organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A cycloaddition product of a chiral male­imide: 4-{(3aS*,6aS*)-4,6-dioxo-1-phenyl-5-[(1R)-1-phenyl­ethyl]-1,3a,4,5,6,6a-hexa­hydro­pyrrolo[3,4-c]pyrazol-3-yl}phenyl acetate

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and bDepartment of Chemistry, Abant Izzet Baysal University, TR-14280, Bolu, Turkey
*Correspondence e-mail: ffroncz@lsu.edu

(Received 27 October 2009; accepted 5 November 2009; online 14 November 2009)

In the title mol­ecule, C27H23N3O4, the two central five-membered rings form a dihedral angle of 63.66 (4)°. The absolute configuration was determined by analysis of Bijvoet pairs based on resonant scattering of light atoms, yielding a Hooft parameter y = −0.10 (7).

Related literature

For cyclo­addition reactions of chiral maleimides with dipolar compounds, see: Bienayme (1997[Bienayme, H. (1997). Angew. Chem. Int. Ed. 36, 2670-2673.]); Blanarikova et al. (2001[Blanarikova, I., Dugovic, B., Fisera, L., Hametner, C. & Pronayova, N. (2001). Arkivoc, 2, 1091-1103.]); Chihab-Eddine et al. (2001[Chihab-Eddine, A., Daich, A., Jilale, A. & Decroix, B. (2001). Tetrahedron Lett. 42, 573-576.]); Oishi et al. (1993[Oishi, T., Kagawa, K. & Fujimoto, M. (1993). Polymer, 34, 2644-2649.], 1999[Oishi, T., Onimura, K., Tanaka, K., Horimoto, W. & Tsutsumi, H. (1999). J. Polym. Sci Part A Polym. Chem. 37, 473-482.], 2007[Oishi, T., Gao, H. J., Nakamura, T., Isobe, Y. & Onimura, K. (2007). Polym. J. 39, 1047-1059.]); Ondrus & Fisera (1997[Ondrus, V. & Fisera, L. (1997). Molecules, 2, 49-56.]); Tokioka et al. (1997[Tokioka, K., Masuda, S., Fujii, T., Hata, Y. & Yamamoto, Y. (1997). Tetrahedron Asymmetry, 8, 101-107.]). For the absolute configuration by Bayesian analysis of Bijvoet differences, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related structures, see: Hursthouse et al. (2003[Hursthouse, M. B., Light, M. E. & Jones, R. C. F. (2003). Private communication to the Cambridge Structural Database (refcode WIQBIH). CCDC, Cambridge, England.]); Skof et al. (1998[Skof, M., Svete, J., Stanovnik, B., Golic, L., Golic-Grdadolnik, S. & Selic, L. (1998). Helv. Chim. Acta, 81, 2332-2340.]).

[Scheme 1]

Experimental

Crystal data
  • C27H23N3O4

  • Mr = 453.48

  • Monoclinic, P 21

  • a = 9.1391 (5) Å

  • b = 8.7465 (5) Å

  • c = 14.442 (1) Å

  • β = 103.786 (5)°

  • V = 1121.17 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 90 K

  • 0.30 × 0.25 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.806, Tmax = 0.871

  • 10172 measured reflections

  • 3902 independent reflections

  • 3830 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.076

  • S = 1.08

  • 3902 reflections

  • 310 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1725 Friedel pairs

  • Flack parameter: −0.18 (15)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

There are limited examples of cycloaddition reactions of chiral maleimides with dipolar compounds like nitrones, nitriloxides and anthrones reported in the literature (Bienayme, 1997; Blanarikova et al., 2001; Chihab-Eddine et al., 2001; Oishi et al., 1993; 1999; 2007; Ondrus & Fisera, 1997; Tokioka et al., 1997). To our best knowledge, a literature search revealed that 1,3-dipolar cycloaddition of C,N-substituted nitrilimines to the chiral maleimide, (R)—N-(1-phenylethyl) maleimide, has not been studied. In this work, we report the synthesis, characterization and crystal structure of the diastereomer obtained from the above reaction.

The two five-membered rings at the core of this molecule form a dihedral angle of 63.66 (4)°, and the two rings themselves are essentially planar. The mean deviation of the seven pyrrolidine-2,5-dione atoms from their least-squares plane is 0.008 Å, and the mean deviation for the 4,5-dihydro-1H-pyrazole ring is 0.021 Å. Atom N1 in the pyrrolidine-2,5-dione deviates most from the plane, 0.0172 (11) Å. Atom C4 deviates most from the 4,5-dihydro-1H-pyrazole ring, with deviation 0.0315 (9) Å. Only two structures with similar cores are found in the Cambridge Database (Allen, 2002, version 5.30, Nov. 2008), refcodes CIRFEP (Hursthouse et al., 2003) and WIQBIH (Skof et al., 1998). In CIRFEP, the dihedral angle between the central ring planes is 63.65 (9)°, for one of two independent molecules and 64.23 (9)° for the other. For WIQBIH, the dihedral angle formed by the central ring planes 65.99 (6)°.

In the title compound, the acetate group is nearly orthogonal to the phenyl ring to which it is bonded, as shown by the torsion angle C10—O3—C9—C8, 80.13 (17)°. The phenyl group containing C6 is rotated out of the 4,5-dihydro-1H-pyrazole plane with a torsion angle (C3—C5—C6—C7) of 167.48 (13)°. In addition, the phenyl group containing atom C14 is rotated out of the same plane with a torsion angle (N2—N3—C14—C15) of 159.64 (15)°.

The absolute configuration was determined by refinement of the Flack (1983) parameter, based on resonant scattering of the light atoms. The assignment agrees with that of the starting materials. Analysis of the Bijvoet pairs using the method of Hooft et al. (2008) yielded y = -0.10 (7) for this structure, confirming the absolute configuration.

Related literature top

For cycloaddition reactions of chiral maleimides with dipolar compounds, see: Bienayme (1997); Blanarikova et al. (2001); Chihab-Eddine et al. (2001); Oishi et al. (1993, 1999, 2007); Ondrus & Fisera (1997); Tokioka et al. (1997). For the absolute configuration by Bayesian analysis of Bijvoet differences, see: Hooft et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002). For the crystal structures of related compounds, see: Hursthouse et al. (2003); Skof et al. (1998).

Experimental top

C-(4-Acetoxyphenyl)-N-phenyl hydrazonyl chloride 1 (0,144 g,0.5 mmol) and (R)—N-(1-phenylethyl) maleimide 2 (0,100 g, 0.5 mmol) were dissolved in dry acetonitrile (20 ml). Et3N (0.404 g, 4 mmol) was added dropwise into the mixture with stirring and after the addition was completed, the reaction mixture was stirred at room temperature for 2 h; the progress of the reaction was monitored by TLC. The acetonitrile was evaporated under reduced pressure and the reaction mixture was taken into water (50 ml) to remove Et3N.HCl. The crude brown cycloadduct that precipitated was filtered and washed thoroughly with water and then hexanes, and dried under vacuum. After purification on Chromatotron (Centrifugal Thin-Layer Chromatograph) using n-hexane-ethyl acetate (2:1) as eluant and recrystallization from a mixture of dichloromethane-n-hexane-acetone, the cycloadduct 3 was isolated as yellow needles (160 mg, 71%). [α]21°C589 = +79.0° (c = 0.01 g/ml, l=10 cm, acetone). M. pt. 359–361 K. Rf: 0.60 (ethyl acetate-n-hexane; 1:2).

IR (KBr): ν = 1757 (CH3CO), 1710 (CO), 1599 (CN), 1498, 1452, 1357, 1197, 750 cm-1.

1H NMR (400 MHz, CDCl3): δ = 8.10 (q, J=3.8 Hz, 2H), 7.58 (t, J=7.6 Hz, 2H), 7.47 (t, J=7.2 Hz, 2H), 7.24–7.36 (m, 5H), 7.18 (q, J=4.6 Hz, 2H), 7.01 (t, J=7.3 Hz, 1H), 5.44 (quintet, 1H, CH3CH), 5.08–4.95 (dd, J=51.1 10.9 Hz, 1H,), 4.76 (dd, J=21.5 11.0 Hz, 1H), 2.35 (s, 3H) 1.76–1.86 (m, 3H).

13C NMR (100 MHz,CDCl3): δ =172.5 (CO), 171.5 (CO), 169.4 (CH3CO), 151.5 (CN), 144.5, 142.0, 138.7, 129.2, 128.9, 128.6, 128.3, 128.2, 127.6, 121.8, 121.5, 114.4, 65.4 (–CH), 53.3 (–CH), 51.4 (–CH), 21.1(CH3CO), 16.4 (CH3).

GC—MS (70 eV): (m/z, %)= 453 (100) [M]+, 411 (65), 307 (100), 236 (50), 207 (10), 105 (33), 70 (10).

Anal Calcd for C27H23N3O4. C, 71.51; H, 5.11; N, 9.27%; found C, 71.63; H, 5.11; N, 9.25%.

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 - 1.00 Å and thereafter treated as riding. A torsional parameter was refined for each methyl group. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing atom labelling and displacement ellipsoids at the 50% level, with H atoms having arbitrary radius.
[Figure 2] Fig. 2. The formation of the title compound.
4-{(3aS*,6aS*)-4,6-dioxo-1-phenyl-5-[(1R)-1-phenylethyl]- 1,3a,4,5,6,6a-hexahydropyrrolo[3,4-c]pyrazol-3-yl}phenyl acetate top
Crystal data top
C27H23N3O4F(000) = 476
Mr = 453.48Dx = 1.343 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 7860 reflections
a = 9.1391 (5) Åθ = 3.2–68.3°
b = 8.7465 (5) ŵ = 0.75 mm1
c = 14.442 (1) ÅT = 90 K
β = 103.786 (5)°Fragment, yellow
V = 1121.17 (12) Å30.30 × 0.25 × 0.19 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3902 independent reflections
Radiation source: fine-focus sealed tube3830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 68.8°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1011
Tmin = 0.806, Tmax = 0.871k = 910
10172 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.2144P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.23 e Å3
3902 reflectionsΔρmin = 0.21 e Å3
310 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0021 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1725 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.18 (15)
Crystal data top
C27H23N3O4V = 1121.17 (12) Å3
Mr = 453.48Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.1391 (5) ŵ = 0.75 mm1
b = 8.7465 (5) ÅT = 90 K
c = 14.442 (1) Å0.30 × 0.25 × 0.19 mm
β = 103.786 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
3902 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
3830 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.871Rint = 0.029
10172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.23 e Å3
S = 1.08Δρmin = 0.21 e Å3
3902 reflectionsAbsolute structure: Flack (1983), 1725 Friedel pairs
310 parametersAbsolute structure parameter: 0.18 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31157 (12)0.46611 (15)0.83990 (8)0.0332 (3)
O20.25737 (11)0.33703 (12)0.52738 (7)0.0246 (2)
O30.37802 (12)0.37334 (12)0.19079 (8)0.0270 (2)
O40.29475 (18)0.60155 (17)0.15371 (9)0.0512 (4)
N10.31609 (13)0.41517 (15)0.68415 (9)0.0217 (3)
N20.10053 (12)0.50276 (15)0.63294 (8)0.0202 (3)
N30.01685 (13)0.48013 (15)0.72440 (9)0.0223 (3)
C10.25163 (16)0.41734 (19)0.76244 (11)0.0243 (3)
C20.22410 (15)0.35331 (16)0.60278 (11)0.0214 (3)
C30.07344 (15)0.31006 (17)0.62509 (10)0.0212 (3)
H30.04970.19900.61380.025*
C40.09114 (16)0.35455 (18)0.72977 (11)0.0238 (3)
H40.07120.26750.76990.029*
C50.05658 (15)0.41174 (17)0.57491 (10)0.0200 (3)
C60.13497 (15)0.40425 (17)0.47391 (10)0.0202 (3)
C70.27083 (15)0.48411 (17)0.44207 (10)0.0201 (3)
H70.30910.54400.48590.024*
C80.34965 (16)0.47673 (18)0.34774 (10)0.0220 (3)
H80.44170.53090.32650.026*
C90.29238 (16)0.38923 (18)0.28474 (10)0.0229 (3)
C100.37251 (19)0.4912 (2)0.13033 (11)0.0306 (4)
C110.4770 (2)0.4640 (2)0.03545 (12)0.0389 (4)
H11A0.58010.48950.03860.058*
H11B0.47220.35620.01780.058*
H11C0.44730.52850.01250.058*
C120.15893 (16)0.31088 (18)0.31350 (11)0.0256 (3)
H120.12110.25230.26890.031*
C130.07975 (16)0.31808 (17)0.40842 (11)0.0235 (3)
H130.01250.26400.42880.028*
C140.06694 (16)0.54178 (18)0.80081 (10)0.0227 (3)
C150.01474 (17)0.4835 (2)0.89311 (11)0.0295 (3)
H150.05880.40460.90530.035*
C160.07195 (18)0.5425 (2)0.96665 (11)0.0336 (4)
H160.03870.50131.02900.040*
C170.17628 (19)0.6599 (2)0.95098 (12)0.0337 (4)
H170.21480.69871.00190.040*
C180.22385 (19)0.7203 (2)0.85994 (12)0.0309 (4)
H180.29470.80170.84860.037*
C190.16884 (16)0.66269 (18)0.78508 (11)0.0241 (3)
H190.20080.70590.72320.029*
C200.47221 (15)0.47134 (18)0.69157 (10)0.0224 (3)
H200.50050.53310.75150.027*
C210.58097 (15)0.33623 (17)0.70440 (10)0.0216 (3)
C220.64427 (16)0.2851 (2)0.79644 (11)0.0280 (3)
H220.61830.33380.84910.034*
C230.74501 (18)0.1637 (2)0.81217 (12)0.0336 (4)
H230.78730.12970.87530.040*
C240.78404 (17)0.09222 (19)0.73593 (13)0.0306 (4)
H240.85370.00980.74670.037*
C250.72090 (17)0.14149 (18)0.64378 (12)0.0262 (3)
H250.74670.09230.59120.031*
C260.61966 (15)0.26322 (18)0.62843 (10)0.0231 (3)
H260.57670.29660.56520.028*
C270.47789 (16)0.57928 (18)0.60983 (11)0.0248 (3)
H27A0.45750.52190.54980.037*
H27B0.57800.62600.62110.037*
H27C0.40170.65950.60590.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0219 (5)0.0485 (8)0.0267 (6)0.0021 (5)0.0010 (4)0.0012 (5)
O20.0188 (5)0.0242 (6)0.0303 (6)0.0012 (4)0.0046 (4)0.0025 (4)
O30.0277 (5)0.0241 (6)0.0265 (5)0.0044 (4)0.0012 (4)0.0038 (4)
O40.0695 (10)0.0493 (9)0.0298 (6)0.0348 (8)0.0020 (6)0.0011 (6)
N10.0143 (5)0.0213 (6)0.0282 (6)0.0002 (5)0.0022 (5)0.0005 (5)
N20.0155 (5)0.0196 (6)0.0237 (6)0.0022 (5)0.0013 (5)0.0033 (5)
N30.0171 (6)0.0252 (6)0.0227 (6)0.0016 (5)0.0007 (4)0.0034 (5)
C10.0183 (7)0.0242 (8)0.0282 (8)0.0028 (6)0.0015 (6)0.0066 (6)
C20.0161 (6)0.0147 (7)0.0311 (8)0.0021 (6)0.0011 (6)0.0024 (6)
C30.0156 (7)0.0165 (7)0.0298 (7)0.0005 (5)0.0020 (5)0.0027 (6)
C40.0170 (7)0.0233 (8)0.0295 (7)0.0021 (6)0.0025 (6)0.0057 (6)
C50.0134 (6)0.0155 (7)0.0308 (8)0.0005 (5)0.0046 (5)0.0022 (6)
C60.0159 (6)0.0147 (7)0.0288 (7)0.0021 (5)0.0028 (5)0.0017 (6)
C70.0181 (6)0.0164 (7)0.0265 (7)0.0001 (6)0.0063 (5)0.0004 (6)
C80.0189 (7)0.0180 (7)0.0274 (7)0.0024 (6)0.0024 (6)0.0015 (6)
C90.0221 (7)0.0197 (8)0.0249 (7)0.0031 (6)0.0013 (6)0.0013 (6)
C100.0314 (8)0.0342 (10)0.0267 (8)0.0062 (7)0.0079 (6)0.0026 (7)
C110.0424 (10)0.0454 (11)0.0263 (8)0.0104 (9)0.0031 (7)0.0024 (8)
C120.0226 (7)0.0221 (8)0.0325 (8)0.0001 (6)0.0073 (6)0.0063 (6)
C130.0165 (7)0.0185 (7)0.0341 (8)0.0016 (5)0.0035 (6)0.0011 (6)
C140.0167 (7)0.0264 (8)0.0239 (7)0.0085 (6)0.0029 (6)0.0010 (6)
C150.0219 (7)0.0358 (9)0.0285 (8)0.0018 (7)0.0015 (6)0.0056 (7)
C160.0289 (8)0.0481 (11)0.0222 (7)0.0142 (8)0.0027 (6)0.0000 (7)
C170.0307 (8)0.0419 (10)0.0304 (8)0.0143 (8)0.0113 (7)0.0105 (7)
C180.0287 (8)0.0302 (9)0.0350 (9)0.0049 (7)0.0098 (7)0.0072 (7)
C190.0194 (7)0.0246 (8)0.0274 (8)0.0051 (6)0.0034 (6)0.0025 (6)
C200.0137 (6)0.0224 (7)0.0289 (7)0.0026 (6)0.0010 (5)0.0025 (6)
C210.0120 (6)0.0211 (8)0.0298 (7)0.0046 (5)0.0010 (5)0.0008 (6)
C220.0207 (7)0.0316 (9)0.0292 (8)0.0005 (7)0.0010 (6)0.0008 (7)
C230.0256 (8)0.0361 (10)0.0342 (9)0.0025 (7)0.0026 (7)0.0074 (7)
C240.0179 (7)0.0210 (8)0.0495 (10)0.0000 (6)0.0011 (7)0.0053 (7)
C250.0187 (7)0.0220 (8)0.0382 (9)0.0049 (6)0.0073 (6)0.0028 (6)
C260.0160 (7)0.0213 (8)0.0302 (7)0.0049 (6)0.0022 (5)0.0031 (6)
C270.0176 (7)0.0203 (7)0.0354 (8)0.0002 (6)0.0043 (6)0.0019 (6)
Geometric parameters (Å, º) top
O1—C11.201 (2)C12—H120.9500
O2—C21.2068 (18)C13—H130.9500
O3—C101.359 (2)C14—C191.392 (2)
O3—C91.4024 (17)C14—C151.401 (2)
O4—C101.199 (2)C15—C161.390 (2)
N1—C21.3818 (19)C15—H150.9500
N1—C11.3940 (19)C16—C171.383 (3)
N1—C201.4886 (17)C16—H160.9500
N2—C51.288 (2)C17—C181.387 (3)
N2—N31.3739 (16)C17—H170.9500
N3—C141.3995 (19)C18—C191.391 (2)
N3—C41.4663 (19)C18—H180.9500
C1—C41.532 (2)C19—H190.9500
C2—C31.5343 (19)C20—C271.522 (2)
C3—C51.5224 (19)C20—C211.527 (2)
C3—C41.532 (2)C20—H201.0000
C3—H31.0000C21—C261.386 (2)
C4—H41.0000C21—C221.391 (2)
C5—C61.465 (2)C22—C231.388 (2)
C6—C131.395 (2)C22—H220.9500
C6—C71.403 (2)C23—C241.385 (3)
C7—C81.382 (2)C23—H230.9500
C7—H70.9500C24—C251.387 (2)
C8—C91.384 (2)C24—H240.9500
C8—H80.9500C25—C261.393 (2)
C9—C121.374 (2)C25—H250.9500
C10—C111.491 (2)C26—H260.9500
C11—H11A0.9800C27—H27A0.9800
C11—H11B0.9800C27—H27B0.9800
C11—H11C0.9800C27—H27C0.9800
C12—C131.391 (2)
C10—O3—C9116.66 (12)C13—C12—H12120.3
C2—N1—C1113.95 (12)C12—C13—C6120.38 (13)
C2—N1—C20124.68 (12)C12—C13—H13119.8
C1—N1—C20121.34 (12)C6—C13—H13119.8
C5—N2—N3110.38 (12)C19—C14—N3119.74 (13)
N2—N3—C14119.40 (12)C19—C14—C15119.67 (14)
N2—N3—C4111.85 (12)N3—C14—C15120.60 (14)
C14—N3—C4126.12 (12)C16—C15—C14119.16 (15)
O1—C1—N1124.99 (14)C16—C15—H15120.4
O1—C1—C4127.24 (14)C14—C15—H15120.4
N1—C1—C4107.70 (12)C17—C16—C15121.39 (16)
O2—C2—N1125.48 (12)C17—C16—H16119.3
O2—C2—C3126.31 (13)C15—C16—H16119.3
N1—C2—C3108.21 (12)C16—C17—C18119.08 (16)
C5—C3—C4102.02 (12)C16—C17—H17120.5
C5—C3—C2113.18 (12)C18—C17—H17120.5
C4—C3—C2104.81 (11)C17—C18—C19120.61 (17)
C5—C3—H3112.1C17—C18—H18119.7
C4—C3—H3112.1C19—C18—H18119.7
C2—C3—H3112.1C18—C19—C14120.01 (15)
N3—C4—C1109.32 (13)C18—C19—H19120.0
N3—C4—C3103.10 (11)C14—C19—H19120.0
C1—C4—C3105.26 (11)N1—C20—C27110.98 (12)
N3—C4—H4112.8N1—C20—C21109.78 (12)
C1—C4—H4112.8C27—C20—C21115.64 (12)
C3—C4—H4112.8N1—C20—H20106.6
N2—C5—C6121.41 (13)C27—C20—H20106.6
N2—C5—C3112.37 (12)C21—C20—H20106.6
C6—C5—C3126.07 (13)C26—C21—C22118.81 (14)
C13—C6—C7118.79 (13)C26—C21—C20122.82 (13)
C13—C6—C5121.95 (13)C22—C21—C20118.37 (13)
C7—C6—C5119.25 (13)C23—C22—C21120.72 (15)
C8—C7—C6120.82 (14)C23—C22—H22119.6
C8—C7—H7119.6C21—C22—H22119.6
C6—C7—H7119.6C24—C23—C22120.12 (15)
C7—C8—C9118.94 (13)C24—C23—H23119.9
C7—C8—H8120.5C22—C23—H23119.9
C9—C8—H8120.5C23—C24—C25119.70 (15)
C12—C9—C8121.64 (14)C23—C24—H24120.2
C12—C9—O3119.57 (13)C25—C24—H24120.2
C8—C9—O3118.67 (13)C24—C25—C26119.92 (15)
O4—C10—O3122.68 (15)C24—C25—H25120.0
O4—C10—C11126.45 (17)C26—C25—H25120.0
O3—C10—C11110.86 (15)C21—C26—C25120.73 (14)
C10—C11—H11A109.5C21—C26—H26119.6
C10—C11—H11B109.5C25—C26—H26119.6
H11A—C11—H11B109.5C20—C27—H27A109.5
C10—C11—H11C109.5C20—C27—H27B109.5
H11A—C11—H11C109.5H27A—C27—H27B109.5
H11B—C11—H11C109.5C20—C27—H27C109.5
C9—C12—C13119.42 (14)H27A—C27—H27C109.5
C9—C12—H12120.3H27B—C27—H27C109.5
C5—N2—N3—C14165.83 (13)C7—C8—C9—C120.5 (2)
C5—N2—N3—C43.11 (16)C7—C8—C9—O3175.50 (13)
C2—N1—C1—O1179.89 (16)C10—O3—C9—C12103.74 (17)
C20—N1—C1—O11.9 (2)C10—O3—C9—C880.13 (17)
C2—N1—C1—C42.61 (17)C9—O3—C10—O42.7 (2)
C20—N1—C1—C4179.13 (13)C9—O3—C10—C11175.85 (14)
C1—N1—C2—O2178.43 (14)C8—C9—C12—C130.7 (2)
C20—N1—C2—O20.2 (2)O3—C9—C12—C13175.35 (13)
C1—N1—C2—C31.78 (16)C9—C12—C13—C60.1 (2)
C20—N1—C2—C3179.98 (13)C7—C6—C13—C120.5 (2)
O2—C2—C3—C569.64 (19)C5—C6—C13—C12178.55 (14)
N1—C2—C3—C5110.15 (14)N2—N3—C14—C1920.74 (19)
O2—C2—C3—C4179.98 (14)C4—N3—C14—C19179.21 (13)
N1—C2—C3—C40.19 (15)N2—N3—C14—C15159.64 (14)
N2—N3—C4—C1116.74 (13)C4—N3—C14—C150.4 (2)
C14—N3—C4—C181.94 (17)C19—C14—C15—C163.3 (2)
N2—N3—C4—C35.15 (15)N3—C14—C15—C16177.05 (14)
C14—N3—C4—C3166.47 (13)C14—C15—C16—C171.6 (2)
O1—C1—C4—N369.3 (2)C15—C16—C17—C180.4 (2)
N1—C1—C4—N3107.87 (14)C16—C17—C18—C190.7 (2)
O1—C1—C4—C3179.49 (16)C17—C18—C19—C141.0 (2)
N1—C1—C4—C32.28 (16)N3—C14—C19—C18177.33 (14)
C5—C3—C4—N34.89 (14)C15—C14—C19—C183.1 (2)
C2—C3—C4—N3113.31 (12)C2—N1—C20—C2749.95 (19)
C5—C3—C4—C1119.45 (12)C1—N1—C20—C27131.99 (14)
C2—C3—C4—C11.24 (15)C2—N1—C20—C2179.14 (17)
N3—N2—C5—C6175.25 (12)C1—N1—C20—C2198.93 (15)
N3—N2—C5—C30.51 (16)N1—C20—C21—C2692.06 (16)
C4—C3—C5—N23.60 (15)C27—C20—C21—C2634.43 (19)
C2—C3—C5—N2108.46 (14)N1—C20—C21—C2288.28 (16)
C4—C3—C5—C6171.92 (13)C27—C20—C21—C22145.23 (14)
C2—C3—C5—C676.02 (18)C26—C21—C22—C230.3 (2)
N2—C5—C6—C13173.31 (14)C20—C21—C22—C23179.33 (14)
C3—C5—C6—C1311.5 (2)C21—C22—C23—C240.2 (2)
N2—C5—C6—C77.7 (2)C22—C23—C24—C250.6 (2)
C3—C5—C6—C7167.48 (13)C23—C24—C25—C260.5 (2)
C13—C6—C7—C80.6 (2)C22—C21—C26—C250.4 (2)
C5—C6—C7—C8178.46 (13)C20—C21—C26—C25179.21 (13)
C6—C7—C8—C90.1 (2)C24—C25—C26—C210.0 (2)

Experimental details

Crystal data
Chemical formulaC27H23N3O4
Mr453.48
Crystal system, space groupMonoclinic, P21
Temperature (K)90
a, b, c (Å)9.1391 (5), 8.7465 (5), 14.442 (1)
β (°) 103.786 (5)
V3)1121.17 (12)
Z2
Radiation typeCu Kα
µ (mm1)0.75
Crystal size (mm)0.30 × 0.25 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.806, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
10172, 3902, 3830
Rint0.029
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.08
No. of reflections3902
No. of parameters310
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21
Absolute structureFlack (1983), 1725 Friedel pairs
Absolute structure parameter0.18 (15)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We are extremely grateful to the Abant Izzet Baysal University, Directorate of Research Projects Commission (BAP grant 2007.03.03.260) and TÜBITAK (The Scientific and Technological Research Council of Turkey, grant 106 T645) for financial support. We also thank Rosalind Segesta for financial assistance with the open-access fee.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBienayme, H. (1997). Angew. Chem. Int. Ed. 36, 2670–2673.  CAS Google Scholar
First citationBlanarikova, I., Dugovic, B., Fisera, L., Hametner, C. & Pronayova, N. (2001). Arkivoc, 2, 1091–1103.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChihab-Eddine, A., Daich, A., Jilale, A. & Decroix, B. (2001). Tetrahedron Lett. 42, 573–576.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHursthouse, M. B., Light, M. E. & Jones, R. C. F. (2003). Private communication to the Cambridge Structural Database (refcode WIQBIH). CCDC, Cambridge, England.  Google Scholar
First citationOishi, T., Gao, H. J., Nakamura, T., Isobe, Y. & Onimura, K. (2007). Polym. J. 39, 1047–1059.  Web of Science CrossRef CAS Google Scholar
First citationOishi, T., Kagawa, K. & Fujimoto, M. (1993). Polymer, 34, 2644–2649.  CrossRef CAS Web of Science Google Scholar
First citationOishi, T., Onimura, K., Tanaka, K., Horimoto, W. & Tsutsumi, H. (1999). J. Polym. Sci Part A Polym. Chem. 37, 473–482.  CrossRef Google Scholar
First citationOndrus, V. & Fisera, L. (1997). Molecules, 2, 49–56.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkof, M., Svete, J., Stanovnik, B., Golic, L., Golic-Grdadolnik, S. & Selic, L. (1998). Helv. Chim. Acta, 81, 2332–2340.  CrossRef CAS Google Scholar
First citationTokioka, K., Masuda, S., Fujii, T., Hata, Y. & Yamamoto, Y. (1997). Tetrahedron Asymmetry, 8, 101–107.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds