organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3144-o3145

3-Acetyl-6-chloro-2-methyl-4-phenyl­quinolinium hydrogen sulfate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Science, VIT University, Vellore-632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 13 November 2009; accepted 17 November 2009; online 21 November 2009)

In the title salt, C18H15ClNO+·HSO4, the quinolinium ring system is approximately planar, with a maximum deviation of 0.028 (2) Å, and forms a dihedral angle of 78.43 (4)° with the attached phenyl ring. A pair of inter­molecular O—H⋯O hydrogen bonds links two hydrogen sulfate anions into a dimer, generating a R22(8) ring motif. Inter­molecular N—H⋯O hydrogen bonds and C—H⋯O contacts link the ions into a three-dimensional network. The structure is further stabilized by C—H⋯π inter­actions

Related literature

For the background to and biological activities of quinolines, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]); Maguire et al. (1994[Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129-2137.]); Kalluraya & Sreenivasa (1998[Kalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399-404.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1026.]); Chen et al. (2001[Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374-2377.]). For related structure: see: Fun et al. (2009[Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688-o2689.]). For hydrogen bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15ClNO+·HSO4

  • Mr = 393.83

  • Triclinic, [P \overline 1]

  • a = 7.3912 (1) Å

  • b = 8.8547 (1) Å

  • c = 13.3413 (2) Å

  • α = 92.485 (1)°

  • β = 91.889 (1)°

  • γ = 99.539 (1)°

  • V = 859.55 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100 K

  • 0.28 × 0.18 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.960

  • 20789 measured reflections

  • 5036 independent reflections

  • 4099 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.100

  • S = 1.05

  • 5036 reflections

  • 299 parameters

  • All H-atom parameters refined

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O5i 0.88 (2) 1.86 (2) 2.7200 (19) 168 (2)
O2—H1O2⋯O3ii 0.77 (4) 1.84 (4) 2.6027 (19) 180 (5)
C5—H5A⋯O3iii 0.96 (2) 2.58 (2) 3.304 (2) 132.5 (17)
C15—H15A⋯O4 0.93 (2) 2.55 (2) 3.381 (2) 148.0 (15)
C16—H16C⋯O4iv 0.95 (3) 2.55 (3) 3.332 (2) 139 (2)
C12—H12ACg1v 0.95 (2) 2.74 (2) 3.5884 (18) 149.1 (14)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) -x+1, -y+2, -z+2. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and have found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001). The 3-acetyl-6-chloro-2-methyl-4-phenylquinoline has been synthesized using the method available in the literature (Fun et al., 2009), and then converted into the title salt, (I).

The asymmetric unit of (I), Fig. 1, contains a 3-acetyl-6-chloro-2-methyl-4-phenylquinolinium cation and a hydrogen sulfate anion. One proton is transferred from the hydroxyl group of hydrogen sulfate to the atom N1 of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline during crystallisation resulting in the formation of salt, (I). The quinolinium ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.028 (2) Å at atom C7. This mean plane of the quinolinium ring forms a dihedral angle of 78.43 (4)° with the phenyl ring (C10–C15). Bond lengths and angles are comparable to a closely related structure (Fun et al., 2009).

In the crystal packing (Fig. 2), a pair of O2—H1O2···O3 hydrogen bonds link two hydrogen sulfate anions into dimers, generating R22(8) ring motifs stacked along a axis (Bernstein et al., 1995). A N1—H1N1—O5 hydrogen bond links the dimer with the quinolinium ring system. The ions are linked into a 3-D network by C5—H5A···O3, C15—H15A···O4 and C16—H16C···O4 contacts. The structure is further stabilized by C—H···π interactions (Table 1), involving C1–C6 (centroid Cg1) ring system.

Related literature top

For the background to and biological activities of quinolines, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988); Maguire et al. (1994); Kalluraya & Sreenivasa (1998); Roma et al. (2000); Chen et al. (2001). For related structure: see: Fun et al. (2009). For hydrogen bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C1–C6 ring.

Experimental top

To a solution of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (10 ml, 1 M) in ethanol, copper sulfate solution (1 ml, 1 M) and concentrated H2SO4 (1 ml) was added and then refluxed for about 10 min. The contents were filtered and kept for 92 h for crystallization.

Refinement top

All hydrogen atoms were located from the difference Fourier map and were refined freely (range of C–H = 0.91 (3) - 0.96 (3) Å and see Table 1).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis, showing the 3-D network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
3-Acetyl-6-chloro-2-methyl-4-phenylquinolinium hydrogen sulfate top
Crystal data top
C18H15ClNO+·HSO4Z = 2
Mr = 393.83F(000) = 408
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3912 (1) ÅCell parameters from 6943 reflections
b = 8.8547 (1) Åθ = 2.3–30.0°
c = 13.3413 (2) ŵ = 0.37 mm1
α = 92.485 (1)°T = 100 K
β = 91.889 (1)°Block, colourless
γ = 99.539 (1)°0.28 × 0.18 × 0.11 mm
V = 859.55 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5036 independent reflections
Radiation source: fine-focus sealed tube4099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.902, Tmax = 0.960k = 1212
20789 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0423P)2 + 0.5203P]
where P = (Fo2 + 2Fc2)/3
5036 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C18H15ClNO+·HSO4γ = 99.539 (1)°
Mr = 393.83V = 859.55 (2) Å3
Triclinic, P1Z = 2
a = 7.3912 (1) ÅMo Kα radiation
b = 8.8547 (1) ŵ = 0.37 mm1
c = 13.3413 (2) ÅT = 100 K
α = 92.485 (1)°0.28 × 0.18 × 0.11 mm
β = 91.889 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5036 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4099 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.960Rint = 0.036
20789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.100All H-atom parameters refined
S = 1.05Δρmax = 0.49 e Å3
5036 reflectionsΔρmin = 0.46 e Å3
299 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.07965 (6)1.15710 (5)0.87223 (3)0.02195 (11)
O10.84858 (17)0.74796 (14)0.81500 (10)0.0227 (3)
N10.56245 (19)1.06536 (16)0.64462 (11)0.0144 (3)
C10.3576 (2)0.98834 (18)0.77580 (12)0.0130 (3)
C20.2022 (2)1.01001 (19)0.83015 (13)0.0153 (3)
C30.1135 (2)1.12951 (19)0.80771 (13)0.0161 (3)
C40.1734 (2)1.23192 (19)0.73288 (13)0.0174 (3)
C50.3223 (2)1.21203 (19)0.67852 (13)0.0163 (3)
C60.4145 (2)1.08892 (18)0.69952 (12)0.0138 (3)
C70.6577 (2)0.95245 (18)0.65899 (12)0.0144 (3)
C80.6082 (2)0.85283 (17)0.73720 (12)0.0135 (3)
C90.4607 (2)0.86836 (17)0.79479 (12)0.0128 (3)
C100.4060 (2)0.76276 (17)0.87655 (12)0.0131 (3)
C110.5030 (2)0.78222 (19)0.96875 (13)0.0165 (3)
C120.4476 (2)0.6859 (2)1.04564 (13)0.0178 (3)
C130.2988 (2)0.56871 (19)1.02989 (14)0.0184 (3)
C140.2033 (2)0.54837 (19)0.93779 (14)0.0185 (3)
C150.2549 (2)0.64550 (19)0.86090 (13)0.0163 (3)
C160.8098 (2)0.9359 (2)0.59146 (14)0.0191 (3)
C170.7189 (2)0.72549 (19)0.75589 (13)0.0157 (3)
C180.6537 (3)0.5756 (2)0.69949 (16)0.0243 (4)
S10.21895 (5)0.66550 (5)0.53846 (3)0.01523 (10)
O30.22537 (17)0.50022 (14)0.54897 (10)0.0226 (3)
O20.09255 (19)0.67613 (15)0.44494 (10)0.0218 (3)
O40.14599 (19)0.73228 (17)0.62452 (10)0.0284 (3)
O50.39820 (17)0.74590 (14)0.51153 (10)0.0217 (3)
H2A0.158 (3)0.941 (2)0.8811 (15)0.014 (5)*
H4A0.108 (3)1.313 (2)0.7209 (16)0.024 (5)*
H5A0.363 (3)1.281 (2)0.6270 (16)0.023 (5)*
H11A0.606 (3)0.861 (2)0.9797 (16)0.023 (5)*
H12A0.513 (3)0.700 (2)1.1086 (16)0.019 (5)*
H13A0.258 (3)0.501 (2)1.0818 (17)0.026 (6)*
H14A0.100 (3)0.468 (2)0.9267 (16)0.025 (5)*
H15A0.189 (3)0.634 (2)0.7994 (15)0.016 (5)*
H18A0.736 (3)0.507 (3)0.7149 (18)0.038 (7)*
H18B0.536 (3)0.538 (3)0.7207 (18)0.032 (6)*
H18C0.641 (3)0.587 (3)0.631 (2)0.039 (7)*
H16A0.772 (4)0.847 (3)0.548 (2)0.057 (8)*
H16B0.838 (4)1.017 (3)0.552 (2)0.042 (7)*
H16C0.921 (4)0.922 (3)0.6250 (19)0.039 (7)*
H1N10.592 (3)1.124 (3)0.5945 (18)0.032 (6)*
H1O20.001 (5)0.624 (4)0.447 (2)0.070 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01539 (19)0.0206 (2)0.0306 (2)0.00572 (15)0.00463 (16)0.00319 (17)
O10.0157 (6)0.0233 (6)0.0296 (7)0.0043 (5)0.0031 (5)0.0052 (5)
N10.0154 (6)0.0136 (6)0.0140 (7)0.0013 (5)0.0007 (5)0.0032 (5)
C10.0121 (7)0.0123 (7)0.0143 (7)0.0013 (5)0.0003 (6)0.0004 (6)
C20.0130 (7)0.0154 (7)0.0168 (8)0.0004 (6)0.0000 (6)0.0004 (6)
C30.0126 (7)0.0169 (7)0.0186 (8)0.0031 (6)0.0001 (6)0.0042 (6)
C40.0193 (8)0.0147 (7)0.0188 (8)0.0057 (6)0.0043 (6)0.0009 (6)
C50.0185 (8)0.0147 (7)0.0155 (8)0.0027 (6)0.0027 (6)0.0003 (6)
C60.0140 (7)0.0133 (7)0.0136 (8)0.0011 (6)0.0002 (6)0.0004 (6)
C70.0129 (7)0.0148 (7)0.0147 (8)0.0004 (6)0.0006 (6)0.0001 (6)
C80.0130 (7)0.0124 (7)0.0149 (8)0.0015 (6)0.0005 (6)0.0007 (6)
C90.0123 (7)0.0123 (7)0.0129 (7)0.0002 (6)0.0015 (6)0.0011 (6)
C100.0124 (7)0.0128 (7)0.0151 (8)0.0042 (6)0.0036 (6)0.0017 (6)
C110.0152 (8)0.0163 (7)0.0175 (8)0.0017 (6)0.0002 (6)0.0006 (6)
C120.0189 (8)0.0219 (8)0.0142 (8)0.0079 (6)0.0006 (6)0.0023 (6)
C130.0211 (8)0.0168 (8)0.0198 (9)0.0078 (6)0.0080 (7)0.0056 (6)
C140.0171 (8)0.0157 (8)0.0221 (9)0.0006 (6)0.0055 (7)0.0013 (6)
C150.0144 (7)0.0180 (8)0.0163 (8)0.0017 (6)0.0002 (6)0.0014 (6)
C160.0170 (8)0.0205 (8)0.0202 (9)0.0028 (7)0.0050 (7)0.0049 (7)
C170.0141 (7)0.0175 (8)0.0168 (8)0.0043 (6)0.0046 (6)0.0052 (6)
C180.0292 (10)0.0202 (9)0.0253 (10)0.0104 (8)0.0030 (8)0.0014 (7)
S10.01399 (19)0.01650 (19)0.0145 (2)0.00016 (14)0.00041 (14)0.00325 (14)
O30.0195 (6)0.0172 (6)0.0317 (7)0.0035 (5)0.0023 (5)0.0090 (5)
O20.0197 (6)0.0224 (6)0.0219 (7)0.0004 (5)0.0081 (5)0.0066 (5)
O40.0267 (7)0.0362 (8)0.0224 (7)0.0081 (6)0.0001 (6)0.0061 (6)
O50.0152 (6)0.0243 (6)0.0239 (7)0.0029 (5)0.0023 (5)0.0094 (5)
Geometric parameters (Å, º) top
Cl1—C31.7373 (17)C11—C121.391 (2)
O1—C171.206 (2)C11—H11A0.95 (2)
N1—C71.332 (2)C12—C131.385 (3)
N1—C61.375 (2)C12—H12A0.95 (2)
N1—H1N10.88 (2)C13—C141.386 (3)
C1—C61.410 (2)C13—H13A0.96 (2)
C1—C21.414 (2)C14—C151.390 (2)
C1—C91.433 (2)C14—H14A0.95 (2)
C2—C31.372 (2)C15—H15A0.93 (2)
C2—H2A0.961 (19)C16—H16A0.96 (3)
C3—C41.410 (2)C16—H16B0.91 (3)
C4—C51.369 (2)C16—H16C0.95 (3)
C4—H4A0.95 (2)C17—C181.496 (3)
C5—C61.411 (2)C18—H18A0.95 (3)
C5—H5A0.96 (2)C18—H18B0.94 (3)
C7—C81.414 (2)C18—H18C0.92 (3)
C7—C161.486 (2)S1—O41.4306 (14)
C8—C91.376 (2)S1—O51.4602 (13)
C8—C171.523 (2)S1—O31.4846 (12)
C9—C101.490 (2)S1—O21.5495 (13)
C10—C111.393 (2)O2—H1O20.77 (3)
C10—C151.396 (2)
C7—N1—C6124.00 (14)C10—C11—H11A120.5 (13)
C7—N1—H1N1117.5 (16)C13—C12—C11120.13 (16)
C6—N1—H1N1118.4 (16)C13—C12—H12A120.1 (12)
C6—C1—C2118.86 (14)C11—C12—H12A119.7 (13)
C6—C1—C9118.26 (14)C12—C13—C14120.02 (16)
C2—C1—C9122.87 (15)C12—C13—H13A121.6 (13)
C3—C2—C1118.80 (15)C14—C13—H13A118.4 (14)
C3—C2—H2A120.3 (12)C13—C14—C15120.51 (16)
C1—C2—H2A120.9 (12)C13—C14—H14A120.4 (13)
C2—C3—C4122.16 (16)C15—C14—H14A119.1 (13)
C2—C3—Cl1119.71 (13)C14—C15—C10119.42 (16)
C4—C3—Cl1118.13 (13)C14—C15—H15A121.0 (12)
C5—C4—C3120.02 (15)C10—C15—H15A119.6 (12)
C5—C4—H4A121.3 (13)C7—C16—H16A108.2 (18)
C3—C4—H4A118.7 (13)C7—C16—H16B113.0 (17)
C4—C5—C6118.85 (15)H16A—C16—H16B107 (2)
C4—C5—H5A120.4 (13)C7—C16—H16C114.5 (15)
C6—C5—H5A120.8 (13)H16A—C16—H16C107 (2)
N1—C6—C1118.95 (14)H16B—C16—H16C107 (2)
N1—C6—C5119.76 (14)O1—C17—C18123.85 (16)
C1—C6—C5121.29 (15)O1—C17—C8119.92 (15)
N1—C7—C8118.46 (15)C18—C17—C8116.21 (15)
N1—C7—C16118.53 (15)C17—C18—H18A108.6 (15)
C8—C7—C16123.01 (14)C17—C18—H18B107.4 (15)
C9—C8—C7120.87 (14)H18A—C18—H18B111 (2)
C9—C8—C17120.18 (14)C17—C18—H18C112.1 (15)
C7—C8—C17118.94 (14)H18A—C18—H18C112 (2)
C8—C9—C1119.40 (14)H18B—C18—H18C106 (2)
C8—C9—C10121.29 (14)O4—S1—O5114.16 (8)
C1—C9—C10119.31 (14)O4—S1—O3112.00 (8)
C11—C10—C15120.07 (15)O5—S1—O3110.14 (8)
C11—C10—C9120.25 (14)O4—S1—O2109.30 (8)
C15—C10—C9119.68 (14)O5—S1—O2104.05 (8)
C12—C11—C10119.83 (16)O3—S1—O2106.62 (7)
C12—C11—H11A119.6 (13)S1—O2—H1O2112 (2)
C6—C1—C2—C30.9 (2)C7—C8—C9—C10179.22 (15)
C9—C1—C2—C3179.05 (15)C17—C8—C9—C100.3 (2)
C1—C2—C3—C40.5 (3)C6—C1—C9—C81.4 (2)
C1—C2—C3—Cl1179.14 (12)C2—C1—C9—C8178.66 (15)
C2—C3—C4—C51.3 (3)C6—C1—C9—C10178.62 (14)
Cl1—C3—C4—C5178.37 (13)C2—C1—C9—C101.3 (2)
C3—C4—C5—C60.6 (2)C8—C9—C10—C1178.3 (2)
C7—N1—C6—C10.2 (2)C1—C9—C10—C11101.73 (18)
C7—N1—C6—C5179.97 (15)C8—C9—C10—C15102.73 (19)
C2—C1—C6—N1178.14 (14)C1—C9—C10—C1577.3 (2)
C9—C1—C6—N11.9 (2)C15—C10—C11—C120.9 (2)
C2—C1—C6—C51.6 (2)C9—C10—C11—C12178.09 (15)
C9—C1—C6—C5178.35 (15)C10—C11—C12—C131.5 (3)
C4—C5—C6—N1178.89 (15)C11—C12—C13—C140.8 (3)
C4—C5—C6—C10.8 (2)C12—C13—C14—C150.4 (3)
C6—N1—C7—C81.9 (2)C13—C14—C15—C101.0 (3)
C6—N1—C7—C16177.43 (15)C11—C10—C15—C140.3 (2)
N1—C7—C8—C92.4 (2)C9—C10—C15—C14179.33 (15)
C16—C7—C8—C9176.91 (16)C9—C8—C17—O189.5 (2)
N1—C7—C8—C17178.63 (14)C7—C8—C17—O191.6 (2)
C16—C7—C8—C172.0 (2)C9—C8—C17—C1889.0 (2)
C7—C8—C9—C10.8 (2)C7—C8—C17—C1889.93 (19)
C17—C8—C9—C1179.69 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O5i0.88 (2)1.86 (2)2.7200 (19)168 (2)
O2—H1O2···O3ii0.77 (4)1.84 (4)2.6027 (19)180 (5)
C5—H5A···O3iii0.96 (2)2.58 (2)3.304 (2)132.5 (17)
C15—H15A···O40.93 (2)2.55 (2)3.381 (2)148.0 (15)
C16—H16C···O4iv0.95 (3)2.55 (3)3.332 (2)139 (2)
C12—H12A···Cg1v0.95 (2)2.74 (2)3.5884 (18)149.1 (14)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC18H15ClNO+·HSO4
Mr393.83
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3912 (1), 8.8547 (1), 13.3413 (2)
α, β, γ (°)92.485 (1), 91.889 (1), 99.539 (1)
V3)859.55 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.28 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.902, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
20789, 5036, 4099
Rint0.036
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.100, 1.05
No. of reflections5036
No. of parameters299
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.49, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O5i0.88 (2)1.86 (2)2.7200 (19)168 (2)
O2—H1O2···O3ii0.77 (4)1.84 (4)2.6027 (19)180 (5)
C5—H5A···O3iii0.96 (2)2.58 (2)3.304 (2)132.5 (17)
C15—H15A···O40.93 (2)2.55 (2)3.381 (2)148.0 (15)
C16—H16C···O4iv0.95 (3)2.55 (3)3.332 (2)139 (2)
C12—H12A···Cg1v0.95 (2)2.74 (2)3.5884 (18)149.1 (14)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+2, z+2.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (1001/PFIZIK/811012). VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem. 44, 2374–2377.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688–o2689.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKalluraya, B. & Sreenivasa, S. (1998). Il Farmaco, 53, 399–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem. 37, 2129–2137.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1026.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3144-o3145
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds