organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3099-o3100

(4-Methyl­phen­yl)[1-(4-methyl­phen­yl)-3-(5-nitro-2-fur­yl)-1H-pyrazol-4-yl]methanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 10 November 2009; accepted 11 November 2009; online 14 November 2009)

In the title pyrazole compound, C22H17N3O4, an intra­molecular C—H⋯O contact generates a seven-membered ring, producing an S(7) ring motif. The furan and pyrazole rings are essentially planar [maximum deviations = 0.004 (1) and 0.004 (2) Å, respectively] and are almost coplanar, making a dihedral angle of 3.75 (10)°. One of the methyl­phenyl groups is inclined to the pyrazole ring, as indicated by the dihedral angle of 48.41 (9)°. In the crystal structure, mol­ecules are linked into chains along [[\overline{1}]10] by C—H⋯O contacts. The crystal structure is further stabilized by ππ inter­actions [centroid–centroid distance = 3.4437 (10) Å].

Related literature

For general background to and applications of the title compound, see: Kalluraya et al. (1994[Kalluraya, B., D'Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017-1022.]); Rai & Kalluraya (2006[Rai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375-378.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]); Sridhar & Perumal (2003[Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483-1488.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a closely related structure, see: Goh et al. (2009[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009). Acta Cryst. E65, o3088-o3089.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H17N3O4

  • Mr = 387.39

  • Triclinic, [P \overline 1]

  • a = 9.6398 (2) Å

  • b = 9.9160 (2) Å

  • c = 10.1815 (2) Å

  • α = 88.051 (1)°

  • β = 85.930 (1)°

  • γ = 70.495 (1)°

  • V = 915.01 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.39 × 0.23 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.989

  • 21316 measured reflections

  • 5261 independent reflections

  • 4131 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.144

  • S = 1.08

  • 5261 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O2 0.93 2.28 2.940 (2) 128
C14—H14A⋯O3i 0.93 2.42 3.352 (2) 175
Symmetry code: (i) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL nd PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazole derivatives are in general well-known nitrogen-containing heterocyclic compounds and various procedures have been developed for their syntheses (Rai & Kalluraya, 2006). The chemistry of pyrazole derivatives has been the subject of much interest due to their importance for various applications, and their widespread potential and proven biological and pharmacological activities (Rai et al., 2008). Steroids containing pyrazole moiety are of interest as psychopharmacological agents. Some alkyl- and aryl-substituted pyrazoles have a sharply pronounced sedative action on the central nervous system. Further, certain alkyl pyrazoles show significant bacteriostatic, bacteriocidal and fungicidal, analgesic and anti-pyretic activities (Sridhar & Perumal, 2003). In continuation of our studies on 1,3-dipolar cyclo-addition reactions of sydnones with dipolarophiles carrying a nitrofuran or nitrothiophene moiety (Kalluraya et al., 1994), we herein report the synthesis of this new pyrazole possessing 5-nitrofuran nucleus, (I).

In (I), an intramolecular C11—H11A···O2 contact (Table 1) generates a seven-membered ring, producing an S(7) ring motif (Fig. 1, Bernstein et al., 1995). The furan (C10-C13/O1) and pyrazole (C8/C9/N2/N1/C14) rings are essentially planar, with maximum deviations of -0.004 (1) and 0.004 (2) Å, respectively, for atoms O1 and C9. These two rings are almost co-planar to one another, making a dihedral angle of 3.75 (10) °. One of the methylbenzene moieties (C1-C6/C21) is inclined to the pyrazole ring, as indicated by the dihedral angle formed between the mean plane through C1-C6/C21 and the C8/C9/N2/N1/C14 pyrazole ring of 48.41 (9) °. The bond lengths and angles observed are comparable to a closely related structure (Goh et al., 2009).

In the crystal structure (Fig. 2), molecules are linked into a 1-D chain along the [110] direction by C14—H14A···O3 contacts (Table 1). The crystal structure is further stabilized by ππ interactions [Cg1···Cg1 = 3.4437 (10) Å; Cg1 is the centroid of the C8/C9/N2/N1/C14 pyrazole ring].

Related literature top

For general background to and applications of the title compound, see: Kalluraya et al. (1994); Rai & Kalluraya (2006); Rai et al. (2008); Sridhar & Perumal (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a closely related structure, see: Goh et al. (2009). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

3-(p-methylphenyl)sydnone (0.01 mol) and 1-(p-methylphenyl)-3-(5-nitro-2-furyl)-2-propyn-1-one (0.01 mol) were dissolved in dry xylene (10 ml) and refluxed for 4 h. After completion of the reaction, the solvent was removed by distillation under reduced pressure. The crude product obtained was purified by recrystallization from ethanol and DMF mixture. The solid obtained was collected by filtration, washed with ethanol and dried. Single crystals were obtained by by slow evaporation of a DMF and ethanol (1:2) solution of (I).

Refinement top

All the hydrogen atoms were placed in their calculated positions, with C—H = 0.93 – 0.96 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. An intramolecular C–H···O contact is shown as dashed line.
[Figure 2] Fig. 2. A view of the crystal structure of (I), down the c axis, showing 1-D chains along the [110] direction. Intermolecular C–H···O contacts are shown as dashed lines.
(4-Methylphenyl)[1-(4-methylphenyl)-3-(5-nitro-2-furyl)-1H-pyrazol- 4-yl]methanone top
Crystal data top
C22H17N3O4Z = 2
Mr = 387.39F(000) = 404
Triclinic, P1Dx = 1.406 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6398 (2) ÅCell parameters from 9115 reflections
b = 9.9160 (2) Åθ = 2.2–29.9°
c = 10.1815 (2) ŵ = 0.10 mm1
α = 88.051 (1)°T = 100 K
β = 85.930 (1)°Block, orange
γ = 70.495 (1)°0.39 × 0.23 × 0.11 mm
V = 915.01 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5261 independent reflections
Radiation source: fine-focus sealed tube4131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 29.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.963, Tmax = 0.989k = 1313
21316 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.6909P]
where P = (Fo2 + 2Fc2)/3
5261 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C22H17N3O4γ = 70.495 (1)°
Mr = 387.39V = 915.01 (3) Å3
Triclinic, P1Z = 2
a = 9.6398 (2) ÅMo Kα radiation
b = 9.9160 (2) ŵ = 0.10 mm1
c = 10.1815 (2) ÅT = 100 K
α = 88.051 (1)°0.39 × 0.23 × 0.11 mm
β = 85.930 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5261 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4131 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.989Rint = 0.032
21316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.08Δρmax = 0.51 e Å3
5261 reflectionsΔρmin = 0.29 e Å3
264 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37746 (12)0.18217 (11)0.54625 (12)0.0192 (3)
O20.27874 (13)0.22439 (13)0.28781 (12)0.0220 (3)
O30.71075 (14)0.45933 (13)0.52077 (13)0.0275 (3)
O40.51656 (15)0.43098 (14)0.65457 (15)0.0329 (3)
N10.00353 (15)0.13036 (14)0.62991 (13)0.0165 (3)
N20.12266 (15)0.01582 (14)0.61610 (14)0.0173 (3)
N30.58353 (16)0.39214 (15)0.56224 (15)0.0218 (3)
C10.11237 (18)0.36641 (17)0.26082 (16)0.0190 (3)
H1A0.13980.29240.30040.023*
C20.21404 (19)0.47566 (19)0.19334 (17)0.0221 (4)
H2A0.30880.47270.18700.026*
C30.17692 (19)0.58885 (18)0.13536 (17)0.0227 (4)
C40.03428 (19)0.59078 (18)0.14428 (17)0.0227 (4)
H4A0.00790.66630.10670.027*
C50.06906 (19)0.48115 (17)0.20874 (17)0.0206 (3)
H5A0.16470.48270.21210.025*
C60.03091 (18)0.36868 (16)0.26861 (16)0.0171 (3)
C70.15071 (18)0.25230 (16)0.33197 (16)0.0169 (3)
C80.11205 (17)0.17708 (16)0.44824 (16)0.0162 (3)
C90.19410 (17)0.04329 (16)0.50694 (16)0.0160 (3)
C100.33574 (18)0.06208 (16)0.46636 (16)0.0167 (3)
C110.44312 (18)0.06981 (17)0.36922 (16)0.0202 (3)
H11A0.44080.00240.30290.024*
C120.55914 (19)0.20056 (17)0.38871 (17)0.0209 (3)
H12A0.64780.23650.33860.025*
C130.51276 (18)0.26116 (16)0.49567 (17)0.0192 (3)
C140.01294 (18)0.22782 (16)0.53221 (16)0.0170 (3)
H14A0.08970.31370.52300.020*
C150.10373 (17)0.13658 (16)0.74182 (16)0.0164 (3)
C160.07593 (19)0.02085 (18)0.82857 (17)0.0216 (3)
H16A0.00390.06190.81150.026*
C170.1685 (2)0.03015 (19)0.94092 (18)0.0246 (4)
H17A0.15040.04820.99800.029*
C180.28747 (19)0.1528 (2)0.97094 (17)0.0227 (4)
C190.31491 (19)0.26609 (18)0.88030 (17)0.0225 (4)
H19A0.39480.34880.89730.027*
C200.22600 (18)0.25837 (17)0.76544 (17)0.0194 (3)
H20A0.24800.33380.70500.023*
C210.2876 (2)0.7069 (2)0.0625 (2)0.0360 (5)
H21A0.28590.79790.09000.054*
H21B0.38440.70110.08160.054*
H21C0.26280.69670.03050.054*
C220.3809 (2)0.1612 (2)1.09795 (19)0.0325 (5)
H22A0.31830.12061.16850.049*
H22B0.44750.10891.08940.049*
H22C0.43630.25951.11670.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0163 (6)0.0132 (5)0.0240 (6)0.0000 (4)0.0004 (4)0.0034 (4)
O20.0183 (6)0.0197 (6)0.0252 (6)0.0038 (5)0.0025 (5)0.0048 (5)
O30.0230 (6)0.0198 (6)0.0288 (7)0.0067 (5)0.0010 (5)0.0002 (5)
O40.0273 (7)0.0218 (6)0.0426 (8)0.0017 (5)0.0048 (6)0.0128 (6)
N10.0154 (6)0.0126 (6)0.0187 (7)0.0015 (5)0.0008 (5)0.0015 (5)
N20.0149 (6)0.0121 (6)0.0216 (7)0.0004 (5)0.0003 (5)0.0007 (5)
N30.0208 (7)0.0152 (6)0.0251 (8)0.0003 (5)0.0016 (6)0.0004 (5)
C10.0196 (8)0.0170 (7)0.0191 (8)0.0052 (6)0.0016 (6)0.0035 (6)
C20.0166 (8)0.0251 (8)0.0218 (8)0.0040 (6)0.0001 (6)0.0048 (7)
C30.0198 (8)0.0226 (8)0.0198 (8)0.0003 (6)0.0008 (6)0.0064 (6)
C40.0242 (8)0.0173 (7)0.0246 (9)0.0053 (6)0.0002 (7)0.0069 (6)
C50.0206 (8)0.0179 (7)0.0223 (8)0.0055 (6)0.0013 (6)0.0029 (6)
C60.0184 (7)0.0138 (7)0.0169 (7)0.0028 (6)0.0004 (6)0.0016 (6)
C70.0192 (8)0.0134 (7)0.0172 (7)0.0045 (6)0.0001 (6)0.0019 (6)
C80.0163 (7)0.0122 (6)0.0186 (8)0.0029 (5)0.0015 (6)0.0015 (5)
C90.0169 (7)0.0122 (6)0.0176 (7)0.0032 (5)0.0009 (6)0.0011 (5)
C100.0177 (7)0.0117 (6)0.0191 (8)0.0028 (6)0.0029 (6)0.0013 (5)
C110.0210 (8)0.0165 (7)0.0186 (8)0.0007 (6)0.0006 (6)0.0014 (6)
C120.0187 (8)0.0182 (7)0.0205 (8)0.0008 (6)0.0002 (6)0.0023 (6)
C130.0168 (8)0.0138 (7)0.0223 (8)0.0010 (6)0.0009 (6)0.0005 (6)
C140.0175 (7)0.0126 (6)0.0189 (8)0.0024 (6)0.0010 (6)0.0023 (5)
C150.0159 (7)0.0155 (7)0.0174 (7)0.0048 (6)0.0003 (6)0.0001 (6)
C160.0211 (8)0.0176 (7)0.0227 (8)0.0026 (6)0.0003 (6)0.0037 (6)
C170.0242 (9)0.0257 (8)0.0226 (9)0.0077 (7)0.0009 (7)0.0079 (7)
C180.0197 (8)0.0304 (9)0.0183 (8)0.0090 (7)0.0004 (6)0.0013 (7)
C190.0174 (8)0.0221 (8)0.0251 (9)0.0032 (6)0.0017 (6)0.0015 (7)
C200.0182 (8)0.0152 (7)0.0229 (8)0.0036 (6)0.0004 (6)0.0028 (6)
C210.0218 (9)0.0388 (11)0.0377 (11)0.0001 (8)0.0009 (8)0.0226 (9)
C220.0253 (10)0.0465 (12)0.0210 (9)0.0070 (8)0.0033 (7)0.0053 (8)
Geometric parameters (Å, º) top
O1—C131.3526 (18)C9—C101.457 (2)
O1—C101.3792 (18)C10—C111.365 (2)
O2—C71.2262 (19)C11—C121.420 (2)
O3—N31.2354 (18)C11—H11A0.9300
O4—N31.2264 (19)C12—C131.346 (2)
N1—C141.349 (2)C12—H12A0.9300
N1—N21.3614 (17)C14—H14A0.9300
N1—C151.430 (2)C15—C161.389 (2)
N2—C91.334 (2)C15—C201.391 (2)
N3—C131.423 (2)C16—C171.386 (2)
C1—C21.394 (2)C16—H16A0.9300
C1—C61.397 (2)C17—C181.390 (2)
C1—H1A0.9300C17—H17A0.9300
C2—C31.389 (2)C18—C191.396 (2)
C2—H2A0.9300C18—C221.511 (2)
C3—C41.391 (3)C19—C201.389 (2)
C3—C211.509 (2)C19—H19A0.9300
C4—C51.388 (2)C20—H20A0.9300
C4—H4A0.9300C21—H21A0.9600
C5—C61.395 (2)C21—H21B0.9600
C5—H5A0.9300C21—H21C0.9600
C6—C71.499 (2)C22—H22A0.9600
C7—C81.470 (2)C22—H22B0.9600
C8—C141.383 (2)C22—H22C0.9600
C8—C91.434 (2)
C13—O1—C10104.73 (12)C12—C11—H11A126.6
C14—N1—N2112.14 (13)C13—C12—C11104.92 (14)
C14—N1—C15128.60 (13)C13—C12—H12A127.5
N2—N1—C15119.22 (13)C11—C12—H12A127.5
C9—N2—N1105.09 (12)C12—C13—O1113.27 (14)
O4—N3—O3124.62 (14)C12—C13—N3130.32 (15)
O4—N3—C13119.26 (14)O1—C13—N3116.41 (14)
O3—N3—C13116.12 (14)N1—C14—C8107.72 (13)
C2—C1—C6119.62 (15)N1—C14—H14A126.1
C2—C1—H1A120.2C8—C14—H14A126.1
C6—C1—H1A120.2C16—C15—C20120.22 (15)
C3—C2—C1121.40 (16)C16—C15—N1119.28 (14)
C3—C2—H2A119.3C20—C15—N1120.49 (14)
C1—C2—H2A119.3C17—C16—C15119.23 (15)
C2—C3—C4118.62 (15)C17—C16—H16A120.4
C2—C3—C21121.14 (17)C15—C16—H16A120.4
C4—C3—C21120.24 (16)C16—C17—C18122.08 (16)
C5—C4—C3120.63 (16)C16—C17—H17A119.0
C5—C4—H4A119.7C18—C17—H17A119.0
C3—C4—H4A119.7C17—C18—C19117.40 (16)
C4—C5—C6120.65 (16)C17—C18—C22120.35 (16)
C4—C5—H5A119.7C19—C18—C22122.25 (16)
C6—C5—H5A119.7C20—C19—C18121.69 (15)
C5—C6—C1119.07 (15)C20—C19—H19A119.2
C5—C6—C7117.08 (15)C18—C19—H19A119.2
C1—C6—C7123.77 (14)C19—C20—C15119.28 (15)
O2—C7—C8121.55 (14)C19—C20—H20A120.4
O2—C7—C6119.45 (14)C15—C20—H20A120.4
C8—C7—C6118.98 (14)C3—C21—H21A109.5
C14—C8—C9103.84 (13)C3—C21—H21B109.5
C14—C8—C7126.10 (14)H21A—C21—H21B109.5
C9—C8—C7129.94 (14)C3—C21—H21C109.5
N2—C9—C8111.20 (13)H21A—C21—H21C109.5
N2—C9—C10117.80 (13)H21B—C21—H21C109.5
C8—C9—C10131.00 (15)C18—C22—H22A109.5
C11—C10—O1110.18 (13)C18—C22—H22B109.5
C11—C10—C9135.41 (15)H22A—C22—H22B109.5
O1—C10—C9114.36 (13)C18—C22—H22C109.5
C10—C11—C12106.90 (14)H22A—C22—H22C109.5
C10—C11—H11A126.6H22B—C22—H22C109.5
C14—N1—N2—C90.31 (18)C8—C9—C10—O1177.61 (16)
C15—N1—N2—C9177.78 (14)O1—C10—C11—C120.40 (19)
C6—C1—C2—C31.2 (3)C9—C10—C11—C12176.65 (19)
C1—C2—C3—C40.8 (3)C10—C11—C12—C130.0 (2)
C1—C2—C3—C21179.96 (17)C11—C12—C13—O10.4 (2)
C2—C3—C4—C50.6 (3)C11—C12—C13—N3179.11 (18)
C21—C3—C4—C5178.65 (17)C10—O1—C13—C120.66 (19)
C3—C4—C5—C61.6 (3)C10—O1—C13—N3178.94 (14)
C4—C5—C6—C11.1 (2)O4—N3—C13—C12175.80 (19)
C4—C5—C6—C7177.95 (15)O3—N3—C13—C124.0 (3)
C2—C1—C6—C50.2 (2)O4—N3—C13—O14.7 (2)
C2—C1—C6—C7176.34 (15)O3—N3—C13—O1175.53 (15)
C5—C6—C7—O229.8 (2)N2—N1—C14—C80.17 (19)
C1—C6—C7—O2146.86 (17)C15—N1—C14—C8178.05 (15)
C5—C6—C7—C8148.48 (16)C9—C8—C14—N10.54 (18)
C1—C6—C7—C834.9 (2)C7—C8—C14—N1176.89 (15)
O2—C7—C8—C14156.53 (17)C14—N1—C15—C16177.34 (17)
C6—C7—C8—C1421.7 (3)N2—N1—C15—C164.9 (2)
O2—C7—C8—C918.8 (3)C14—N1—C15—C204.1 (3)
C6—C7—C8—C9162.94 (16)N2—N1—C15—C20173.63 (15)
N1—N2—C9—C80.67 (18)C20—C15—C16—C172.2 (3)
N1—N2—C9—C10179.90 (14)N1—C15—C16—C17176.38 (16)
C14—C8—C9—N20.77 (19)C15—C16—C17—C181.0 (3)
C7—C8—C9—N2176.92 (16)C16—C17—C18—C192.6 (3)
C14—C8—C9—C10179.89 (17)C16—C17—C18—C22176.83 (18)
C7—C8—C9—C103.7 (3)C17—C18—C19—C201.0 (3)
C13—O1—C10—C110.64 (18)C22—C18—C19—C20178.38 (18)
C13—O1—C10—C9177.09 (14)C18—C19—C20—C152.0 (3)
N2—C9—C10—C11175.27 (19)C16—C15—C20—C193.7 (3)
C8—C9—C10—C115.4 (3)N1—C15—C20—C19174.87 (16)
N2—C9—C10—O11.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.932.282.940 (2)128
C14—H14A···O3i0.932.423.352 (2)175
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC22H17N3O4
Mr387.39
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.6398 (2), 9.9160 (2), 10.1815 (2)
α, β, γ (°)88.051 (1), 85.930 (1), 70.495 (1)
V3)915.01 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.39 × 0.23 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.963, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
21316, 5261, 4131
Rint0.032
(sin θ/λ)max1)0.701
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.144, 1.08
No. of reflections5261
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O20.932.282.940 (2)128
C14—H14A···O3i0.932.423.352 (2)175
Symmetry code: (i) x1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2009). Acta Cryst. E65, o3088–o3089.  Google Scholar
First citationKalluraya, B., D'Souza, A. & Holla, B. S. (1994). Indian J. Chem. Sect. B, 33, 1017–1022.  Google Scholar
First citationRai, N. S. & Kalluraya, B. (2006). Indian J. Chem. Sect. B, 46, 375–378.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3099-o3100
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds