: C 67.81, H 6.13, N 12.17%; found: C 67.87, H 6.19, N 12.11%.

Refinement top

The H-atoms were included in calculated positions and allowed to ride on their parent atoms: C—H = 0.93–0.96 A °, with Uiso(H) = 1.2Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
(Z)-4-[4-(Dimethylamino)benzylidene]-3-methylisoxazol-5(4H)-one top
Crystal data top
C13H14N2O2Z = 2
Mr = 230.26F(000) = 244
Triclinic, P1Dx = 1.314 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4201 (10) ÅCell parameters from 607 reflections
b = 7.8239 (12) Åθ = 2.9–25.1°
c = 12.1901 (15) ŵ = 0.09 mm1
α = 100.272 (2)°T = 298 K
β = 97.319 (1)°Needle, red
γ = 101.461 (2)°0.13 × 0.09 × 0.08 mm
V = 582.01 (15) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2020 independent reflections
Radiation source: fine-focus sealed tube943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.988, Tmax = 0.993k = 96
2990 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.069P)2 + ]
where P = (Fo2 + 2Fc2)/3
2020 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C13H14N2O2γ = 101.461 (2)°
Mr = 230.26V = 582.01 (15) Å3
Triclinic, P1Z = 2
a = 6.4201 (10) ÅMo Kα radiation
b = 7.8239 (12) ŵ = 0.09 mm1
c = 12.1901 (15) ÅT = 298 K
α = 100.272 (2)°0.13 × 0.09 × 0.08 mm
β = 97.319 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2020 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
943 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.993Rint = 0.039
2990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
2020 reflectionsΔρmin = 0.29 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7351 (5)0.6599 (4)0.8929 (3)0.0671 (10)
N20.3808 (5)0.8488 (4)0.1943 (3)0.0604 (9)
O10.9130 (4)0.7385 (4)0.8421 (2)0.0746 (9)
O20.9643 (4)0.8104 (4)0.6764 (2)0.0797 (9)
C10.8347 (6)0.7524 (5)0.7333 (4)0.0626 (11)
C20.6035 (5)0.6855 (5)0.7140 (3)0.0492 (9)
C30.5624 (5)0.6321 (4)0.8187 (3)0.0503 (9)
C40.3517 (5)0.5490 (5)0.8451 (3)0.0634 (11)
H4A0.37220.52370.91950.095*
H4B0.28950.44000.79070.095*
H4C0.25680.62930.84230.095*
C50.4464 (5)0.6758 (4)0.6248 (3)0.0506 (9)
H50.30940.62660.63730.061*
C60.4428 (5)0.7234 (4)0.5171 (3)0.0458 (9)
C70.2412 (5)0.6921 (5)0.4469 (3)0.0546 (10)
H70.11810.64200.47300.066*
C80.2192 (5)0.7323 (5)0.3417 (3)0.0563 (10)
H80.08290.70860.29800.068*
C90.4013 (5)0.8091 (4)0.2993 (3)0.0496 (9)
C100.6035 (5)0.8435 (5)0.3700 (3)0.0526 (10)
H100.72640.89650.34480.063*
C110.6244 (5)0.8012 (4)0.4750 (3)0.0507 (9)
H110.76050.82440.51870.061*
C120.5668 (6)0.9262 (5)0.1481 (3)0.0691 (12)
H12A0.67211.00580.20790.104*
H12B0.52240.99110.09290.104*
H12C0.62870.83290.11290.104*
C130.1725 (6)0.8003 (6)0.1198 (3)0.0751 (12)
H13A0.11910.67340.10500.113*
H13B0.18860.83760.04990.113*
H13C0.07250.85810.15550.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0601 (19)0.091 (3)0.058 (2)0.0251 (18)0.0110 (18)0.027 (2)
N20.057 (2)0.066 (2)0.057 (2)0.0083 (16)0.0014 (17)0.0214 (18)
O10.0534 (16)0.105 (2)0.0670 (19)0.0177 (15)0.0012 (14)0.0282 (17)
O20.0470 (15)0.116 (2)0.075 (2)0.0066 (15)0.0082 (14)0.0298 (18)
C10.053 (2)0.076 (3)0.058 (3)0.018 (2)0.003 (2)0.012 (2)
C20.0429 (19)0.056 (2)0.050 (2)0.0151 (16)0.0067 (17)0.0117 (19)
C30.051 (2)0.059 (2)0.045 (2)0.0233 (18)0.0035 (18)0.0117 (19)
C40.067 (2)0.077 (3)0.055 (3)0.020 (2)0.013 (2)0.027 (2)
C50.0423 (18)0.049 (2)0.063 (3)0.0112 (16)0.0113 (18)0.016 (2)
C60.046 (2)0.046 (2)0.048 (2)0.0124 (16)0.0067 (17)0.0134 (18)
C70.044 (2)0.061 (3)0.060 (3)0.0079 (17)0.0069 (18)0.021 (2)
C80.046 (2)0.058 (2)0.062 (3)0.0066 (18)0.0001 (18)0.016 (2)
C90.051 (2)0.047 (2)0.052 (2)0.0118 (17)0.0030 (18)0.0161 (19)
C100.0437 (19)0.059 (2)0.055 (2)0.0097 (17)0.0045 (18)0.016 (2)
C110.0435 (19)0.055 (2)0.054 (2)0.0119 (17)0.0021 (17)0.0155 (19)
C120.075 (3)0.077 (3)0.060 (3)0.016 (2)0.015 (2)0.027 (2)
C130.071 (3)0.096 (3)0.059 (3)0.018 (2)0.002 (2)0.029 (2)
Geometric parameters (Å, º) top
N1—C31.294 (4)C6—C111.405 (4)
N1—O11.451 (3)C6—C71.409 (5)
N2—C91.367 (4)C7—C81.371 (5)
N2—C121.455 (4)C7—H70.9300
N2—C131.457 (4)C8—C91.407 (4)
O1—C11.388 (4)C8—H80.9300
O2—C11.220 (4)C9—C101.412 (5)
C1—C21.446 (5)C10—C111.375 (4)
C2—C51.365 (5)C10—H100.9300
C2—C31.451 (4)C11—H110.9300
C3—C41.481 (4)C12—H12A0.9600
C4—H4A0.9600C12—H12B0.9600
C4—H4B0.9600C12—H12C0.9600
C4—H4C0.9600C13—H13A0.9600
C5—C61.426 (4)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C3—N1—O1106.5 (3)C8—C7—H7118.7
C9—N2—C12121.9 (3)C6—C7—H7118.7
C9—N2—C13120.9 (3)C7—C8—C9120.4 (3)
C12—N2—C13117.0 (3)C7—C8—H8119.8
C1—O1—N1109.2 (3)C9—C8—H8119.8
O2—C1—O1118.0 (3)N2—C9—C8120.8 (3)
O2—C1—C2134.7 (4)N2—C9—C10122.0 (3)
O1—C1—C2107.3 (3)C8—C9—C10117.2 (3)
C5—C2—C1132.2 (3)C11—C10—C9122.0 (3)
C5—C2—C3124.2 (3)C11—C10—H10119.0
C1—C2—C3103.6 (3)C9—C10—H10119.0
N1—C3—C2113.3 (3)C10—C11—C6120.9 (3)
N1—C3—C4119.5 (3)C10—C11—H11119.5
C2—C3—C4127.1 (3)C6—C11—H11119.5
C3—C4—H4A109.5N2—C12—H12A109.5
C3—C4—H4B109.5N2—C12—H12B109.5
H4A—C4—H4B109.5H12A—C12—H12B109.5
C3—C4—H4C109.5N2—C12—H12C109.5
H4A—C4—H4C109.5H12A—C12—H12C109.5
H4B—C4—H4C109.5H12B—C12—H12C109.5
C2—C5—C6135.0 (3)N2—C13—H13A109.5
C2—C5—H5112.5N2—C13—H13B109.5
C6—C5—H5112.5H13A—C13—H13B109.5
C11—C6—C7116.8 (3)N2—C13—H13C109.5
C11—C6—C5125.4 (3)H13A—C13—H13C109.5
C7—C6—C5117.8 (3)H13B—C13—H13C109.5
C8—C7—C6122.7 (3)
C3—N1—O1—C10.9 (4)C2—C5—C6—C7179.7 (4)
N1—O1—C1—O2177.5 (3)C11—C6—C7—C80.8 (5)
N1—O1—C1—C21.1 (4)C5—C6—C7—C8179.8 (3)
O2—C1—C2—C55.2 (8)C6—C7—C8—C90.4 (5)
O1—C1—C2—C5176.5 (4)C12—N2—C9—C8179.2 (3)
O2—C1—C2—C3177.5 (4)C13—N2—C9—C84.7 (5)
O1—C1—C2—C30.9 (4)C12—N2—C9—C101.1 (5)
O1—N1—C3—C20.4 (4)C13—N2—C9—C10175.6 (3)
O1—N1—C3—C4178.9 (3)C7—C8—C9—N2179.7 (3)
C5—C2—C3—N1177.3 (3)C7—C8—C9—C100.6 (5)
C1—C2—C3—N10.3 (4)N2—C9—C10—C11179.0 (3)
C5—C2—C3—C44.2 (6)C8—C9—C10—C111.3 (5)
C1—C2—C3—C4178.2 (3)C9—C10—C11—C60.9 (5)
C1—C2—C5—C60.8 (7)C7—C6—C11—C100.1 (5)
C3—C2—C5—C6177.6 (3)C5—C6—C11—C10179.5 (3)
C2—C5—C6—C110.4 (6)

Experimental details

Crystal data
Chemical formulaC13H14N2O2
Mr230.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.4201 (10), 7.8239 (12), 12.1901 (15)
α, β, γ (°)100.272 (2), 97.319 (1), 101.461 (2)
V3)582.01 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.13 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.988, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
2990, 2020, 943
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.178, 1.03
No. of reflections2020
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.29

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are grateful for financial support from the the Foundation of Jiangsu Key Laboratory of Marine Biotechnology (grant No. 2009HS04).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCocivera, M., Effio, A., Chen, H. E. & Vaish, S. (1976). J. Am. Chem. Soc. 98, 7362–7366.  CrossRef CAS Web of Science Google Scholar
First citationIshioka, T., Kubo, A., Koiso, Y., Nagasawa, K., Itai, A. & Hashimoto, Y. (2002). Bioorg. Med. Chem. 10, 1555–1566.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Wyss, C. P., Giffin, S. M., McKinnie, I. T. & Barnes, T. H. (2001). J. Mater. Chem. 11, 2271–2281.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Z. G., Han, B., Liu, Q., Zhang, W., Yang, L., Liu, Z. L. & Yu, W. (2005). Synlett, pp. 1579–1580.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillemin, D., Martin, B. & Garrigues, B. (1993). Synth. Commun. 23, 2251–2257.  CrossRef CAS Web of Science Google Scholar
First citationWolf, R., Wong, M. W., Kennard, C. H. L. & Wentrup, C. (1995). J. Am. Chem. Soc. 117, 6789–6790.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, Y. Q., Ma, J. J., Wang, C., Li, J. C., Zhang, D. N., Zang, X. H. & Li, J. (2008). Chin. J. Org. Chem. 28, 914–917.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds