organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Allyl-3-(6-chloro-3-pyridylmeth­yl)-6,7-di­hydro-3H-1,2,3-triazolo[4,5-d]pyrimidin-7-imine

aDepartment of Oncology, Renmin Hospital, Yunyang Medical College, Shiyan, 442000, People's Republic of China, and bInstitute of Medicinal Chemistry, Yunyang Medical College, Shiyan, 442000, People's Republic of China
*Correspondence e-mail: youtianya@126.com

(Received 12 November 2009; accepted 13 November 2009; online 25 November 2009)

The title compound, C13H12ClN7, crystallizes with two independent mol­ecules in the asymmetric unit, each with similar geometries. The dihedral angles between the triazole and pyrimidine rings are 0.45 (9) and 1.00 (10)° in the two mol­ecules. A number of N—H⋯N hydrogen bonds co-operate with C–H⋯N contacts, forming a supra­molecular array in the ab plane. C—H⋯π inter­actions are also present. One of the vinyl groups was found to be disordered so that the C(H)=CH2 atoms were resolved over two positions with the major component having a site occupancy factor of 0.539 (4).

Related literature

For general background to 8-aza­purine derivatives, see: Albert (1986[Albert, A. (1986). Adv. Heterocycl. Chem. 39, 117-180.]). For the biological activity of 8-aza­purines, see: Shiokawa et al. (1986[Shiokawa, K., Tsubo, S. & Moriya, K. (1986). EP Patent 192 060.]); Slusarkchyk & Zahler (1989[Slusarkchyk, W. A. & Zahler, R. (1989). EP Patent 335-355.]); Subramanian & Gerwick (1989[Subramanian, M. V. & Gerwick, B. C. (1989). Inhibition of Acetolacetate Synthase by Triazolopyrimidines, in Biocatalysis in Agricultural Biotechnology, edited by J. R. Whitaker & P. E. Sonnet. ACS Symposium Series No. 389, pp. 277-288. Washington, DC, USA: American Chemical Society.]); Vince & Hua (1990[Vince, R. & Hua, M. (1990). US Patent 4 931 559.]); Yamamoto et al. (1994[Yamamoto, I., Yabita, G., Tomizawa, M. & Hissasomi, A. (1994). J. Pestic. Sci. 19, 335-339.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12ClN7

  • Mr = 301.75

  • Triclinic, [P \overline 1]

  • a = 7.2845 (7) Å

  • b = 13.2684 (12) Å

  • c = 14.7069 (14) Å

  • α = 87.351 (1)°

  • β = 81.752 (1)°

  • γ = 82.917 (1)°

  • V = 1395.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.48 × 0.46 × 0.43 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 10116 measured reflections

  • 5052 independent reflections

  • 4277 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.03

  • 5052 reflections

  • 384 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10A⋯N1 0.86 2.44 3.292 (3) 173
N3—H3A⋯N8i 0.86 2.45 3.299 (2) 169
C11—H11A⋯N3 0.97 2.41 2.749 (2) 100
C19—H19⋯N11 0.93 2.59 2.909 (3) 101
C3—H3⋯N13 0.93 2.46 3.309 (2) 151
C11—H11ACg4ii 0.97 2.87 3.446 (2) 119
C24—H24ACg1iii 0.97 2.99 3.851 (3) 149
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x+2, -y+1, -z+1. Cg4 and Cg1 are the centroids of the N4–N6/C1/C4 and N11–N13/C14/C17C4 rings, respectively.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,3-Triazolo[4,5-d]pyrimidines, i.e. 8-azapurines (Albert, 1986), have attracted attention because some of these derivatives exhibit anti-viral (Slusarkchyk & Zahler, 1989), anti-tumour (Slusarkchyk & Zahler, 1989; Vince & Hua, 1990), and herbicidal activities (Subramanian & Gerwick, 1989). Neonicotinoid insecticides, as nicotinic acetylcholine receptor inhibitors, have also attracted increasing attention because of their low toxicity, wide range of activities, and high potency (Shiokawa et al., 1986). It has been found that most biologically active nicotinic compounds contain the 3-aminomethylpyridine group (Yamamoto et al., 1994). Herein, we report the crystal structure of (I), Fig. 1, which was synthesized by introducing pyridine rings into a 1,2,3-triazolo[4,5-d]pyrimidine framework.

Several N—H···N hydrogen bonding contacts, together with C—H···N and C—H···π interactions, lead to the formation of supramolecular arrays in the ab plane, Table 1 and Fig. 2. In addition ππ stacking interactions stabilize the crystal structure, with the shortest centroid-centroid distance of 3.412 (1) Å occurring between centrosymmetrically related planes through the (N4–N6, C1, C4) rings, symmetry operation: 2-x, 1-y, 1-z.

Related literature top

For general background to 8-azapurine derivatives, see: Albert (1986). For the biological activity of 8-azapurines, see: Shiokawa et al. (1986); Slusarkchyk & Zahler (1989); Subramanian & Gerwick (1989); Vince & Hua (1990); Yamamoto et al. (1994). Cg4 and Cg1 are the centroids of the N4–N6/C1/C4 and N11–N13/C14/C17C4

rings, respectively.

Experimental top

Allylamine (1 mmol) in anhydrous acetonitrile (4 ml) was added dropwise to a solution of ethyl-N-3-((6-chloropyridin-3-yl)methyl)-5-cyano-3H-1,2,3- triazol-4-yl-formimidate (1 mmol) in anhydrous acetonitrile (8 ml) at room temperature. The mixture was stirred until the reaction was complete (by thin layer chromatography) and the solution concentrated under vacuum. The residue was recrystallized from anhydrous ethanol to give (I) (yield 87%). Colourless crystals were grown from a dichloromethane and petroleum ether (1:3 v/v) solution of (I).

Refinement top

H atoms were placed in calculated positions, with C—H distances in the range 0.93–0.97 Å and N—H distances of 0.86 Å, and included in the final cycles of refinement using a riding-model approximation, with Uiso(H) = 1.2–1.5Ueq(carrier atom). A rotating group model was used for the methyl groups. Disorder was noted in the C24-C26 vinyl substituent in that two positions were resolved for the C25 atom. From refinement, the major component had a site occupancy factor = 0.539 (4).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of the two independent molecules in (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A view of a supramolecular layer in (I). Hydrogen bonds are shown as dashed lines.
6-Allyl-3-(6-chloro-3-pyridylmethyl)-6,7-dihydro-3H-1,2,3- triazolo[4,5-d]pyrimidin-7-imine top
Crystal data top
C13H12ClN7Z = 4
Mr = 301.75F(000) = 624
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2845 (7) ÅCell parameters from 5848 reflections
b = 13.2684 (12) Åθ = 2.8–28.2°
c = 14.7069 (14) ŵ = 0.28 mm1
α = 87.351 (1)°T = 296 K
β = 81.752 (1)°Block, colorless
γ = 82.917 (1)°0.48 × 0.46 × 0.43 mm
V = 1395.4 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4277 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.5°, θmin = 2.8°
ϕ and ω scansh = 88
10116 measured reflectionsk = 1516
5052 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.5781P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5052 reflectionsΔρmax = 0.35 e Å3
384 parametersΔρmin = 0.36 e Å3
22 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.050 (2)
Crystal data top
C13H12ClN7γ = 82.917 (1)°
Mr = 301.75V = 1395.4 (2) Å3
Triclinic, P1Z = 4
a = 7.2845 (7) ÅMo Kα radiation
b = 13.2684 (12) ŵ = 0.28 mm1
c = 14.7069 (14) ÅT = 296 K
α = 87.351 (1)°0.48 × 0.46 × 0.43 mm
β = 81.752 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4277 reflections with I > 2σ(I)
10116 measured reflectionsRint = 0.015
5052 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04022 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
5052 reflectionsΔρmin = 0.36 e Å3
384 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C240.7964 (4)0.39425 (19)0.67973 (16)0.0710 (7)0.539 (4)
H24A0.90020.42880.69130.085*0.539 (4)
H24B0.68440.42650.71590.085*0.539 (4)
C250.8281 (6)0.2896 (3)0.7111 (3)0.0666 (9)0.539 (4)
H250.93410.25200.68140.080*0.539 (4)
C260.7319 (5)0.2418 (3)0.7732 (2)0.1002 (10)0.539 (4)
H26A0.62390.27470.80580.120*0.539 (4)
H26B0.76920.17380.78640.120*0.539 (4)
C24'0.7964 (4)0.39425 (19)0.67973 (16)0.0710 (7)0.461 (4)
H24C0.92790.37560.68400.085*0.461 (4)
H24D0.76000.45930.70860.085*0.461 (4)
C25'0.6943 (8)0.3207 (4)0.7325 (3)0.0666 (9)0.461 (4)
H25'0.56590.33850.73630.080*0.461 (4)
C26'0.7319 (5)0.2418 (3)0.7732 (2)0.1002 (10)0.461 (4)
H26C0.85610.21590.77460.120*0.461 (4)
H26D0.63680.20680.80340.120*0.461 (4)
C10.7678 (2)1.00162 (12)0.51743 (12)0.0346 (4)
C20.7015 (2)1.02006 (12)0.42960 (12)0.0360 (4)
C30.7187 (3)0.83395 (13)0.43489 (14)0.0448 (4)
H30.69960.77740.40400.054*
C40.8029 (2)0.90450 (12)0.55236 (12)0.0362 (4)
C50.9108 (3)0.83866 (14)0.70333 (13)0.0457 (4)
H5A1.02530.85100.72520.055*
H5B0.93090.77190.67680.055*
C60.5880 (3)0.80588 (16)0.77284 (13)0.0493 (5)
H60.58020.77580.71790.059*
C70.7544 (3)0.84151 (13)0.78275 (12)0.0406 (4)
C80.7665 (3)0.88164 (17)0.86595 (15)0.0588 (5)
H80.87700.90470.87630.071*
C90.6143 (3)0.88762 (18)0.93401 (15)0.0639 (6)
H90.61930.91400.99100.077*
C100.4556 (3)0.85311 (15)0.91408 (13)0.0511 (5)
C110.6112 (3)0.92790 (16)0.30226 (13)0.0484 (5)
H11A0.52760.98990.29600.058*
H11B0.54010.87110.30010.058*
C120.7634 (3)0.9228 (2)0.22394 (16)0.0681 (6)
H120.84530.97190.21930.082*
C130.7911 (4)0.8556 (3)0.1618 (2)0.1080 (12)
H13A0.71210.80530.16410.130*
H13B0.89020.85730.11440.130*
C140.7367 (2)0.51225 (13)0.45004 (13)0.0407 (4)
C150.7607 (3)0.51058 (14)0.54603 (13)0.0434 (4)
C160.7703 (3)0.32703 (15)0.52893 (15)0.0523 (5)
H160.78160.26380.55890.063*
C170.7361 (2)0.42382 (13)0.40561 (13)0.0398 (4)
C180.7094 (3)0.39121 (15)0.23947 (14)0.0514 (5)
H18A0.59960.41680.21140.062*
H18B0.69600.32200.26110.062*
C191.0541 (3)0.40537 (14)0.18782 (14)0.0499 (5)
H191.06500.41720.24860.060*
C200.8801 (3)0.39059 (13)0.16747 (13)0.0440 (4)
C210.8673 (3)0.37205 (16)0.07674 (14)0.0549 (5)
H210.75300.36180.05980.066*
C221.0239 (3)0.36883 (17)0.01182 (15)0.0608 (6)
H221.01840.35580.04930.073*
C231.1885 (3)0.38548 (15)0.04051 (15)0.0546 (5)
Cl10.25485 (10)0.86518 (6)0.99613 (4)0.0824 (2)
Cl21.39020 (10)0.38267 (5)0.04027 (5)0.0812 (2)
N10.7805 (2)0.81572 (11)0.51360 (11)0.0446 (4)
N20.6786 (2)0.92572 (11)0.39244 (10)0.0399 (3)
N30.6629 (2)1.10214 (11)0.38456 (11)0.0450 (4)
H3A0.67661.15910.40690.054*
N40.86503 (19)0.91590 (10)0.63304 (10)0.0384 (3)
N50.8663 (2)1.01637 (11)0.64796 (10)0.0412 (4)
N60.8078 (2)1.06876 (11)0.57735 (10)0.0386 (3)
N70.4377 (2)0.81185 (14)0.83706 (11)0.0541 (4)
N80.7516 (2)0.32692 (11)0.44197 (12)0.0503 (4)
N90.7752 (2)0.40853 (12)0.58091 (11)0.0487 (4)
N100.7707 (3)0.58234 (13)0.59890 (12)0.0575 (5)
H10A0.76180.64400.57770.069*
N110.7175 (2)0.45313 (11)0.31812 (11)0.0451 (4)
N120.7058 (3)0.55636 (12)0.30882 (12)0.0545 (4)
N130.7175 (3)0.59204 (12)0.38966 (12)0.0515 (4)
N141.2090 (2)0.40379 (13)0.12549 (12)0.0551 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C240.0985 (19)0.0654 (15)0.0573 (14)0.0258 (13)0.0265 (13)0.0029 (11)
C250.065 (2)0.079 (2)0.0500 (19)0.0091 (18)0.0045 (17)0.0038 (16)
C260.150 (3)0.093 (2)0.0610 (17)0.037 (2)0.0126 (18)0.0071 (16)
C24'0.0985 (19)0.0654 (15)0.0573 (14)0.0258 (13)0.0265 (13)0.0029 (11)
C25'0.065 (2)0.079 (2)0.0500 (19)0.0091 (18)0.0045 (17)0.0038 (16)
C26'0.150 (3)0.093 (2)0.0610 (17)0.037 (2)0.0126 (18)0.0071 (16)
C10.0295 (8)0.0307 (8)0.0413 (9)0.0047 (6)0.0045 (7)0.0034 (7)
C20.0276 (8)0.0352 (9)0.0432 (10)0.0045 (6)0.0037 (7)0.0052 (7)
C30.0447 (10)0.0334 (9)0.0554 (12)0.0065 (7)0.0007 (8)0.0110 (8)
C40.0312 (8)0.0321 (8)0.0428 (10)0.0045 (6)0.0042 (7)0.0023 (7)
C50.0446 (10)0.0416 (10)0.0485 (11)0.0001 (8)0.0046 (8)0.0060 (8)
C60.0538 (11)0.0573 (12)0.0388 (10)0.0159 (9)0.0041 (8)0.0049 (9)
C70.0466 (10)0.0334 (9)0.0414 (10)0.0049 (7)0.0070 (8)0.0050 (7)
C80.0591 (13)0.0651 (14)0.0568 (13)0.0206 (10)0.0102 (10)0.0094 (10)
C90.0783 (15)0.0719 (15)0.0449 (12)0.0233 (12)0.0028 (11)0.0168 (10)
C100.0619 (12)0.0475 (11)0.0421 (11)0.0126 (9)0.0040 (9)0.0009 (9)
C110.0442 (10)0.0509 (11)0.0512 (11)0.0049 (8)0.0076 (8)0.0114 (9)
C120.0555 (13)0.1005 (19)0.0509 (13)0.0218 (12)0.0025 (10)0.0115 (12)
C130.0756 (18)0.169 (3)0.0780 (19)0.0095 (19)0.0080 (15)0.055 (2)
C140.0416 (9)0.0328 (9)0.0478 (10)0.0046 (7)0.0048 (8)0.0076 (8)
C150.0442 (10)0.0377 (9)0.0494 (11)0.0077 (8)0.0063 (8)0.0065 (8)
C160.0639 (13)0.0353 (10)0.0589 (13)0.0094 (9)0.0093 (10)0.0001 (9)
C170.0397 (9)0.0332 (9)0.0464 (11)0.0049 (7)0.0040 (8)0.0070 (7)
C180.0596 (12)0.0466 (11)0.0516 (12)0.0104 (9)0.0122 (9)0.0133 (9)
C190.0639 (13)0.0438 (11)0.0448 (11)0.0080 (9)0.0150 (9)0.0042 (8)
C200.0581 (11)0.0306 (9)0.0455 (11)0.0040 (8)0.0139 (9)0.0054 (7)
C210.0660 (13)0.0504 (12)0.0518 (12)0.0074 (10)0.0178 (10)0.0096 (9)
C220.0794 (16)0.0599 (13)0.0441 (12)0.0061 (11)0.0110 (11)0.0102 (10)
C230.0660 (13)0.0419 (11)0.0532 (13)0.0013 (9)0.0040 (10)0.0004 (9)
Cl10.0861 (5)0.0912 (5)0.0643 (4)0.0290 (4)0.0286 (3)0.0165 (3)
Cl20.0782 (4)0.0853 (5)0.0717 (4)0.0018 (3)0.0105 (3)0.0013 (3)
N10.0481 (9)0.0305 (8)0.0540 (10)0.0051 (6)0.0016 (7)0.0038 (7)
N20.0381 (8)0.0369 (8)0.0441 (8)0.0049 (6)0.0014 (6)0.0074 (6)
N30.0471 (9)0.0364 (8)0.0506 (9)0.0031 (7)0.0054 (7)0.0007 (7)
N40.0371 (8)0.0338 (7)0.0424 (8)0.0049 (6)0.0010 (6)0.0006 (6)
N50.0408 (8)0.0376 (8)0.0442 (9)0.0071 (6)0.0002 (6)0.0029 (7)
N60.0379 (8)0.0336 (7)0.0431 (8)0.0062 (6)0.0008 (6)0.0028 (6)
N70.0555 (10)0.0642 (11)0.0438 (9)0.0203 (8)0.0004 (8)0.0022 (8)
N80.0652 (11)0.0330 (8)0.0537 (10)0.0085 (7)0.0071 (8)0.0074 (7)
N90.0599 (10)0.0410 (9)0.0482 (9)0.0128 (7)0.0117 (8)0.0012 (7)
N100.0796 (12)0.0424 (9)0.0541 (10)0.0111 (8)0.0146 (9)0.0116 (8)
N110.0544 (9)0.0351 (8)0.0473 (9)0.0064 (7)0.0082 (7)0.0094 (7)
N120.0752 (12)0.0367 (9)0.0527 (10)0.0044 (8)0.0139 (9)0.0055 (7)
N130.0693 (11)0.0337 (8)0.0525 (10)0.0035 (7)0.0124 (8)0.0076 (7)
N140.0595 (11)0.0495 (10)0.0570 (11)0.0068 (8)0.0114 (9)0.0004 (8)
Geometric parameters (Å, º) top
C24—C251.445 (5)C11—H11B0.9700
C24—N91.485 (3)C12—C131.283 (4)
C24—H24A0.9700C12—H120.9300
C24—H24B0.9700C13—H13A0.9300
C25—C261.265 (5)C13—H13B0.9300
C25—H250.9300C14—N131.357 (2)
C26—H26A0.9300C14—C171.370 (2)
C26—H26B0.9300C14—C151.446 (3)
C25'—H25'0.9300C15—N101.272 (2)
C1—N61.366 (2)C15—N91.423 (2)
C1—C41.373 (2)C16—N81.305 (3)
C1—C21.443 (2)C16—N91.360 (2)
C2—N31.271 (2)C16—H160.9300
C2—N21.426 (2)C17—N111.348 (2)
C3—N11.303 (3)C17—N81.367 (2)
C3—N21.361 (2)C18—N111.461 (2)
C3—H30.9300C18—C201.512 (3)
C4—N41.350 (2)C18—H18A0.9700
C4—N11.369 (2)C18—H18B0.9700
C5—N41.465 (2)C19—N141.346 (3)
C5—C71.509 (3)C19—C201.383 (3)
C5—H5A0.9700C19—H190.9300
C5—H5B0.9700C20—C211.386 (3)
C6—N71.337 (3)C21—C221.377 (3)
C6—C71.383 (3)C21—H210.9300
C6—H60.9300C22—C231.372 (3)
C7—C81.375 (3)C22—H220.9300
C8—C91.380 (3)C23—N141.317 (3)
C8—H80.9300C23—Cl21.750 (2)
C9—C101.368 (3)N3—H3A0.8600
C9—H90.9300N4—N51.362 (2)
C10—N71.310 (3)N5—N61.315 (2)
C10—Cl11.753 (2)N10—H10A0.8600
C11—N21.477 (2)N11—N121.364 (2)
C11—C121.478 (3)N12—N131.318 (2)
C11—H11A0.9700
C25—C24—N9114.8 (2)H13A—C13—H13B120.0
C25—C24—H24A108.6N13—C14—C17109.22 (16)
N9—C24—H24A108.6N13—C14—C15129.91 (16)
C25—C24—H24B108.6C17—C14—C15120.84 (16)
N9—C24—H24B108.6N10—C15—N9119.50 (18)
H24A—C24—H24B107.6N10—C15—C14130.94 (18)
C26—C25—C24129.2 (4)N9—C15—C14109.56 (15)
C26—C25—H25115.4N8—C16—N9127.79 (18)
C24—C25—H25115.4N8—C16—H16116.1
C25—C26—H26A120.0N9—C16—H16116.1
C25—C26—H26B120.0N11—C17—N8127.49 (16)
H26A—C26—H26B120.0N11—C17—C14104.94 (15)
N6—C1—C4109.19 (15)N8—C17—C14127.56 (17)
N6—C1—C2129.88 (15)N11—C18—C20113.36 (16)
C4—C1—C2120.92 (15)N11—C18—H18A108.9
N3—C2—N2119.22 (16)C20—C18—H18A108.9
N3—C2—C1131.28 (16)N11—C18—H18B108.9
N2—C2—C1109.50 (14)C20—C18—H18B108.9
N1—C3—N2127.88 (17)H18A—C18—H18B107.7
N1—C3—H3116.1N14—C19—C20124.30 (18)
N2—C3—H3116.1N14—C19—H19117.8
N4—C4—N1127.68 (16)C20—C19—H19117.8
N4—C4—C1104.78 (15)C19—C20—C21116.96 (19)
N1—C4—C1127.53 (17)C19—C20—C18122.96 (17)
N4—C5—C7110.31 (14)C21—C20—C18120.06 (18)
N4—C5—H5A109.6C22—C21—C20119.9 (2)
C7—C5—H5A109.6C22—C21—H21120.0
N4—C5—H5B109.6C20—C21—H21120.0
C7—C5—H5B109.6C23—C22—C21117.6 (2)
H5A—C5—H5B108.1C23—C22—H22121.2
N7—C6—C7124.30 (18)C21—C22—H22121.2
N7—C6—H6117.8N14—C23—C22125.2 (2)
C7—C6—H6117.8N14—C23—Cl2115.96 (17)
C8—C7—C6117.12 (18)C22—C23—Cl2118.84 (17)
C8—C7—C5122.66 (18)C3—N1—C4110.65 (15)
C6—C7—C5120.18 (17)C3—N2—C2123.51 (15)
C7—C8—C9119.8 (2)C3—N2—C11118.39 (15)
C7—C8—H8120.1C2—N2—C11118.09 (15)
C9—C8—H8120.1C2—N3—H3A119.3
C10—C9—C8117.16 (19)C4—N4—N5110.08 (14)
C10—C9—H9121.4C4—N4—C5129.06 (15)
C8—C9—H9121.4N5—N4—C5120.63 (15)
N7—C10—C9125.59 (19)N6—N5—N4107.99 (14)
N7—C10—Cl1115.58 (16)N5—N6—C1107.95 (14)
C9—C10—Cl1118.82 (16)C10—N7—C6115.93 (17)
N2—C11—C12113.26 (16)C16—N8—C17110.70 (16)
N2—C11—H11A108.9C16—N9—C15123.52 (17)
C12—C11—H11A108.9C16—N9—C24120.41 (17)
N2—C11—H11B108.9C15—N9—C24116.08 (16)
C12—C11—H11B108.9C15—N10—H10A119.3
H11A—C11—H11B107.7C17—N11—N12109.97 (14)
C13—C12—C11124.9 (3)C17—N11—C18129.37 (16)
C13—C12—H12117.5N12—N11—C18120.66 (16)
C11—C12—H12117.5N13—N12—N11107.63 (15)
C12—C13—H13A120.0N12—N13—C14108.23 (15)
C12—C13—H13B120.0C23—N14—C19116.03 (18)
N9—C24—C25—C26120.5 (5)N3—C2—N2—C110.2 (2)
N6—C1—C2—N30.1 (3)C1—C2—N2—C11179.95 (14)
C4—C1—C2—N3179.05 (17)C12—C11—N2—C389.6 (2)
N6—C1—C2—N2179.57 (15)C12—C11—N2—C289.2 (2)
C4—C1—C2—N21.3 (2)N1—C4—N4—N5179.62 (15)
N6—C1—C4—N40.42 (17)C1—C4—N4—N50.66 (17)
C2—C1—C4—N4178.88 (14)N1—C4—N4—C55.2 (3)
N6—C1—C4—N1179.86 (15)C1—C4—N4—C5175.05 (15)
C2—C1—C4—N10.8 (3)C7—C5—N4—C4101.8 (2)
N7—C6—C7—C82.9 (3)C7—C5—N4—N572.1 (2)
N7—C6—C7—C5175.14 (18)C4—N4—N5—N60.68 (18)
N4—C5—C7—C8105.4 (2)C5—N4—N5—N6175.62 (14)
N4—C5—C7—C672.5 (2)N4—N5—N6—C10.39 (17)
C6—C7—C8—C91.9 (3)C4—C1—N6—N50.02 (18)
C5—C7—C8—C9176.1 (2)C2—C1—N6—N5179.19 (15)
C7—C8—C9—C100.5 (3)C9—C10—N7—C61.6 (3)
C8—C9—C10—N72.4 (4)Cl1—C10—N7—C6177.57 (15)
C8—C9—C10—Cl1176.73 (18)C7—C6—N7—C101.2 (3)
N2—C11—C12—C13123.7 (3)N9—C16—N8—C170.1 (3)
N13—C14—C15—N100.3 (4)N11—C17—N8—C16179.08 (19)
C17—C14—C15—N10177.7 (2)C14—C17—N8—C160.8 (3)
N13—C14—C15—N9179.85 (18)N8—C16—N9—C150.3 (3)
C17—C14—C15—N91.9 (2)N8—C16—N9—C24179.6 (2)
N13—C14—C17—N110.4 (2)N10—C15—N9—C16178.4 (2)
C15—C14—C17—N11178.00 (16)C14—C15—N9—C161.2 (3)
N13—C14—C17—N8179.76 (18)N10—C15—N9—C241.6 (3)
C15—C14—C17—N81.9 (3)C14—C15—N9—C24178.73 (18)
N14—C19—C20—C210.7 (3)C25—C24—N9—C165.5 (4)
N14—C19—C20—C18179.01 (18)C25—C24—N9—C15174.5 (3)
N11—C18—C20—C1927.4 (3)N8—C17—N11—N12179.79 (18)
N11—C18—C20—C21154.32 (18)C14—C17—N11—N120.3 (2)
C19—C20—C21—C220.1 (3)N8—C17—N11—C180.3 (3)
C18—C20—C21—C22178.26 (19)C14—C17—N11—C18179.60 (18)
C20—C21—C22—C230.6 (3)C20—C18—N11—C17110.6 (2)
C21—C22—C23—N140.4 (3)C20—C18—N11—N1269.3 (2)
C21—C22—C23—Cl2179.65 (16)C17—N11—N12—N130.2 (2)
N2—C3—N1—C40.0 (3)C18—N11—N12—N13179.76 (17)
N4—C4—N1—C3179.58 (17)N11—N12—N13—C140.1 (2)
C1—C4—N1—C30.1 (2)C17—C14—N13—N120.3 (2)
N1—C3—N2—C20.6 (3)C15—C14—N13—N12177.90 (19)
N1—C3—N2—C11179.45 (18)C22—C23—N14—C190.3 (3)
N3—C2—N2—C3179.06 (16)Cl2—C23—N14—C19179.61 (14)
C1—C2—N2—C31.2 (2)C20—C19—N14—C230.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···N10.862.443.292 (3)173
N3—H3A···N8i0.862.453.299 (2)169
C11—H11A···N30.972.412.749 (2)100
C19—H19···N110.932.592.909 (3)101
C3—H3···N130.932.463.309 (2)151
C11—H11A···Cg4ii0.972.873.446 (2)119
C24—H24A···Cg1iii0.972.993.851 (3)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H12ClN7
Mr301.75
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.2845 (7), 13.2684 (12), 14.7069 (14)
α, β, γ (°)87.351 (1), 81.752 (1), 82.917 (1)
V3)1395.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.48 × 0.46 × 0.43
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10116, 5052, 4277
Rint0.015
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.03
No. of reflections5052
No. of parameters384
No. of restraints22
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.36

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10A···N10.862.443.292 (3)173
N3—H3A···N8i0.862.453.299 (2)169.0
C11—H11A···N30.972.412.749 (2)100
C19—H19···N110.932.592.909 (3)101
C3—H3···N130.932.463.309 (2)151
C11—H11A···Cg4ii0.972.873.446 (2)119
C24—H24A···Cg1iii0.972.993.851 (3)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by Yunyang Medical College (grant No. 2007ZQB24).

References

First citationAlbert, A. (1986). Adv. Heterocycl. Chem. 39, 117–180.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiokawa, K., Tsubo, S. & Moriya, K. (1986). EP Patent 192 060.  Google Scholar
First citationSlusarkchyk, W. A. & Zahler, R. (1989). EP Patent 335–355.  Google Scholar
First citationSubramanian, M. V. & Gerwick, B. C. (1989). Inhibition of Acetolacetate Synthase by Triazolopyrimidines, in Biocatalysis in Agricultural Biotechnology, edited by J. R. Whitaker & P. E. Sonnet. ACS Symposium Series No. 389, pp. 277–288. Washington, DC, USA: American Chemical Society.  Google Scholar
First citationVince, R. & Hua, M. (1990). US Patent 4 931 559.  Google Scholar
First citationYamamoto, I., Yabita, G., Tomizawa, M. & Hissasomi, A. (1994). J. Pestic. Sci. 19, 335–339.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds