metal-organic compounds
trans-Bis(4,6-dimethylpyrimidine-2-thiolato-κ2N,S)bis(thiourea-κS)nickel(II)
aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China
*Correspondence e-mail: imc@ahut.edu.cn
In the title complex, [Ni(C6H7N2S)2(CH4N2S)2], the central Ni atom (located on a centre of inversion) is six-coordinated by two monoanionic N,S-chelating 4,6-dimethylpyrimidine-2-thiolate ligands and two trans S-coordinating thiourea groups. The trans-N2S4 donor set defines a distorted octahedral geometry.
Related literature
For the significance of transition-metal complexes of heterocyclic thione ligands, see: Dilworth & Hu (1993); Figgis & Reynolds (1986); Zamudio-Rivera et al. (2005). For related structures, see: Rodríguez et al. (2007); Weininger et al. (1969).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809050223/tk2572sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809050223/tk2572Isup2.hkl
Treatment of a mixture of dmpymt (28 mg, 0.20 mmol) and thiourea (16 mg, 0.20 mmol) in methanol (10 ml) with Ni(NO3)2.6H2O (30 mg, 0.10 mmol) in methanol (10 ml) gave a light-green solution. The homogeneous solution was stirred for 2 h at 60 °, and then filtered. Slow evaporation of the solvent gave a green solid, which was recrystallized from CH2Cl2/Et2O to give dark-green blocks of (I) Yield: 48 mg, ca. 46% (based on Ni). Anal. Calcd. for C14H22N8NiS4: C, 34.4; H, 4.53; N, 22.9%. Found: C, 34.2; H, 4.50; N, 22.3%.
The N-bound H atoms were located in a difference map but refined with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N). The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2-1.5Ueq(C).
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C6H7N2S)2(CH4N2S)2] | F(000) = 1016 |
Mr = 489.35 | Dx = 1.489 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 2124 reflections |
a = 15.0306 (2) Å | θ = 2.4–20.9° |
b = 8.5783 (1) Å | µ = 1.29 mm−1 |
c = 16.9274 (2) Å | T = 296 K |
V = 2182.57 (5) Å3 | Bar, green |
Z = 4 | 0.12 × 0.12 × 0.08 mm |
Bruker SMART CCD area-detector diffractometer | 2495 independent reflections |
Radiation source: fine-focus sealed tube | 1542 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
phi and ω scans | θmax = 27.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −12→19 |
Tmin = 0.861, Tmax = 0.901 | k = −11→11 |
17226 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0412P)2] where P = (Fo2 + 2Fc2)/3 |
2495 reflections | (Δ/σ)max = 0.001 |
126 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Ni(C6H7N2S)2(CH4N2S)2] | V = 2182.57 (5) Å3 |
Mr = 489.35 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 15.0306 (2) Å | µ = 1.29 mm−1 |
b = 8.5783 (1) Å | T = 296 K |
c = 16.9274 (2) Å | 0.12 × 0.12 × 0.08 mm |
Bruker SMART CCD area-detector diffractometer | 2495 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 1542 reflections with I > 2σ(I) |
Tmin = 0.861, Tmax = 0.901 | Rint = 0.061 |
17226 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.27 e Å−3 |
2495 reflections | Δρmin = −0.30 e Å−3 |
126 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 1.0000 | 0.0000 | 0.5000 | 0.03228 (16) | |
S1 | 1.01100 (5) | 0.11627 (9) | 0.36624 (4) | 0.0379 (2) | |
S2 | 0.99725 (5) | 0.28135 (9) | 0.53580 (5) | 0.0452 (2) | |
N1 | 0.87628 (14) | 0.0228 (2) | 0.44894 (13) | 0.0335 (5) | |
N2 | 0.83917 (16) | 0.1316 (3) | 0.32332 (13) | 0.0456 (6) | |
N3 | 0.92492 (18) | 0.2365 (3) | 0.67697 (14) | 0.0571 (8) | |
H3A | 0.9032 | 0.2694 | 0.7209 | 0.068* | |
H3B | 0.9267 | 0.1382 | 0.6672 | 0.068* | |
N4 | 0.9512 (2) | 0.4872 (3) | 0.64286 (17) | 0.0654 (8) | |
H4A | 0.9291 | 0.5162 | 0.6873 | 0.078* | |
H4B | 0.9707 | 0.5556 | 0.6100 | 0.078* | |
C1 | 0.89783 (18) | 0.0895 (3) | 0.37873 (16) | 0.0336 (6) | |
C2 | 0.7691 (2) | −0.0829 (5) | 0.54075 (19) | 0.0657 (10) | |
H2A | 0.8090 | −0.1687 | 0.5491 | 0.099* | |
H2B | 0.7090 | −0.1207 | 0.5394 | 0.099* | |
H2C | 0.7754 | −0.0091 | 0.5830 | 0.099* | |
C3 | 0.7906 (2) | −0.0057 (3) | 0.46408 (18) | 0.0428 (8) | |
C4 | 0.7263 (2) | 0.0366 (4) | 0.40970 (19) | 0.0575 (10) | |
H4 | 0.6664 | 0.0186 | 0.4200 | 0.069* | |
C5 | 0.7525 (2) | 0.1057 (4) | 0.34018 (18) | 0.0554 (9) | |
C6 | 0.6865 (2) | 0.1604 (5) | 0.2792 (2) | 0.0953 (15) | |
H6A | 0.7143 | 0.2356 | 0.2453 | 0.143* | |
H6B | 0.6364 | 0.2074 | 0.3052 | 0.143* | |
H6C | 0.6667 | 0.0731 | 0.2484 | 0.143* | |
C7 | 0.9555 (2) | 0.3363 (4) | 0.62490 (17) | 0.0416 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0289 (3) | 0.0400 (3) | 0.0280 (3) | 0.0001 (2) | 0.0017 (2) | 0.0070 (2) |
S1 | 0.0374 (4) | 0.0437 (4) | 0.0327 (4) | −0.0003 (4) | 0.0069 (3) | 0.0059 (3) |
S2 | 0.0548 (5) | 0.0385 (4) | 0.0423 (5) | −0.0011 (4) | 0.0081 (4) | 0.0016 (3) |
N1 | 0.0282 (12) | 0.0417 (14) | 0.0304 (13) | −0.0005 (11) | 0.0009 (10) | 0.0044 (11) |
N2 | 0.0409 (15) | 0.0643 (18) | 0.0317 (13) | 0.0069 (13) | −0.0066 (12) | 0.0038 (12) |
N3 | 0.085 (2) | 0.0480 (16) | 0.0380 (15) | −0.0051 (16) | 0.0154 (15) | −0.0092 (13) |
N4 | 0.087 (2) | 0.0444 (18) | 0.0643 (19) | 0.0023 (16) | 0.0046 (18) | −0.0123 (14) |
C1 | 0.0341 (16) | 0.0353 (16) | 0.0314 (15) | 0.0052 (13) | −0.0019 (13) | −0.0016 (13) |
C2 | 0.044 (2) | 0.097 (3) | 0.056 (2) | −0.014 (2) | 0.0104 (18) | 0.019 (2) |
C3 | 0.0318 (17) | 0.059 (2) | 0.0375 (17) | −0.0024 (15) | 0.0056 (14) | 0.0005 (15) |
C4 | 0.0306 (18) | 0.092 (3) | 0.050 (2) | 0.0030 (18) | −0.0033 (16) | −0.0025 (19) |
C5 | 0.040 (2) | 0.084 (3) | 0.0422 (18) | 0.0046 (19) | −0.0097 (15) | −0.0002 (18) |
C6 | 0.055 (2) | 0.167 (4) | 0.064 (2) | 0.012 (3) | −0.025 (2) | 0.024 (3) |
C7 | 0.0420 (18) | 0.0407 (17) | 0.0421 (17) | 0.0009 (15) | −0.0100 (15) | −0.0058 (16) |
Ni1—N1i | 2.060 (2) | N4—C7 | 1.330 (3) |
Ni1—N1 | 2.060 (2) | N4—H4A | 0.8600 |
Ni1—S1 | 2.4798 (7) | N4—H4B | 0.8600 |
Ni1—S1i | 2.4798 (7) | C2—C3 | 1.493 (4) |
Ni1—S2 | 2.4888 (8) | C2—H2A | 0.9600 |
Ni1—S2i | 2.4888 (8) | C2—H2B | 0.9600 |
S1—C1 | 1.729 (3) | C2—H2C | 0.9600 |
S2—C7 | 1.700 (3) | C3—C4 | 1.383 (4) |
N1—C3 | 1.336 (3) | C4—C5 | 1.375 (4) |
N1—C1 | 1.358 (3) | C4—H4 | 0.9300 |
N2—C1 | 1.337 (3) | C5—C6 | 1.506 (4) |
N2—C5 | 1.352 (4) | C6—H6A | 0.9600 |
N3—C7 | 1.312 (4) | C6—H6B | 0.9600 |
N3—H3A | 0.8600 | C6—H6C | 0.9600 |
N3—H3B | 0.8600 | ||
N1i—Ni1—N1 | 180.0 | N2—C1—N1 | 124.8 (2) |
N1i—Ni1—S1 | 111.17 (6) | N2—C1—S1 | 121.8 (2) |
N1—Ni1—S1 | 68.83 (6) | N1—C1—S1 | 113.42 (19) |
N1i—Ni1—S1i | 68.83 (6) | C3—C2—H2A | 109.5 |
N1—Ni1—S1i | 111.17 (6) | C3—C2—H2B | 109.5 |
S1—Ni1—S1i | 180.0 | H2A—C2—H2B | 109.5 |
N1i—Ni1—S2 | 90.28 (6) | C3—C2—H2C | 109.5 |
N1—Ni1—S2 | 89.72 (6) | H2A—C2—H2C | 109.5 |
S1—Ni1—S2 | 80.41 (3) | H2B—C2—H2C | 109.5 |
S1i—Ni1—S2 | 99.59 (3) | N1—C3—C4 | 119.8 (3) |
N1i—Ni1—S2i | 89.72 (6) | N1—C3—C2 | 117.2 (3) |
N1—Ni1—S2i | 90.28 (6) | C4—C3—C2 | 123.0 (3) |
S1—Ni1—S2i | 99.59 (3) | C5—C4—C3 | 118.9 (3) |
S1i—Ni1—S2i | 80.41 (3) | C5—C4—H4 | 120.6 |
S2—Ni1—S2i | 180.0 | C3—C4—H4 | 120.6 |
C1—S1—Ni1 | 76.66 (9) | N2—C5—C4 | 121.8 (3) |
C7—S2—Ni1 | 119.41 (11) | N2—C5—C6 | 116.0 (3) |
C3—N1—C1 | 118.3 (2) | C4—C5—C6 | 122.1 (3) |
C3—N1—Ni1 | 140.6 (2) | C5—C6—H6A | 109.5 |
C1—N1—Ni1 | 101.06 (16) | C5—C6—H6B | 109.5 |
C1—N2—C5 | 116.3 (3) | H6A—C6—H6B | 109.5 |
C7—N3—H3A | 120.0 | C5—C6—H6C | 109.5 |
C7—N3—H3B | 120.0 | H6A—C6—H6C | 109.5 |
H3A—N3—H3B | 120.0 | H6B—C6—H6C | 109.5 |
C7—N4—H4A | 120.0 | N3—C7—N4 | 117.7 (3) |
C7—N4—H4B | 120.0 | N3—C7—S2 | 123.0 (2) |
H4A—N4—H4B | 120.0 | N4—C7—S2 | 119.3 (2) |
Symmetry code: (i) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C6H7N2S)2(CH4N2S)2] |
Mr | 489.35 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 296 |
a, b, c (Å) | 15.0306 (2), 8.5783 (1), 16.9274 (2) |
V (Å3) | 2182.57 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.29 |
Crystal size (mm) | 0.12 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.861, 0.901 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17226, 2495, 1542 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.101, 1.07 |
No. of reflections | 2495 |
No. of parameters | 126 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.30 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-06–0556 and NCET-08–0618).
References
Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dilworth, J. R. & Hu, J. (1993). Adv. Inorg. Chem. 40, 411–459. CrossRef Google Scholar
Figgis, B. N. & Reynolds, P. A. (1986). J. Chem. Soc. Dalton Trans. pp. 125–130. CSD CrossRef Web of Science Google Scholar
Rodríguez, A., Sousa-Pedrares, A., García-Vözquez, J. A., Romerro, J., Sousa, A. & Russo, U. (2007). Eur. J. Inorg. Chem. pp. 1444–1456. Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weininger, M. S., O'Connor, J. E. & Amma, E. L. (1969). Inorg. Chem. 8, 424–429. CSD CrossRef CAS Web of Science Google Scholar
Zamudio-Rivera, L. S., George-Tellez, R., López-Mendoza, G., Morales-Pacheco, A., Flores, H., Hupfl, H., Barba, V., Férnandez, F. J., Cabirol, N. & Beltran, H. (2005). Inorg. Chem. 44, 5370–5378. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There has been extensive interest in transition metal complexes of heterocyclic thione ligands, and their thiolate derivatives, due to the potential relevance of such compounds as models of active sites in metalloenzymes and their ability to adopt structures of variable nuclearity (Dilworth & Hu, 1993). Pyrimidine-2-thione (pymtH), a typical heterocyclic thione ligand, is a versatile sulfur donor ligand in terms of coordination modes (Zamudio-Rivera et al., 2005). In this paper, we report the synthesis and crystal structure of a mononuclear nickel(II) complex of 4,6-dimethylpyrimidine-2-thione (dmpymtH), namely trans-Ni(NH2CSNH2)2(dmpymt)2, (I).
In (I), Fig. 1, the nickel atom is located on a centre of inversion. The monoanionic dmpymt ligand functions as a chelating ligand through the S atom and one of the N atoms to form a four-membered NiSCN chelate ring. The Ni—S(dmpymt) and Ni—N bond lengths are 2.4798 (7) and 2.060 (2) Å, respectively. The N—Ni—S(dmpymt) chelate angle of 68.83 (6) ° is similar to those found in the other hexacoordinate metal complexes containing anionic heterocyclic thiolate N,S-chelate ligands (Rodríguez et al., 2007). The heterocyclic thiolate ligand is essentially planar with a maximum deviation of 0.009 (2) Å from the least-squares plane for atom N1. The thiourea ligand is terminally bound to the Ni atom via coordination of the S2 atom. The Ni—S(thiourea) bond length (2.4888 (8) Å) is similar to those in trans-NiCl2(NH2CSNH2)4 (2.470 (1) Å) (Figgis & Reynolds, 1986) and [Ni(NH2CSNH2)6]Br2 (2.506 (1) Å) (Weininger et al., 1969).