metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(4,6-di­methyl­pyrimidine-2-thiol­ato-κ2N,S)bis­­(thio­urea-κS)nickel(II)

aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China
*Correspondence e-mail: imc@ahut.edu.cn

(Received 10 November 2009; accepted 22 November 2009; online 28 November 2009)

In the title complex, [Ni(C6H7N2S)2(CH4N2S)2], the central Ni atom (located on a centre of inversion) is six-coordinated by two monoanionic N,S-chelating 4,6-dimethyl­pyrimidine-2-thiol­ate ligands and two trans S-coordinating thio­urea groups. The trans-N2S4 donor set defines a distorted octa­hedral geometry.

Related literature

For the significance of transition-metal complexes of heterocyclic thione ligands, see: Dilworth & Hu (1993[Dilworth, J. R. & Hu, J. (1993). Adv. Inorg. Chem. 40, 411-459.]); Figgis & Reynolds (1986[Figgis, B. N. & Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125-130.]); Zamudio-Rivera et al. (2005[Zamudio-Rivera, L. S., George-Tellez, R., López-Mendoza, G., Morales-Pacheco, A., Flores, H., Hupfl, H., Barba, V., Férnandez, F. J., Cabirol, N. & Beltran, H. (2005). Inorg. Chem. 44, 5370-5378.]). For related structures, see: Rodríguez et al. (2007[Rodríguez, A., Sousa-Pedrares, A., García-Vözquez, J. A., Romerro, J., Sousa, A. & Russo, U. (2007). Eur. J. Inorg. Chem. pp. 1444-1456.]); Weininger et al. (1969[Weininger, M. S., O'Connor, J. E. & Amma, E. L. (1969). Inorg. Chem. 8, 424-429.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H7N2S)2(CH4N2S)2]

  • Mr = 489.35

  • Orthorhombic, P b c a

  • a = 15.0306 (2) Å

  • b = 8.5783 (1) Å

  • c = 16.9274 (2) Å

  • V = 2182.57 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.29 mm−1

  • T = 296 K

  • 0.12 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.861, Tmax = 0.901

  • 17226 measured reflections

  • 2495 independent reflections

  • 1542 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.07

  • 2495 reflections

  • 126 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been extensive interest in transition metal complexes of heterocyclic thione ligands, and their thiolate derivatives, due to the potential relevance of such compounds as models of active sites in metalloenzymes and their ability to adopt structures of variable nuclearity (Dilworth & Hu, 1993). Pyrimidine-2-thione (pymtH), a typical heterocyclic thione ligand, is a versatile sulfur donor ligand in terms of coordination modes (Zamudio-Rivera et al., 2005). In this paper, we report the synthesis and crystal structure of a mononuclear nickel(II) complex of 4,6-dimethylpyrimidine-2-thione (dmpymtH), namely trans-Ni(NH2CSNH2)2(dmpymt)2, (I).

In (I), Fig. 1, the nickel atom is located on a centre of inversion. The monoanionic dmpymt ligand functions as a chelating ligand through the S atom and one of the N atoms to form a four-membered NiSCN chelate ring. The Ni—S(dmpymt) and Ni—N bond lengths are 2.4798 (7) and 2.060 (2) Å, respectively. The N—Ni—S(dmpymt) chelate angle of 68.83 (6) ° is similar to those found in the other hexacoordinate metal complexes containing anionic heterocyclic thiolate N,S-chelate ligands (Rodríguez et al., 2007). The heterocyclic thiolate ligand is essentially planar with a maximum deviation of 0.009 (2) Å from the least-squares plane for atom N1. The thiourea ligand is terminally bound to the Ni atom via coordination of the S2 atom. The Ni—S(thiourea) bond length (2.4888 (8) Å) is similar to those in trans-NiCl2(NH2CSNH2)4 (2.470 (1) Å) (Figgis & Reynolds, 1986) and [Ni(NH2CSNH2)6]Br2 (2.506 (1) Å) (Weininger et al., 1969).

Related literature top

For the significance of transition-metal complexes of heterocyclic thione ligands, see: Dilworth & Hu (1993); Figgis & Reynolds (1986); Zamudio-Rivera et al. (2005). For related structures, see: Rodríguez et al. (2007); Weininger et al. (1969).

Experimental top

Treatment of a mixture of dmpymt (28 mg, 0.20 mmol) and thiourea (16 mg, 0.20 mmol) in methanol (10 ml) with Ni(NO3)2.6H2O (30 mg, 0.10 mmol) in methanol (10 ml) gave a light-green solution. The homogeneous solution was stirred for 2 h at 60 °, and then filtered. Slow evaporation of the solvent gave a green solid, which was recrystallized from CH2Cl2/Et2O to give dark-green blocks of (I) Yield: 48 mg, ca. 46% (based on Ni). Anal. Calcd. for C14H22N8NiS4: C, 34.4; H, 4.53; N, 22.9%. Found: C, 34.2; H, 4.50; N, 22.3%.

Refinement top

The N-bound H atoms were located in a difference map but refined with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2-1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level. The Ni atom lies ona centre of inversion and unlabelled atoms are related by the symmetry operation 2-x, -y, 1-z.
trans-Bis(4,6-dimethylpyrimidine-2-thiolato- κ2N,S)bis(thiourea-κS)nickel(II) top
Crystal data top
[Ni(C6H7N2S)2(CH4N2S)2]F(000) = 1016
Mr = 489.35Dx = 1.489 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2124 reflections
a = 15.0306 (2) Åθ = 2.4–20.9°
b = 8.5783 (1) ŵ = 1.29 mm1
c = 16.9274 (2) ÅT = 296 K
V = 2182.57 (5) Å3Bar, green
Z = 40.12 × 0.12 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2495 independent reflections
Radiation source: fine-focus sealed tube1542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
phi and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1219
Tmin = 0.861, Tmax = 0.901k = 1111
17226 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
2495 reflections(Δ/σ)max = 0.001
126 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ni(C6H7N2S)2(CH4N2S)2]V = 2182.57 (5) Å3
Mr = 489.35Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 15.0306 (2) ŵ = 1.29 mm1
b = 8.5783 (1) ÅT = 296 K
c = 16.9274 (2) Å0.12 × 0.12 × 0.08 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2495 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
1542 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.901Rint = 0.061
17226 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
2495 reflectionsΔρmin = 0.30 e Å3
126 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00000.50000.03228 (16)
S11.01100 (5)0.11627 (9)0.36624 (4)0.0379 (2)
S20.99725 (5)0.28135 (9)0.53580 (5)0.0452 (2)
N10.87628 (14)0.0228 (2)0.44894 (13)0.0335 (5)
N20.83917 (16)0.1316 (3)0.32332 (13)0.0456 (6)
N30.92492 (18)0.2365 (3)0.67697 (14)0.0571 (8)
H3A0.90320.26940.72090.068*
H3B0.92670.13820.66720.068*
N40.9512 (2)0.4872 (3)0.64286 (17)0.0654 (8)
H4A0.92910.51620.68730.078*
H4B0.97070.55560.61000.078*
C10.89783 (18)0.0895 (3)0.37873 (16)0.0336 (6)
C20.7691 (2)0.0829 (5)0.54075 (19)0.0657 (10)
H2A0.80900.16870.54910.099*
H2B0.70900.12070.53940.099*
H2C0.77540.00910.58300.099*
C30.7906 (2)0.0057 (3)0.46408 (18)0.0428 (8)
C40.7263 (2)0.0366 (4)0.40970 (19)0.0575 (10)
H40.66640.01860.42000.069*
C50.7525 (2)0.1057 (4)0.34018 (18)0.0554 (9)
C60.6865 (2)0.1604 (5)0.2792 (2)0.0953 (15)
H6A0.71430.23560.24530.143*
H6B0.63640.20740.30520.143*
H6C0.66670.07310.24840.143*
C70.9555 (2)0.3363 (4)0.62490 (17)0.0416 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0289 (3)0.0400 (3)0.0280 (3)0.0001 (2)0.0017 (2)0.0070 (2)
S10.0374 (4)0.0437 (4)0.0327 (4)0.0003 (4)0.0069 (3)0.0059 (3)
S20.0548 (5)0.0385 (4)0.0423 (5)0.0011 (4)0.0081 (4)0.0016 (3)
N10.0282 (12)0.0417 (14)0.0304 (13)0.0005 (11)0.0009 (10)0.0044 (11)
N20.0409 (15)0.0643 (18)0.0317 (13)0.0069 (13)0.0066 (12)0.0038 (12)
N30.085 (2)0.0480 (16)0.0380 (15)0.0051 (16)0.0154 (15)0.0092 (13)
N40.087 (2)0.0444 (18)0.0643 (19)0.0023 (16)0.0046 (18)0.0123 (14)
C10.0341 (16)0.0353 (16)0.0314 (15)0.0052 (13)0.0019 (13)0.0016 (13)
C20.044 (2)0.097 (3)0.056 (2)0.014 (2)0.0104 (18)0.019 (2)
C30.0318 (17)0.059 (2)0.0375 (17)0.0024 (15)0.0056 (14)0.0005 (15)
C40.0306 (18)0.092 (3)0.050 (2)0.0030 (18)0.0033 (16)0.0025 (19)
C50.040 (2)0.084 (3)0.0422 (18)0.0046 (19)0.0097 (15)0.0002 (18)
C60.055 (2)0.167 (4)0.064 (2)0.012 (3)0.025 (2)0.024 (3)
C70.0420 (18)0.0407 (17)0.0421 (17)0.0009 (15)0.0100 (15)0.0058 (16)
Geometric parameters (Å, º) top
Ni1—N1i2.060 (2)N4—C71.330 (3)
Ni1—N12.060 (2)N4—H4A0.8600
Ni1—S12.4798 (7)N4—H4B0.8600
Ni1—S1i2.4798 (7)C2—C31.493 (4)
Ni1—S22.4888 (8)C2—H2A0.9600
Ni1—S2i2.4888 (8)C2—H2B0.9600
S1—C11.729 (3)C2—H2C0.9600
S2—C71.700 (3)C3—C41.383 (4)
N1—C31.336 (3)C4—C51.375 (4)
N1—C11.358 (3)C4—H40.9300
N2—C11.337 (3)C5—C61.506 (4)
N2—C51.352 (4)C6—H6A0.9600
N3—C71.312 (4)C6—H6B0.9600
N3—H3A0.8600C6—H6C0.9600
N3—H3B0.8600
N1i—Ni1—N1180.0N2—C1—N1124.8 (2)
N1i—Ni1—S1111.17 (6)N2—C1—S1121.8 (2)
N1—Ni1—S168.83 (6)N1—C1—S1113.42 (19)
N1i—Ni1—S1i68.83 (6)C3—C2—H2A109.5
N1—Ni1—S1i111.17 (6)C3—C2—H2B109.5
S1—Ni1—S1i180.0H2A—C2—H2B109.5
N1i—Ni1—S290.28 (6)C3—C2—H2C109.5
N1—Ni1—S289.72 (6)H2A—C2—H2C109.5
S1—Ni1—S280.41 (3)H2B—C2—H2C109.5
S1i—Ni1—S299.59 (3)N1—C3—C4119.8 (3)
N1i—Ni1—S2i89.72 (6)N1—C3—C2117.2 (3)
N1—Ni1—S2i90.28 (6)C4—C3—C2123.0 (3)
S1—Ni1—S2i99.59 (3)C5—C4—C3118.9 (3)
S1i—Ni1—S2i80.41 (3)C5—C4—H4120.6
S2—Ni1—S2i180.0C3—C4—H4120.6
C1—S1—Ni176.66 (9)N2—C5—C4121.8 (3)
C7—S2—Ni1119.41 (11)N2—C5—C6116.0 (3)
C3—N1—C1118.3 (2)C4—C5—C6122.1 (3)
C3—N1—Ni1140.6 (2)C5—C6—H6A109.5
C1—N1—Ni1101.06 (16)C5—C6—H6B109.5
C1—N2—C5116.3 (3)H6A—C6—H6B109.5
C7—N3—H3A120.0C5—C6—H6C109.5
C7—N3—H3B120.0H6A—C6—H6C109.5
H3A—N3—H3B120.0H6B—C6—H6C109.5
C7—N4—H4A120.0N3—C7—N4117.7 (3)
C7—N4—H4B120.0N3—C7—S2123.0 (2)
H4A—N4—H4B120.0N4—C7—S2119.3 (2)
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C6H7N2S)2(CH4N2S)2]
Mr489.35
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)15.0306 (2), 8.5783 (1), 16.9274 (2)
V3)2182.57 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.12 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.861, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
17226, 2495, 1542
Rint0.061
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.07
No. of reflections2495
No. of parameters126
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-06–0556 and NCET-08–0618).

References

First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDilworth, J. R. & Hu, J. (1993). Adv. Inorg. Chem. 40, 411–459.  CrossRef Google Scholar
First citationFiggis, B. N. & Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125–130.  CSD CrossRef Web of Science Google Scholar
First citationRodríguez, A., Sousa-Pedrares, A., García-Vözquez, J. A., Romerro, J., Sousa, A. & Russo, U. (2007). Eur. J. Inorg. Chem. pp. 1444–1456.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeininger, M. S., O'Connor, J. E. & Amma, E. L. (1969). Inorg. Chem. 8, 424–429.  CSD CrossRef CAS Web of Science Google Scholar
First citationZamudio-Rivera, L. S., George-Tellez, R., López-Mendoza, G., Morales-Pacheco, A., Flores, H., Hupfl, H., Barba, V., Férnandez, F. J., Cabirol, N. & Beltran, H. (2005). Inorg. Chem. 44, 5370–5378.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds