organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3162-o3163

β-Cyclo­dextrin 10.41-hydrate

aLehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany, and bDepartment of Analytical Chemistry, University of Sofia St. Kliment Ohridski, J. Bourchier Blvd. 1, 1164 Sofia, Bulgaria
*Correspondence e-mail: ruediger.seidel@rub.de

(Received 7 November 2009; accepted 16 November 2009; online 21 November 2009)

The crystal structure of β-cyclo­dextrin, C42H70O35·10.41H2O, consists of truncated cone-shaped β-cyclo­dextrin mol­ecules that are herringbone packed. The primary hydr­oxy groups form an intra­molecular hydrogen-bonded array. The semipolar cavity of the cyclo­dextrin host is filled with water mol­ecules, which show partial occupancy and disorder.

Related literature

For an overview of cyclo­dextrin chemistry, see: Atwood et al. (1996[Atwood, J. L., Davies, J. E. D., MacNicol, D. D. & Vögtle, F. (1996). Comprehensive Supramolecular Chemistry, Vol. 3, 1st ed. Oxford: Pergamon.]), Szejtli (1998[Szejtli, J. (1998). Chem. Rev. 98, 1743-1753.]). For applications of cyclo­dextrins, see: Del Valle (2004[Del Valle, E. M. M. (2004). Process Biochem. 39, 1033-1046.]). For previous X-ray crystal structure determinations of various β-cyclo­dextrin hydrates, see: Hamilton et al. (1968[Hamilton, J. A., Steinrauf, L. K. & Van Etten, R. L. (1968). Acta Cryst. B24, 1560-1562.]); Szejtli & Budai (1977[Szejtli, J. & Budai, Z. (1977). Acta Chim. Acad. Sci. Hung. 94, 383-390.]); Lindner & Saenger (1978[Lindner, K. & Saenger, W. (1978). Angew. Chem. Int. Ed. 17, 694-695.], 1982[Lindner, K. & Saenger, W. (1982). Carbohydr. Res. 99, 7-16.]); Stezowski & Maclennan (1980[Stezowski, J. J. & Maclennan, J. M. (1980). ACA Ser. 2, 7, 24.]); Fujiwara et al. (1983[Fujiwara, T., Yamazaki, M., Tomizu, Y., Tokuoka, R., Tomita, K.-I., Matsuo, T., Suga, H. & Saenger, W. (1983). Nippon Kagaku Kaishi (J. Chem. Soc. Jpn), pp. 181-187.]); Betzel et al. (1984[Betzel, C., Saenger, W., Hingerty, B. E. & Brown, G. M. (1984). J. Am. Chem. Soc. 106, 7545-7557.]); Steiner & Koellner (1994[Steiner, T. & Koellner, G. (1994). J. Am. Chem. Soc. 116, 5122-5128.]); Damodharan et al. (2004[Damodharan, L., Pattabhi, V. & Nagarajan, K. (2004). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 423, 17-35.]); Kurokawa, et al. (2004[Kurokawa, C., Sekii, M., Ishida, T. & Nogami, T. (2004). Supramol. Chem. 16, 381-384.]). For a low temperature single-crystal neutron diffraction study of deutero-β-CD·11D2O, see Zabel et al. (1986[Zabel, V., Saenger, W. & Mason, S. A. (1986). J. Am. Chem. Soc. 108, 3664-3673.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C42H70O35·10.41H2O

  • Mr = 1322.53

  • Monoclinic, P 21

  • a = 20.8353 (4) Å

  • b = 9.9397 (1) Å

  • c = 15.2043 (3) Å

  • β = 110.630 (2)°

  • V = 2946.84 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 110 K

  • 0.37 × 0.33 × 0.28 mm

Data collection
  • Oxford Diffraction XcaliburTM2 diffractometer

  • Absorption correction: multi-scan (ABSPACK in CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd., Yarnton, England.]) Tmin = 0.951, Tmax = 0.963

  • 40031 measured reflections

  • 7019 independent reflections

  • 6090 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 0.99

  • 7019 reflections

  • 868 parameters

  • 36 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O7 0.84 2.36 3.065 (3) 142
O2—H2A⋯O45i 0.84 2.00 2.809 (3) 161
O2—H2A⋯O45′i 0.84 1.95 2.633 (11) 138
O5—H5A⋯O47 0.84 1.76 2.578 (15) 163
O5—H5A⋯O45ii 0.84 2.46 3.024 (4) 125
O5′—H5′⋯O45ii 0.84 1.66 2.47 (3) 163
O5′—H5′⋯O45′ii 0.84 2.40 3.20 (3) 159
O6—H6C⋯O12 0.84 2.04 2.845 (2) 161
O6—H6C⋯O13 0.84 2.31 2.742 (2) 112
O7—H7A⋯O26i 0.84 2.14 2.956 (3) 165
O11—H11A⋯O40 0.84 1.78 2.595 (2) 163
O12—H12C⋯O31iii 0.84 1.85 2.676 (2) 167
O15—H15A⋯O41iv 0.84 2.04 2.870 (3) 172
O16—H16A⋯O38v 0.84 1.90 2.733 (3) 174
O17—H17A⋯O11 0.84 2.06 2.889 (2) 171
O20—H20A⋯O43 0.84 1.93 2.725 (3) 157
O20—H20A⋯O50 0.84 2.12 2.80 (3) 138
O21—H21A⋯O27 0.84 1.99 2.810 (2) 167
O21—H21A⋯O28 0.84 2.36 2.794 (2) 112
O22—H22A⋯O16 0.84 1.97 2.776 (2) 160
O22—H22A⋯O23 0.84 2.41 2.821 (2) 111
O25—H25A⋯O39vi 0.84 1.90 2.743 (3) 178
O26—H26A⋯O37iii 0.84 1.83 2.668 (3) 176
O27—H27A⋯O5v 0.84 2.09 2.821 (3) 145
O30—H30C⋯O15vii 0.84 2.06 2.858 (3) 158
O30—H30C⋯O14vii 0.84 2.37 2.945 (2) 126
O31—H31A⋯O2 0.84 2.01 2.844 (2) 172
O32—H32A⋯O26 0.84 2.04 2.871 (2) 170
O35—H35A⋯O37i 0.84 2.08 2.890 (2) 161
O36—H36⋯O11ii 0.84 2.02 2.854 (2) 173
O37—H37A⋯O6 0.824 (17) 2.05 (2) 2.837 (2) 160 (3)
O37—H37B⋯O32viii 0.849 (17) 1.910 (18) 2.753 (2) 171 (3)
O38—H38A⋯O20 0.828 (17) 2.11 (2) 2.865 (3) 152 (3)
O38—H38B⋯O30ix 0.817 (17) 1.857 (18) 2.672 (3) 176 (3)
O39—H39A⋯O22ii 0.856 (18) 1.898 (18) 2.749 (3) 173 (3)
O39—H39B⋯O38 0.861 (18) 2.18 (2) 2.959 (3) 151 (3)
O40—H40A⋯O41x 0.879 (18) 2.21 (3) 2.787 (3) 123 (3)
O40—H40B⋯O35xi 0.869 (18) 1.91 (2) 2.770 (3) 168 (3)
O41—H41A⋯O20 0.844 (17) 2.134 (18) 2.976 (3) 175 (3)
O41—H41A⋯O19 0.844 (17) 2.63 (3) 3.048 (2) 112 (3)
O41—H41B⋯O25 0.840 (18) 1.95 (2) 2.769 (3) 166 (3)
O42—H42C⋯O21ii 0.852 (18) 2.09 (2) 2.932 (3) 173 (3)
O42—H42D⋯O48 0.805 (18) 1.90 (4) 2.53 (3) 135 (3)
O42—H42D⋯O39 0.805 (18) 2.34 (3) 3.038 (3) 146 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) x, y+1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x, y-1, z; (vi) [-x+2, y-{\script{1\over 2}}, -z]; (vii) x, y, z-1; (viii) x, y, z+1; (ix) [-x+2, y+{\script{1\over 2}}, -z]; (x) [-x+2, y-{\script{1\over 2}}, -z+1]; (xi) x, y-1, z+1.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd., Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; method used to solve structure: initial coordinates of the β-cyclodextrin scaffold taken from Lindner & Saenger (1982[Lindner, K. & Saenger, W. (1982). Carbohydr. Res. 99, 7-16.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Cyclodextrins are common, widely studied and cheaply available supramolecular hosts (Atwood et al., 1996; Szejtli, 1998) with a variety of applications in the food, cosmetics and pharmaceutical industries (Del Valle, 2004).

β-Cyclodextrin (β-CD) is a cyclic oligosaccharide comprising seven D-glucopyranoside units, linked through 1,4-glycosidic bonds. The first room temperature crystal structure determination of β-CD dodecahydrate was reported about 40 years ago (Hamilton et al., 1968). A number of room temperature determinations have been reported since (Szejtli & Budai, 1977; Lindner & Saenger, 1978; Lindner & Saenger, 1982; Fujiwara et al., 1983; Betzel et al., 1984; Steiner & Koellner, 1994; Damodharan et al., 2004). A search of the Cambridge Structural Database (CSD; Version 5.3 with September 2009 Updates) (Allen et al., 2002) revealed no low temperature X-ray structure determination of a β-CD hydrate with the exception of those reported by Stezowski & Maclennan (1980) and Kurokawa et al. (2004). Those were apparently reported without atomic coordinates and with an R factor of 13.0% and without refinement details, respectively. Additionally, a neutron diffraction study of deutero-β-CD 11 D2O at 120 K was reported by Zabel et al. (1986); the refinement of which converged at R = 0.049. Herein, we report an X-ray structural study of β-CD 10.41 hydrate at 110 K with R = 0.032 in order to provide an improved model of the β-CD host, (I).

Figs 1 and 2 show a displacement ellipsoid plot and an illustration of the molecular structure of the β-CD host, respectively. The shape of the molecule is a truncated cone. The geometric parameters lie within expected ranges. All D-glucopyranoside units exhibit the C1 chair conformation. The primary hydroxy groups at the wider end of the torus form an array of intramolecular H bonds with O—H···O contacts in the range of 2.776 (2)–3.065 (3) Å. The estimated volume of the semi-polar cavity of a β-CD host is 262 Å3 (Szejtli, 1998). In (I), the cavity was found to be statistically occupied by approximately 5.41 water molecules. Three of the water positions are each disordered over two positions, while five are considered to be partially occupied (see Refinement). In the vast number of structural studies dealing with β-CD hydrates, different solvent water contents were encountered. The solvent water content depends on the crystallization conditions and the humidity (Steiner & Koellner, 1994). In the crystal structure of (I), the β-CD molecules are arranged in herringbone-packed layers that are stacked along the c axis direction (Fig. 3).

Related literature top

For an overview of cyclodextrin chemistry, see: Atwood et al. (1996), Szejtli (1998). For applications of cyclodextrins, see: Del Valle (2004). For previous X-ray crystal structure determinations of various β-cyclodextrin hydrates, see: Hamilton et al. (1968); Szejtli & Budai (1977); Lindner & Saenger (1978); Stezowski & Maclennan (1980); Lindner & Saenger (1982); Fujiwara et al. (1983); Betzel et al. (1984),; Steiner & Koellner (1994); Damodharan et al. (2004); Kurokawa, et al. (2004). For a low temperature single-crystal neutron diffraction study of deutero-β-CD.11 D2O, see Zabel et al. (1986). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Crystals of (I) were obtained unintentionally from an aqueous solution of β-cyclodextrin during an attempt to prepare an inclusion compound with an organic dye. A heterogeneous solid of (I) and the dye was obtained instead of the desired inclusion compound when the solvent was allowed to evaporate slowly. The solid was filtered off and dried over P4O10. A colourless crystal of (I) could be separated for the X-ray analysis.

Refinement top

In the absence of significant anomalous scattering effects, 5934 Friedel pairs were merged. Anisotropic displacement parameters were introduced for all non-hydrogen atoms with the exception of O47, O48, O49, O50 and O51, the positions of which are not fully occupied. One of the secondary hydroxy groups of the β-cyclodextrin host was found to be disordered over two positions. The ratio of occupancies of O5 and O5' was refined by means of a free variable and converged at 0.917 (5):0.083 (5). Standard similarity restraints on geometry and displacement parameters as well as rigid bond restraints were applied to the disordered group. The O44, O45 and O46 atoms of the solvent water molecules were each found to be disordered over two positions. The refinement of the occupancies by means of a free variable in each case yielded: 0.903 (5):0.097 (5), 0.803 (6):0.197 (6) and 0.884 (9):0.116 (9) for O44, O45 and O46, respectively. The parts of disordered water oxygen atoms were each refined with equivalent anisotropic displacement parameters. The site occupancy factors of O47, O48, O49, O50 and O51 were allowed to refine freely to yield 0.167 (9), 0.081 (8), 0.061 (8), 0.060 (8) and 0.039 (8), respectively. Four of the calculated intermolecular O···O distances (O43···O50 ca 2.01 Å, O44···O49 ca 1.73 Å, O45···O47 ca 2.29 Å and O46···O51 ca 2.42) indicate that the two positions cannot be occupied simultaneously in each case. The C-bound H atoms were placed at geometrically calculated positions (C—H = 0.99-1.00 Å) and refined with a riding model and with Uiso(H) = 1.2 Ueq(C). The hydroxy- and water-H atoms were localized in difference Fourier syntheses. The hydroxy-H atoms were subsequently refined with O—H = 0.84 Å and constrained tetrahedral C—O—H angles. The O—H bond lengths of the water molecules were restrained to a target value of 0.84 (2) Å. The 1,3-H,H distances of the water molecules were restrained to be similar with an effective standard deviation of 0.04 Å. The hydroxy- and water-H atoms were refined with Uiso(H) = 1.2 Ueq(O). The positions for some of the H atoms in some of the water molecules could not be determined reliably and were therefore excluded from the refinement.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: initial coordinates of the β-cyclodextrin scaffold from Lindner & Saenger (1982); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level. Positions of disordered O atoms with minor occupancy and those not fully occupied are drawn as empty ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Molecular Structure of the β-cyclodextrin host in (I). H bonds are represented by dashed lines. H atoms attached to carbon are omitted for clarity.
[Figure 3] Fig. 3. View of the crystal structure of (I) viewed down the c axis, showing the herringbone packing of the β-cyclodextrin molecules. H atoms and water molecules are omitted for clarity.
β-cyclodextrin 10.41-hydrate top
Crystal data top
C42H70O35·10.41H2OF(000) = 1412
Mr = 1322.53Dx = 1.490 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 20832 reflections
a = 20.8353 (4) Åθ = 2.7–28.1°
b = 9.9397 (1) ŵ = 0.14 mm1
c = 15.2043 (3) ÅT = 110 K
β = 110.630 (2)°Prism, colourless
V = 2946.84 (9) Å30.37 × 0.33 × 0.28 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer
7019 independent reflections
Radiation source: Enhance (Mo) X-ray Source6090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.4171 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scansh = 2626
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.951, Tmax = 0.963l = 1919
40031 measured reflections
Refinement top
Refinement on F2Primary atom site location: the initial coordinates of the β-cyclodextrin scaffold were taken from Lindner & Saenger (1982)
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
7019 reflections(Δ/σ)max = 0.001
868 parametersΔρmax = 0.39 e Å3
36 restraintsΔρmin = 0.24 e Å3
Crystal data top
C42H70O35·10.41H2OV = 2946.84 (9) Å3
Mr = 1322.53Z = 2
Monoclinic, P21Mo Kα radiation
a = 20.8353 (4) ŵ = 0.14 mm1
b = 9.9397 (1) ÅT = 110 K
c = 15.2043 (3) Å0.37 × 0.33 × 0.28 mm
β = 110.630 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
7019 independent reflections
Absorption correction: multi-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009)
6090 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.963Rint = 0.026
40031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03236 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.39 e Å3
7019 reflectionsΔρmin = 0.24 e Å3
868 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.43109 (9)0.4795 (2)0.06964 (12)0.0237 (4)
H1A0.44510.40430.09410.028*
O20.41763 (9)0.4374 (2)0.12954 (12)0.0238 (4)
H2A0.38850.39420.11420.029*
O30.54177 (8)0.39543 (17)0.15508 (11)0.0154 (3)
O40.59435 (9)0.59993 (18)0.05896 (11)0.0207 (4)
O50.64406 (13)0.6978 (2)0.07616 (17)0.0368 (7)0.917 (5)
H5A0.67580.75050.04650.044*0.917 (5)
C60.65945 (15)0.5684 (3)0.03927 (19)0.0294 (6)0.917 (5)
H6A0.70260.57110.01580.035*0.917 (5)
H6B0.66690.50910.08710.035*0.917 (5)
O5'0.7150 (11)0.620 (3)0.0298 (15)0.040 (5)0.083 (5)
H5'0.70250.68220.05730.059*0.083 (5)
C6'0.65945 (15)0.5684 (3)0.03927 (19)0.0294 (6)0.083 (5)
H6A'0.67560.49740.07220.035*0.083 (5)
H6B'0.63910.64080.08540.035*0.083 (5)
O60.58391 (8)0.16416 (19)0.41646 (12)0.0189 (4)
H6C0.60910.10160.41020.023*
O70.49901 (9)0.3003 (2)0.24149 (13)0.0260 (4)
H7A0.48450.31790.28530.031*
O80.57078 (8)0.42611 (17)0.14463 (11)0.0157 (3)
O90.70256 (8)0.41357 (17)0.38138 (11)0.0166 (4)
O110.77159 (9)0.27659 (17)0.45930 (12)0.0177 (4)
H11A0.76670.32670.50100.021*
O120.66776 (8)0.06812 (18)0.43729 (12)0.0178 (4)
H12C0.64480.11770.39260.021*
O130.70736 (8)0.18126 (17)0.39046 (11)0.0146 (3)
O140.87332 (8)0.03010 (17)0.53239 (11)0.0152 (3)
O150.84497 (9)0.26449 (19)0.60728 (12)0.0232 (4)
H15A0.85970.33770.63460.028*
O160.92260 (9)0.49406 (17)0.26437 (12)0.0186 (4)
H16A0.95500.54060.26000.022*
O170.87877 (8)0.40676 (18)0.41115 (11)0.0179 (4)
H17A0.84530.37700.42380.022*
O180.86032 (8)0.11803 (17)0.40904 (11)0.0139 (3)
O190.99620 (8)0.15637 (17)0.31140 (11)0.0154 (3)
O200.99809 (10)0.12933 (19)0.33502 (15)0.0297 (4)
H20A0.96220.17070.30350.045*
O210.79734 (9)0.43799 (18)0.12551 (11)0.0195 (4)
H21A0.76570.38390.15320.023*
O220.85197 (9)0.47175 (18)0.07245 (12)0.0198 (4)
H22A0.86660.46450.13130.024*
O230.91264 (8)0.24262 (17)0.17883 (11)0.0150 (3)
O240.91996 (8)0.15919 (18)0.05281 (11)0.0175 (4)
O251.04195 (9)0.1142 (2)0.11668 (12)0.0235 (4)
H25A1.05160.13170.06870.028*
O260.57670 (8)0.12304 (18)0.36578 (12)0.0212 (4)
H26A0.56570.19600.39510.025*
O270.68202 (9)0.29122 (18)0.23675 (13)0.0230 (4)
H27A0.65540.30690.20730.035*
O280.80158 (8)0.15711 (17)0.12746 (11)0.0147 (3)
O290.73057 (8)0.07842 (18)0.32427 (11)0.0159 (3)
O300.87316 (9)0.0327 (2)0.27399 (13)0.0238 (4)
H30C0.86770.08590.31900.036 (9)*
O310.42147 (8)0.30039 (18)0.29183 (12)0.0194 (4)
H31A0.42420.33840.24130.023*
O320.48828 (8)0.09599 (17)0.36044 (11)0.0174 (3)
H32A0.51370.02860.35540.021*
O330.63304 (8)0.11283 (16)0.28602 (11)0.0137 (3)
O340.58413 (8)0.46343 (16)0.27119 (11)0.0153 (3)
O350.65236 (8)0.44776 (18)0.39480 (11)0.0178 (4)
H35A0.62160.50410.39760.021*
O360.70072 (9)0.65475 (19)0.26713 (13)0.0251 (4)
H360.71880.67150.32480.030*
C10.54900 (12)0.5510 (3)0.10087 (16)0.0164 (5)
H10.54620.61710.14890.020*
C20.47733 (12)0.5308 (3)0.02720 (16)0.0170 (5)
H20.45990.62080.00020.020*
C30.48101 (11)0.4415 (3)0.05196 (15)0.0163 (5)
H30.49350.34810.02740.020*
C40.53467 (12)0.4933 (2)0.08968 (16)0.0162 (5)
H40.51970.58150.12210.019*
C50.60351 (12)0.5095 (3)0.00976 (16)0.0181 (5)
H50.61870.41990.02020.022*
C70.68164 (12)0.2994 (2)0.41849 (16)0.0161 (5)
H70.69980.30520.48860.019*
C80.60300 (12)0.2877 (3)0.38360 (16)0.0159 (5)
H80.58500.36370.41130.019*
C90.57234 (12)0.2998 (3)0.27719 (16)0.0160 (5)
H90.58780.22000.24990.019*
C100.60044 (12)0.4254 (3)0.24549 (15)0.0157 (5)
H100.58660.50800.27190.019*
C110.67885 (12)0.4133 (3)0.28019 (16)0.0164 (5)
H110.69080.32460.25900.020*
C120.71698 (13)0.5221 (3)0.24961 (18)0.0209 (5)
H12A0.76680.50790.28220.025*
H12B0.70730.51220.18130.025*
C130.85802 (12)0.1031 (2)0.49974 (16)0.0142 (5)
H130.89220.16540.54360.017*
C140.78611 (12)0.1431 (2)0.49470 (16)0.0151 (5)
H140.78390.13970.55930.018*
C150.73386 (11)0.0454 (2)0.43193 (16)0.0142 (5)
H150.73130.05740.36550.017*
C160.75377 (11)0.0987 (2)0.46217 (16)0.0140 (5)
H160.74750.11620.52340.017*
C170.82787 (12)0.1293 (2)0.47187 (16)0.0142 (5)
H170.83220.12640.40840.017*
C180.85261 (13)0.2635 (3)0.51694 (17)0.0188 (5)
H18A0.90130.27700.52440.023*
H18B0.82530.33690.47720.023*
C190.97083 (12)0.2731 (2)0.25883 (16)0.0146 (5)
H191.00730.31290.23820.018*
C200.94960 (12)0.3762 (2)0.31866 (16)0.0152 (5)
H200.99030.40100.37490.018*
C210.89510 (11)0.3156 (2)0.35013 (15)0.0138 (5)
H210.85300.30000.29360.017*
C220.91912 (11)0.1811 (2)0.39884 (15)0.0129 (5)
H220.95510.19610.46200.016*
C230.94635 (11)0.0876 (2)0.34095 (16)0.0139 (5)
H230.90740.05730.28420.017*
C240.98264 (13)0.0341 (3)0.39539 (18)0.0198 (5)
H24A0.95320.07730.42610.024*
H24B1.02570.00540.44510.024*
C250.86255 (12)0.2313 (2)0.11112 (16)0.0152 (5)
H250.86830.24890.17270.018*
C260.85543 (12)0.3653 (2)0.06681 (16)0.0162 (5)
H260.89710.42000.06040.019*
C270.85369 (12)0.3433 (2)0.03141 (16)0.0150 (5)
H270.81150.29160.02700.018*
C280.91664 (12)0.2633 (2)0.08818 (16)0.0143 (5)
H280.95890.31570.09420.017*
C290.91743 (12)0.1305 (3)0.03929 (16)0.0166 (5)
H290.87450.07950.03210.020*
C300.97906 (12)0.0434 (3)0.08994 (18)0.0206 (5)
H30A0.98070.03230.04850.025*
H30B0.97340.00500.14680.025*
C310.66024 (11)0.0500 (2)0.34856 (16)0.0147 (5)
H310.63490.08180.41410.018*
C320.64881 (12)0.1005 (3)0.34219 (16)0.0163 (5)
H320.66480.14890.38830.020*
C330.68954 (12)0.1496 (2)0.24365 (16)0.0156 (5)
H330.67250.10330.19770.019*
C340.76454 (12)0.1134 (2)0.22174 (15)0.0135 (5)
H340.78240.16030.26660.016*
C350.77121 (11)0.0386 (2)0.22966 (16)0.0148 (5)
H350.75250.08370.18500.018*
C360.84314 (12)0.0888 (3)0.21093 (17)0.0185 (5)
H36A0.84220.18810.21690.022*
H36B0.87210.06590.14560.022*
C370.52490 (12)0.4371 (2)0.24926 (15)0.0144 (5)
H370.49640.52060.25980.017*
C380.48255 (11)0.3247 (2)0.31085 (16)0.0145 (5)
H380.46920.35340.37800.017*
C390.52559 (12)0.1989 (2)0.29771 (16)0.0139 (5)
H390.53790.16660.23150.017*
C400.59077 (11)0.2293 (2)0.31679 (16)0.0125 (4)
H400.57990.24330.38560.015*
C410.62916 (12)0.3508 (2)0.26224 (16)0.0138 (5)
H410.65150.32660.19440.017*
C420.68285 (12)0.3999 (2)0.30030 (16)0.0157 (5)
H42A0.70960.47340.25990.019*
H42B0.71490.32550.29860.019*
O370.45907 (9)0.13938 (19)0.45062 (12)0.0208 (4)
H37A0.4952 (11)0.126 (3)0.4413 (19)0.025*
H37B0.4700 (14)0.134 (3)0.5099 (13)0.025*
O381.02376 (10)0.3565 (2)0.23620 (13)0.0248 (4)
H38A1.0311 (15)0.290 (2)0.271 (2)0.030*
H38B1.0561 (13)0.409 (3)0.250 (2)0.030*
O390.92858 (10)0.3215 (2)0.04040 (14)0.0299 (4)
H39A0.9075 (15)0.387 (3)0.055 (2)0.036*
H39B0.9646 (12)0.311 (3)0.0898 (17)0.036*
O400.75974 (10)0.3861 (2)0.60776 (14)0.0293 (4)
H40A0.7851 (14)0.456 (3)0.607 (2)0.035*
H40B0.7227 (11)0.433 (3)0.599 (2)0.035*
O411.11226 (10)0.0083 (2)0.28708 (14)0.0282 (4)
H41A1.0788 (13)0.038 (3)0.300 (2)0.034*
H41B1.0977 (15)0.029 (3)0.2341 (16)0.034*
O420.77658 (12)0.2871 (2)0.07080 (17)0.0400 (5)
H42C0.7787 (17)0.367 (2)0.090 (2)0.048*
H42D0.8137 (12)0.263 (4)0.036 (2)0.048*
O430.87096 (13)0.2433 (3)0.2749 (2)0.0585 (7)
O440.74718 (14)0.1038 (3)0.1869 (2)0.0523 (8)0.903 (5)
O44'0.7000 (14)0.109 (3)0.1997 (19)0.0523 (8)0.097 (5)
O450.70193 (13)0.1792 (3)0.1178 (2)0.0287 (7)0.803 (6)
O45'0.7106 (6)0.1310 (13)0.1604 (9)0.0287 (7)0.197 (6)
O460.68237 (15)0.1660 (4)0.0002 (3)0.0502 (11)0.884 (9)
O46'0.6883 (13)0.103 (3)0.033 (2)0.0502 (11)0.116 (9)
O470.7268 (7)0.8957 (15)0.0091 (10)0.044 (5)*0.167 (9)
O480.8452 (15)0.143 (3)0.068 (2)0.043 (11)*0.081 (8)
O490.7843 (16)0.013 (3)0.120 (2)0.030 (12)*0.062 (8)
O500.8898 (15)0.167 (3)0.164 (2)0.022 (11)*0.060 (8)
O510.744 (3)0.337 (5)0.111 (3)0.029 (18)*0.039 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0206 (9)0.0320 (11)0.0213 (9)0.0035 (8)0.0110 (8)0.0001 (8)
O20.0146 (8)0.0375 (11)0.0167 (9)0.0022 (8)0.0023 (7)0.0030 (8)
O30.0204 (8)0.0150 (8)0.0118 (7)0.0038 (7)0.0069 (6)0.0017 (6)
O40.0256 (9)0.0228 (9)0.0144 (8)0.0058 (8)0.0081 (7)0.0017 (7)
O50.0467 (15)0.0275 (13)0.0468 (15)0.0080 (11)0.0296 (12)0.0026 (11)
C60.0291 (15)0.0368 (16)0.0245 (14)0.0102 (13)0.0123 (12)0.0028 (12)
O5'0.027 (8)0.047 (9)0.041 (9)0.010 (8)0.007 (7)0.001 (8)
C6'0.0291 (15)0.0368 (16)0.0245 (14)0.0102 (13)0.0123 (12)0.0028 (12)
O60.0178 (8)0.0206 (9)0.0211 (9)0.0032 (7)0.0105 (7)0.0046 (7)
O70.0140 (8)0.0407 (11)0.0233 (9)0.0001 (8)0.0064 (7)0.0040 (8)
O80.0183 (8)0.0170 (8)0.0108 (8)0.0007 (7)0.0040 (6)0.0001 (7)
O90.0181 (8)0.0151 (8)0.0139 (8)0.0009 (7)0.0022 (7)0.0002 (7)
O110.0233 (9)0.0139 (8)0.0186 (9)0.0024 (7)0.0108 (7)0.0014 (7)
O120.0117 (8)0.0208 (9)0.0222 (9)0.0050 (7)0.0076 (7)0.0038 (7)
O130.0135 (8)0.0162 (8)0.0116 (7)0.0030 (7)0.0014 (6)0.0004 (6)
O140.0124 (8)0.0178 (8)0.0135 (8)0.0002 (7)0.0022 (6)0.0000 (7)
O150.0275 (10)0.0203 (9)0.0218 (9)0.0042 (8)0.0087 (8)0.0072 (7)
O160.0202 (9)0.0157 (8)0.0190 (8)0.0029 (7)0.0059 (7)0.0017 (7)
O170.0179 (8)0.0180 (9)0.0205 (8)0.0006 (7)0.0099 (7)0.0040 (7)
O180.0115 (8)0.0187 (9)0.0121 (7)0.0017 (7)0.0048 (6)0.0017 (6)
O190.0112 (8)0.0188 (8)0.0176 (8)0.0009 (7)0.0068 (6)0.0027 (7)
O200.0291 (10)0.0207 (10)0.0408 (11)0.0065 (8)0.0140 (9)0.0032 (8)
O210.0190 (9)0.0173 (9)0.0159 (8)0.0014 (7)0.0016 (7)0.0001 (7)
O220.0260 (9)0.0171 (9)0.0135 (8)0.0046 (8)0.0034 (7)0.0003 (7)
O230.0124 (8)0.0206 (9)0.0113 (8)0.0028 (7)0.0032 (6)0.0001 (7)
O240.0137 (8)0.0253 (9)0.0125 (8)0.0029 (7)0.0032 (6)0.0035 (7)
O250.0164 (8)0.0309 (11)0.0211 (9)0.0048 (8)0.0040 (7)0.0014 (8)
O260.0126 (8)0.0187 (9)0.0267 (9)0.0005 (7)0.0002 (7)0.0049 (7)
O270.0184 (9)0.0159 (9)0.0314 (10)0.0015 (7)0.0047 (8)0.0052 (8)
O280.0140 (8)0.0190 (8)0.0108 (7)0.0036 (7)0.0043 (6)0.0025 (6)
O290.0122 (8)0.0206 (9)0.0151 (8)0.0015 (7)0.0048 (6)0.0050 (7)
O300.0195 (9)0.0308 (11)0.0241 (9)0.0047 (8)0.0115 (7)0.0090 (8)
O310.0135 (8)0.0268 (10)0.0194 (8)0.0015 (7)0.0075 (7)0.0013 (7)
O320.0146 (8)0.0156 (8)0.0216 (8)0.0011 (7)0.0058 (7)0.0012 (7)
O330.0156 (8)0.0132 (8)0.0130 (8)0.0046 (7)0.0059 (6)0.0029 (6)
O340.0174 (8)0.0130 (8)0.0177 (8)0.0011 (7)0.0091 (7)0.0014 (7)
O350.0177 (8)0.0200 (9)0.0171 (8)0.0030 (7)0.0077 (7)0.0030 (7)
O360.0263 (10)0.0214 (10)0.0235 (9)0.0020 (8)0.0039 (8)0.0031 (8)
C10.0205 (12)0.0173 (12)0.0136 (11)0.0005 (10)0.0086 (9)0.0013 (9)
C20.0204 (12)0.0170 (12)0.0155 (11)0.0029 (10)0.0088 (10)0.0004 (9)
C30.0151 (11)0.0195 (12)0.0124 (11)0.0032 (10)0.0023 (9)0.0003 (9)
C40.0202 (12)0.0149 (12)0.0140 (11)0.0035 (10)0.0065 (9)0.0003 (9)
C50.0198 (12)0.0225 (13)0.0134 (11)0.0017 (10)0.0076 (10)0.0016 (10)
C70.0167 (11)0.0175 (12)0.0125 (11)0.0009 (10)0.0031 (9)0.0011 (9)
C80.0149 (11)0.0175 (12)0.0153 (11)0.0032 (10)0.0054 (9)0.0018 (9)
C90.0123 (11)0.0217 (12)0.0142 (11)0.0007 (10)0.0049 (9)0.0013 (10)
C100.0154 (11)0.0199 (12)0.0108 (11)0.0011 (10)0.0033 (9)0.0008 (9)
C110.0148 (11)0.0184 (12)0.0147 (11)0.0011 (10)0.0035 (9)0.0022 (9)
C120.0160 (12)0.0268 (14)0.0175 (12)0.0034 (11)0.0032 (10)0.0008 (10)
C130.0139 (11)0.0178 (12)0.0110 (10)0.0023 (9)0.0045 (9)0.0003 (9)
C140.0166 (11)0.0160 (11)0.0144 (11)0.0012 (9)0.0075 (9)0.0000 (9)
C150.0104 (10)0.0190 (12)0.0139 (11)0.0009 (9)0.0053 (9)0.0007 (9)
C160.0119 (11)0.0163 (12)0.0130 (10)0.0001 (9)0.0036 (8)0.0017 (9)
C170.0130 (11)0.0169 (12)0.0120 (10)0.0005 (9)0.0037 (9)0.0012 (9)
C180.0182 (12)0.0176 (12)0.0194 (12)0.0037 (10)0.0051 (10)0.0018 (10)
C190.0115 (11)0.0177 (12)0.0135 (11)0.0015 (9)0.0030 (9)0.0014 (9)
C200.0150 (11)0.0159 (12)0.0130 (11)0.0016 (9)0.0029 (9)0.0000 (9)
C210.0121 (10)0.0164 (12)0.0123 (10)0.0004 (9)0.0036 (9)0.0019 (9)
C220.0093 (10)0.0162 (12)0.0127 (10)0.0020 (9)0.0030 (8)0.0001 (9)
C230.0114 (10)0.0157 (11)0.0155 (11)0.0005 (9)0.0058 (9)0.0011 (9)
C240.0168 (12)0.0188 (12)0.0252 (13)0.0043 (10)0.0093 (10)0.0028 (10)
C250.0127 (11)0.0206 (13)0.0125 (11)0.0006 (9)0.0045 (9)0.0015 (9)
C260.0160 (11)0.0164 (12)0.0144 (11)0.0030 (9)0.0031 (9)0.0005 (9)
C270.0157 (11)0.0140 (11)0.0148 (11)0.0001 (9)0.0049 (9)0.0007 (9)
C280.0137 (11)0.0166 (11)0.0129 (11)0.0001 (9)0.0049 (9)0.0015 (9)
C290.0157 (12)0.0186 (12)0.0144 (11)0.0010 (10)0.0040 (9)0.0000 (9)
C300.0198 (12)0.0188 (13)0.0212 (12)0.0037 (10)0.0046 (10)0.0033 (10)
C310.0124 (11)0.0181 (12)0.0135 (11)0.0039 (9)0.0045 (9)0.0000 (9)
C320.0118 (11)0.0179 (12)0.0171 (11)0.0010 (9)0.0023 (9)0.0025 (10)
C330.0173 (12)0.0120 (11)0.0177 (11)0.0014 (9)0.0065 (9)0.0006 (9)
C340.0143 (11)0.0163 (12)0.0099 (10)0.0020 (9)0.0041 (8)0.0015 (9)
C350.0139 (11)0.0160 (12)0.0137 (11)0.0028 (9)0.0039 (9)0.0018 (9)
C360.0173 (12)0.0161 (12)0.0207 (12)0.0007 (10)0.0051 (9)0.0033 (10)
C370.0154 (11)0.0177 (12)0.0123 (10)0.0048 (9)0.0076 (9)0.0036 (9)
C380.0107 (11)0.0201 (12)0.0135 (11)0.0022 (9)0.0053 (9)0.0031 (9)
C390.0138 (11)0.0143 (11)0.0124 (10)0.0004 (9)0.0033 (9)0.0006 (9)
C400.0120 (11)0.0121 (11)0.0141 (11)0.0028 (9)0.0053 (9)0.0025 (9)
C410.0153 (11)0.0132 (11)0.0118 (10)0.0019 (9)0.0035 (9)0.0011 (9)
C420.0157 (11)0.0137 (11)0.0163 (11)0.0007 (9)0.0039 (9)0.0001 (9)
O370.0183 (9)0.0247 (10)0.0182 (9)0.0013 (8)0.0051 (7)0.0002 (7)
O380.0228 (10)0.0224 (10)0.0311 (11)0.0006 (8)0.0118 (8)0.0028 (8)
O390.0258 (10)0.0335 (12)0.0287 (10)0.0057 (9)0.0074 (8)0.0002 (9)
O400.0235 (10)0.0296 (11)0.0358 (11)0.0020 (9)0.0115 (9)0.0132 (9)
O410.0213 (10)0.0391 (12)0.0237 (10)0.0036 (9)0.0074 (8)0.0022 (9)
O420.0337 (12)0.0314 (12)0.0432 (13)0.0093 (10)0.0011 (10)0.0006 (11)
O430.0398 (14)0.0378 (14)0.094 (2)0.0030 (11)0.0194 (14)0.0242 (14)
O440.0400 (16)0.0510 (17)0.0615 (18)0.0047 (14)0.0123 (13)0.0022 (14)
O44'0.0400 (16)0.0510 (17)0.0615 (18)0.0047 (14)0.0123 (13)0.0022 (14)
O450.0278 (12)0.0282 (16)0.0290 (16)0.0001 (11)0.0088 (12)0.0024 (12)
O45'0.0278 (12)0.0282 (16)0.0290 (16)0.0001 (11)0.0088 (12)0.0024 (12)
O460.0424 (15)0.046 (2)0.055 (2)0.0070 (15)0.0087 (14)0.0050 (17)
O46'0.0424 (15)0.046 (2)0.055 (2)0.0070 (15)0.0087 (14)0.0050 (17)
Geometric parameters (Å, º) top
O1—C21.429 (3)C8—H81.0000
O1—H1A0.8400C9—C101.527 (3)
O2—C31.428 (3)C9—H91.0000
O2—H2A0.8400C10—C111.534 (3)
O3—C371.411 (3)C10—H101.0000
O3—C41.436 (3)C11—C121.509 (3)
O4—C11.400 (3)C11—H111.0000
O4—C51.441 (3)C12—H12A0.9900
O5—C61.395 (4)C12—H12B0.9900
O5—H5A0.8400C13—C141.526 (3)
C6—C51.507 (4)C13—H131.0000
C6—H6A0.9900C14—C151.519 (3)
C6—H6B0.9900C14—H141.0000
O5'—H5'0.8400C15—C161.517 (3)
O6—C81.433 (3)C15—H151.0000
O6—H6C0.8400C16—C171.529 (3)
O7—C91.430 (3)C16—H161.0000
O7—H7A0.8400C17—C181.506 (3)
O8—C11.406 (3)C17—H171.0000
O8—C101.437 (3)C18—H18A0.9900
O9—C71.403 (3)C18—H18B0.9900
O9—C111.441 (3)C19—C201.536 (3)
O11—C141.424 (3)C19—H191.0000
O11—H11A0.8400C20—C211.505 (3)
O12—C151.426 (3)C20—H201.0000
O12—H12C0.8400C21—C221.525 (3)
O13—C71.417 (3)C21—H211.0000
O13—C161.433 (3)C22—C231.520 (3)
O14—C131.410 (3)C22—H221.0000
O14—C171.449 (3)C23—C241.510 (3)
O15—C181.437 (3)C23—H231.0000
O15—H15A0.8400C24—H24A0.9900
O16—C201.429 (3)C24—H24B0.9900
O16—H16A0.8400C25—C261.523 (3)
O17—C211.421 (3)C25—H251.0000
O17—H17A0.8400C26—C271.522 (3)
O18—C131.405 (3)C26—H261.0000
O18—C221.432 (3)C27—C281.517 (3)
O19—C191.402 (3)C27—H271.0000
O19—C231.441 (3)C28—C291.518 (3)
O20—C241.432 (3)C28—H281.0000
O20—H20A0.8400C29—C301.515 (3)
O21—C261.422 (3)C29—H291.0000
O21—H21A0.8400C30—H30A0.9900
O22—C271.427 (3)C30—H30B0.9900
O22—H22A0.8400C31—C321.524 (4)
O23—C191.415 (3)C31—H311.0000
O23—C281.425 (3)C32—C331.519 (3)
O24—C251.408 (3)C32—H321.0000
O24—C291.448 (3)C33—C341.522 (3)
O25—C301.415 (3)C33—H331.0000
O25—H25A0.8400C34—C351.526 (3)
O26—C321.434 (3)C34—H341.0000
O26—H26A0.8400C35—C361.508 (3)
O27—C331.424 (3)C35—H351.0000
O27—H27A0.8400C36—H36A0.9900
O28—C251.413 (3)C36—H36B0.9900
O28—C341.435 (3)C37—C381.524 (3)
O29—C311.408 (3)C37—H371.0000
O29—C351.444 (3)C38—C391.510 (3)
O30—C361.430 (3)C38—H381.0000
O30—H30C0.8400C39—C401.516 (3)
O31—C381.422 (3)C39—H391.0000
O31—H31A0.8400C40—C411.523 (3)
O32—C391.428 (3)C40—H401.0000
O32—H32A0.8400C41—C421.510 (3)
O33—C311.412 (3)C41—H411.0000
O33—C401.430 (3)C42—H42A0.9900
O34—C371.411 (3)C42—H42B0.9900
O34—C411.436 (3)O37—H37A0.824 (17)
O35—C421.432 (3)O37—H37B0.849 (17)
O35—H35A0.8400O38—H38A0.828 (17)
O36—C121.410 (3)O38—H38B0.817 (17)
O36—H360.8400O39—H39A0.856 (18)
C1—C21.532 (3)O39—H39B0.861 (18)
C1—H11.0000O40—H40A0.879 (18)
C2—C31.519 (3)O40—H40B0.869 (18)
C2—H21.0000O41—H41A0.844 (17)
C3—C41.515 (3)O41—H41B0.840 (18)
C3—H31.0000O42—H42C0.852 (18)
C4—C51.527 (3)O42—H42D0.805 (18)
C4—H41.0000O44—O44'1.07 (3)
C5—H51.0000O44—O491.73 (3)
C7—C81.539 (3)O45—O45'0.774 (13)
C7—H71.0000O46—O46'0.84 (4)
C8—C91.521 (3)O48—O501.46 (4)
C2—O1—H1A109.5O23—C19—H19109.3
C3—O2—H2A109.5C20—C19—H19109.3
C37—O3—C4117.01 (18)O16—C20—C21108.93 (18)
C1—O4—C5113.34 (18)O16—C20—C19109.99 (18)
C6—O5—H5A109.5C21—C20—C19109.15 (19)
O5—C6—C5112.7 (2)O16—C20—H20109.6
O5—C6—H6A109.1C21—C20—H20109.6
C5—C6—H6A109.1C19—C20—H20109.6
O5—C6—H6B109.1O17—C21—C20109.46 (19)
C5—C6—H6B109.1O17—C21—C22110.80 (18)
H6A—C6—H6B107.8C20—C21—C22110.51 (18)
C8—O6—H6C109.5O17—C21—H21108.7
C9—O7—H7A109.5C20—C21—H21108.7
C1—O8—C10117.08 (18)C22—C21—H21108.7
C7—O9—C11112.94 (18)O18—C22—C23107.67 (18)
C14—O11—H11A109.5O18—C22—C21106.81 (17)
C15—O12—H12C109.5C23—C22—C21112.33 (18)
C7—O13—C16118.09 (17)O18—C22—H22110.0
C13—O14—C17113.50 (17)C23—C22—H22110.0
C18—O15—H15A109.5C21—C22—H22110.0
C20—O16—H16A109.5O19—C23—C24105.91 (18)
C21—O17—H17A109.5O19—C23—C22110.36 (19)
C13—O18—C22118.62 (16)C24—C23—C22112.89 (19)
C19—O19—C23113.68 (17)O19—C23—H23109.2
C24—O20—H20A109.5C24—C23—H23109.2
C26—O21—H21A109.5C22—C23—H23109.2
C27—O22—H22A109.5O20—C24—C23111.1 (2)
C19—O23—C28118.45 (17)O20—C24—H24A109.4
C25—O24—C29113.37 (17)C23—C24—H24A109.4
C30—O25—H25A109.5O20—C24—H24B109.4
C32—O26—H26A109.5C23—C24—H24B109.4
C33—O27—H27A109.5H24A—C24—H24B108.0
C25—O28—C34117.86 (17)O24—C25—O28110.90 (19)
C31—O29—C35113.41 (17)O24—C25—C26111.10 (18)
C36—O30—H30C109.5O28—C25—C26108.21 (18)
C38—O31—H31A109.5O24—C25—H25108.9
C39—O32—H32A109.5O28—C25—H25108.9
C31—O33—C40118.99 (16)C26—C25—H25108.9
C37—O34—C41115.44 (17)O21—C26—C27112.28 (19)
C42—O35—H35A109.5O21—C26—C25111.14 (18)
C12—O36—H36109.5C27—C26—C25110.38 (19)
O4—C1—O8111.42 (19)O21—C26—H26107.6
O4—C1—C2110.68 (18)C27—C26—H26107.6
O8—C1—C2107.42 (19)C25—C26—H26107.6
O4—C1—H1109.1O22—C27—C28111.73 (19)
O8—C1—H1109.1O22—C27—C26108.29 (19)
C2—C1—H1109.1C28—C27—C26108.59 (19)
O1—C2—C3112.3 (2)O22—C27—H27109.4
O1—C2—C1110.80 (18)C28—C27—H27109.4
C3—C2—C1110.34 (19)C26—C27—H27109.4
O1—C2—H2107.7O23—C28—C27107.03 (18)
C3—C2—H2107.7O23—C28—C29111.26 (19)
C1—C2—H2107.7C27—C28—C29109.50 (19)
O2—C3—C4106.73 (18)O23—C28—H28109.7
O2—C3—C2112.39 (19)C27—C28—H28109.7
C4—C3—C2110.6 (2)C29—C28—H28109.7
O2—C3—H3109.0O24—C29—C30106.93 (19)
C4—C3—H3109.0O24—C29—C28108.22 (19)
C2—C3—H3109.0C30—C29—C28113.7 (2)
O3—C4—C3107.56 (19)O24—C29—H29109.3
O3—C4—C5109.00 (19)C30—C29—H29109.3
C3—C4—C5110.25 (18)C28—C29—H29109.3
O3—C4—H4110.0O25—C30—C29113.3 (2)
C3—C4—H4110.0O25—C30—H30A108.9
C5—C4—H4110.0C29—C30—H30A108.9
O4—C5—C6106.7 (2)O25—C30—H30B108.9
O4—C5—C4108.40 (19)C29—C30—H30B108.9
C6—C5—C4114.3 (2)H30A—C30—H30B107.7
O4—C5—H5109.1O29—C31—O33111.25 (18)
C6—C5—H5109.1O29—C31—C32110.58 (19)
C4—C5—H5109.1O33—C31—C32106.41 (19)
O9—C7—O13110.19 (18)O29—C31—H31109.5
O9—C7—C8111.52 (19)O33—C31—H31109.5
O13—C7—C8107.64 (19)C32—C31—H31109.5
O9—C7—H7109.2O26—C32—C33111.62 (19)
O13—C7—H7109.2O26—C32—C31108.11 (19)
C8—C7—H7109.2C33—C32—C31109.44 (19)
O6—C8—C9112.0 (2)O26—C32—H32109.2
O6—C8—C7109.72 (19)C33—C32—H32109.2
C9—C8—C7110.97 (18)C31—C32—H32109.2
O6—C8—H8108.0O27—C33—C32110.6 (2)
C9—C8—H8108.0O27—C33—C34110.42 (19)
C7—C8—H8108.0C32—C33—C34108.28 (19)
O7—C9—C8113.35 (18)O27—C33—H33109.2
O7—C9—C10110.8 (2)C32—C33—H33109.2
C8—C9—C10109.68 (19)C34—C33—H33109.2
O7—C9—H9107.6O28—C34—C33107.25 (18)
C8—C9—H9107.6O28—C34—C35110.28 (19)
C10—C9—H9107.6C33—C34—C35109.39 (19)
O8—C10—C9105.82 (18)O28—C34—H34110.0
O8—C10—C11111.88 (18)C33—C34—H34110.0
C9—C10—C11107.94 (19)C35—C34—H34110.0
O8—C10—H10110.4O29—C35—C36107.00 (18)
C9—C10—H10110.4O29—C35—C34108.20 (19)
C11—C10—H10110.4C36—C35—C34115.1 (2)
O9—C11—C12107.95 (19)O29—C35—H35108.8
O9—C11—C10106.86 (18)C36—C35—H35108.8
C12—C11—C10116.8 (2)C34—C35—H35108.8
O9—C11—H11108.3O30—C36—C35112.6 (2)
C12—C11—H11108.3O30—C36—H36A109.1
C10—C11—H11108.3C35—C36—H36A109.1
O36—C12—C11115.1 (2)O30—C36—H36B109.1
O36—C12—H12A108.5C35—C36—H36B109.1
C11—C12—H12A108.5H36A—C36—H36B107.8
O36—C12—H12B108.5O3—C37—O34111.60 (18)
C11—C12—H12B108.5O3—C37—C38106.94 (18)
H12A—C12—H12B107.5O34—C37—C38110.84 (18)
O18—C13—O14111.31 (19)O3—C37—H37109.1
O18—C13—C14107.20 (18)O34—C37—H37109.1
O14—C13—C14111.02 (19)C38—C37—H37109.1
O18—C13—H13109.1O31—C38—C39111.40 (19)
O14—C13—H13109.1O31—C38—C37111.44 (18)
C14—C13—H13109.1C39—C38—C37109.72 (18)
O11—C14—C15110.39 (19)O31—C38—H38108.0
O11—C14—C13109.65 (19)C39—C38—H38108.0
C15—C14—C13109.79 (19)C37—C38—H38108.0
O11—C14—H14109.0O32—C39—C38110.27 (18)
C15—C14—H14109.0O32—C39—C40109.19 (18)
C13—C14—H14109.0C38—C39—C40109.88 (19)
O12—C15—C16107.38 (18)O32—C39—H39109.2
O12—C15—C14110.84 (18)C38—C39—H39109.2
C16—C15—C14110.75 (18)C40—C39—H39109.2
O12—C15—H15109.3O33—C40—C39105.44 (17)
C16—C15—H15109.3O33—C40—C41108.61 (17)
C14—C15—H15109.3C39—C40—C41112.83 (18)
O13—C16—C15105.71 (17)O33—C40—H40110.0
O13—C16—C17110.33 (18)C39—C40—H40110.0
C15—C16—C17112.08 (19)C41—C40—H40110.0
O13—C16—H16109.5O34—C41—C42105.01 (18)
C15—C16—H16109.5O34—C41—C40111.49 (18)
C17—C16—H16109.5C42—C41—C40111.44 (19)
O14—C17—C18105.75 (18)O34—C41—H41109.6
O14—C17—C16109.75 (18)C42—C41—H41109.6
C18—C17—C16113.1 (2)C40—C41—H41109.6
O14—C17—H17109.4O35—C42—C41111.42 (18)
C18—C17—H17109.4O35—C42—H42A109.3
C16—C17—H17109.4C41—C42—H42A109.3
O15—C18—C17107.79 (19)O35—C42—H42B109.3
O15—C18—H18A110.1C41—C42—H42B109.3
C17—C18—H18A110.1H42A—C42—H42B108.0
O15—C18—H18B110.1H37A—O37—H37B105 (2)
C17—C18—H18B110.1H38A—O38—H38B113 (3)
H18A—C18—H18B108.5H39A—O39—H39B103 (3)
O19—C19—O23110.45 (19)H40A—O40—H40B95 (2)
O19—C19—C20110.13 (18)H41A—O41—H41B109 (3)
O23—C19—C20108.29 (18)H42C—O42—H42D111 (3)
O19—C19—H19109.3O44'—O44—O49139.5 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.842.363.065 (3)142
O2—H2A···O45i0.842.002.809 (3)161
O2—H2A···O45i0.841.952.633 (11)138
O5—H5A···O470.841.762.578 (15)163
O5—H5A···O45ii0.842.463.024 (4)125
O5—H5···O45ii0.841.662.47 (3)163
O5—H5···O45ii0.842.403.20 (3)159
O6—H6C···O120.842.042.845 (2)161
O6—H6C···O130.842.312.742 (2)112
O7—H7A···O26i0.842.142.956 (3)165
O11—H11A···O400.841.782.595 (2)163
O12—H12C···O31iii0.841.852.676 (2)167
O15—H15A···O41iv0.842.042.870 (3)172
O16—H16A···O38v0.841.902.733 (3)174
O17—H17A···O110.842.062.889 (2)171
O20—H20A···O430.841.932.725 (3)157
O20—H20A···O500.842.122.80 (3)138
O21—H21A···O270.841.992.810 (2)167
O21—H21A···O280.842.362.794 (2)112
O22—H22A···O160.841.972.776 (2)160
O22—H22A···O230.842.412.821 (2)111
O25—H25A···O39vi0.841.902.743 (3)178
O26—H26A···O37iii0.841.832.668 (3)176
O27—H27A···O5v0.842.092.821 (3)145
O30—H30C···O15vii0.842.062.858 (3)158
O30—H30C···O14vii0.842.372.945 (2)126
O31—H31A···O20.842.012.844 (2)172
O32—H32A···O260.842.042.871 (2)170
O35—H35A···O37i0.842.082.890 (2)161
O36—H36···O11ii0.842.022.854 (2)173
O37—H37A···O60.82 (2)2.05 (2)2.837 (2)160 (3)
O37—H37B···O32viii0.85 (2)1.91 (2)2.753 (2)171 (3)
O38—H38A···O200.83 (2)2.11 (2)2.865 (3)152 (3)
O38—H38B···O30ix0.82 (2)1.86 (2)2.672 (3)176 (3)
O39—H39A···O22ii0.86 (2)1.90 (2)2.749 (3)173 (3)
O39—H39B···O380.86 (2)2.18 (2)2.959 (3)151 (3)
O40—H40A···O41x0.88 (2)2.21 (3)2.787 (3)123 (3)
O40—H40B···O35xi0.87 (2)1.91 (2)2.770 (3)168 (3)
O41—H41A···O200.84 (2)2.13 (2)2.976 (3)175 (3)
O41—H41A···O190.84 (2)2.63 (3)3.048 (2)112 (3)
O41—H41B···O250.84 (2)1.95 (2)2.769 (3)166 (3)
O42—H42C···O21ii0.85 (2)2.09 (2)2.932 (3)173 (3)
O42—H42D···O480.81 (2)1.90 (4)2.53 (3)135 (3)
O42—H42D···O390.81 (2)2.34 (3)3.038 (3)146 (3)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1, z; (iii) x+1, y1/2, z; (iv) x+2, y+1/2, z+1; (v) x, y1, z; (vi) x+2, y1/2, z; (vii) x, y, z1; (viii) x, y, z+1; (ix) x+2, y+1/2, z; (x) x+2, y1/2, z+1; (xi) x, y1, z+1.

Experimental details

Crystal data
Chemical formulaC42H70O35·10.41H2O
Mr1322.53
Crystal system, space groupMonoclinic, P21
Temperature (K)110
a, b, c (Å)20.8353 (4), 9.9397 (1), 15.2043 (3)
β (°) 110.630 (2)
V3)2946.84 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.37 × 0.33 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(ABSPACK in CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.951, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
40031, 7019, 6090
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 0.99
No. of reflections7019
No. of parameters868
No. of restraints36
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), initial coordinates of the β-cyclodextrin scaffold from Lindner & Saenger (1982), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.842.363.065 (3)142
O2—H2A···O45i0.842.002.809 (3)161
O2—H2A···O45'i0.841.952.633 (11)138
O5—H5A···O470.841.762.578 (15)163
O5—H5A···O45ii0.842.463.024 (4)125
O5'—H5'···O45ii0.841.662.47 (3)163
O5'—H5'···O45'ii0.842.403.20 (3)159
O6—H6C···O120.842.042.845 (2)161
O6—H6C···O130.842.312.742 (2)112
O7—H7A···O26i0.842.142.956 (3)165
O11—H11A···O400.841.782.595 (2)163
O12—H12C···O31iii0.841.852.676 (2)167
O15—H15A···O41iv0.842.042.870 (3)172
O16—H16A···O38v0.841.902.733 (3)174
O17—H17A···O110.842.062.889 (2)171
O20—H20A···O430.841.932.725 (3)157
O20—H20A···O500.842.122.80 (3)138
O21—H21A···O270.841.992.810 (2)167
O21—H21A···O280.842.362.794 (2)112
O22—H22A···O160.841.972.776 (2)160
O22—H22A···O230.842.412.821 (2)111
O25—H25A···O39vi0.841.902.743 (3)178
O26—H26A···O37iii0.841.832.668 (3)176
O27—H27A···O5v0.842.092.821 (3)145
O30—H30C···O15vii0.842.062.858 (3)158
O30—H30C···O14vii0.842.372.945 (2)126
O31—H31A···O20.842.012.844 (2)172
O32—H32A···O260.842.042.871 (2)170
O35—H35A···O37i0.842.082.890 (2)161
O36—H36···O11ii0.842.022.854 (2)173
O37—H37A···O60.824 (17)2.05 (2)2.837 (2)160 (3)
O37—H37B···O32viii0.849 (17)1.910 (18)2.753 (2)171 (3)
O38—H38A···O200.828 (17)2.11 (2)2.865 (3)152 (3)
O38—H38B···O30ix0.817 (17)1.857 (18)2.672 (3)176 (3)
O39—H39A···O22ii0.856 (18)1.898 (18)2.749 (3)173 (3)
O39—H39B···O380.861 (18)2.18 (2)2.959 (3)151 (3)
O40—H40A···O41x0.879 (18)2.21 (3)2.787 (3)123 (3)
O40—H40B···O35xi0.869 (18)1.91 (2)2.770 (3)168 (3)
O41—H41A···O200.844 (17)2.134 (18)2.976 (3)175 (3)
O41—H41A···O190.844 (17)2.63 (3)3.048 (2)112 (3)
O41—H41B···O250.840 (18)1.95 (2)2.769 (3)166 (3)
O42—H42C···O21ii0.852 (18)2.09 (2)2.932 (3)173 (3)
O42—H42D···O480.805 (18)1.90 (4)2.53 (3)135 (3)
O42—H42D···O390.805 (18)2.34 (3)3.038 (3)146 (3)
Symmetry codes: (i) x+1, y+1/2, z; (ii) x, y+1, z; (iii) x+1, y1/2, z; (iv) x+2, y+1/2, z+1; (v) x, y1, z; (vi) x+2, y1/2, z; (vii) x, y, z1; (viii) x, y, z+1; (ix) x+2, y+1/2, z; (x) x+2, y1/2, z+1; (xi) x, y1, z+1.
 

Acknowledgements

Professor William S. Sheldrick is gratefully acknowledged for generous support. BBK would like to thank the Alexander von Humboldt Foundation for a fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAtwood, J. L., Davies, J. E. D., MacNicol, D. D. & Vögtle, F. (1996). Comprehensive Supramolecular Chemistry, Vol. 3, 1st ed. Oxford: Pergamon.  Google Scholar
First citationBetzel, C., Saenger, W., Hingerty, B. E. & Brown, G. M. (1984). J. Am. Chem. Soc. 106, 7545–7557.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDamodharan, L., Pattabhi, V. & Nagarajan, K. (2004). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A, 423, 17–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationDel Valle, E. M. M. (2004). Process Biochem. 39, 1033–1046.  Web of Science CrossRef CAS Google Scholar
First citationFujiwara, T., Yamazaki, M., Tomizu, Y., Tokuoka, R., Tomita, K.-I., Matsuo, T., Suga, H. & Saenger, W. (1983). Nippon Kagaku Kaishi (J. Chem. Soc. Jpn), pp. 181–187.  Google Scholar
First citationHamilton, J. A., Steinrauf, L. K. & Van Etten, R. L. (1968). Acta Cryst. B24, 1560–1562.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKurokawa, C., Sekii, M., Ishida, T. & Nogami, T. (2004). Supramol. Chem. 16, 381–384.  Web of Science CSD CrossRef CAS Google Scholar
First citationLindner, K. & Saenger, W. (1978). Angew. Chem. Int. Ed. 17, 694–695.  CrossRef Google Scholar
First citationLindner, K. & Saenger, W. (1982). Carbohydr. Res. 99, 7–16.  CSD CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd., Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. & Koellner, G. (1994). J. Am. Chem. Soc. 116, 5122–5128.  CSD CrossRef CAS Web of Science Google Scholar
First citationStezowski, J. J. & Maclennan, J. M. (1980). ACA Ser. 2, 7, 24.  Google Scholar
First citationSzejtli, J. (1998). Chem. Rev. 98, 1743–1753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSzejtli, J. & Budai, Z. (1977). Acta Chim. Acad. Sci. Hung. 94, 383–390.  CAS Google Scholar
First citationZabel, V., Saenger, W. & Mason, S. A. (1986). J. Am. Chem. Soc. 108, 3664–3673.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3162-o3163
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds