organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Di­chloro­phen­yl)maleamic acid

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 13 November 2009; accepted 16 November 2009; online 18 November 2009)

The asymmetric unit of the title compound, C10H7Cl2NO3, contains two independent mol­ecules. The mol­ecular conformation of each maleamic unit is stabilized by an intra­molecular O—H⋯Ocarbon­yl hydrogen bond owing to the anti disposition of the participating entities. The mean planes through the benzene ring and the amido group are inclined at angles of 45.7 (1) and 40.8 (1)° in the two mol­ecules. In the crystal, the independent mol­ecules self-associate via N—H⋯O hydrogen bonds into zigzag ribbons propagating along the a axis. The ribbons are weakly coupled by C—H⋯π and C—H⋯O inter­actions.

Related literature

For related structures, see: Gowda, Foro et al. (2009[Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466.]); Gowda, Tokarčík et al. (2009a[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874.]); Leiserowitz (1976[Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.]); Prasad et al. (2002[Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891-o892.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7Cl2NO3

  • Mr = 260.07

  • Orthorhombic, P b c a

  • a = 13.1618 (2) Å

  • b = 14.6993 (2) Å

  • c = 22.8406 (3) Å

  • V = 4418.95 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 295 K

  • 0.40 × 0.33 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical (CrysAlis Pro ; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.836, Tmax = 0.892

  • 61823 measured reflections

  • 4191 independent reflections

  • 3514 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.079

  • S = 1.08

  • 4191 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.86 2.07 2.8938 (17) 160
N2—H2N⋯O6ii 0.86 2.09 2.9263 (17) 164
O2—H2A⋯O1 0.82 1.68 2.4979 (15) 175
O5—H5A⋯O4 0.82 1.68 2.4846 (15) 166
C7—H7⋯Cg2 0.93 2.77 3.6745 (15) 163
C18—H18⋯O5iii 0.93 2.58 3.4186 (19) 151
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]. Cg2 is the centroid of the C15–C20 ring.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro ; data reduction: CrysAlis Pro ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of studying the effect of ring- and side-chain substitutions on the crystal structures of biologically significant amides (Gowda, Foro et al., 2009; Gowda, Tokarčík et al., 2009a,b; Prasad et al., 2002), the crystal structure of N-(2,5-dichlorophenyl)-maleamic acid (I) has been determined. The asymmetric unit of (I) contains two independent molecules (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other, and those of the amide-O atom and the carbonyl-O atom of the acid segment are also anti to each other. The anti conformation of the C=O and O—H bonds of the acid group is comparatively rare and has been observed previously in N-phenylmaleamic acid (Lo & Ng, 2009), N-(2,6-dimethylphenyl)maleamic acid (Gowda, Tokarčík et al., 2009a), and N-(3,4-dimethylphenyl)maleamic acid (Gowda, Tokarčík et al., 2009b). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976). Each maleamic moiety includes a short intramolecular hydrogen O–H···O bond (Table 1). The mean planes through the phenyl ring and the amido group –NHCO– form dihedral angles of 45.7 (1) and 40.8 (1) ° in the first and second molecules, respectively. All non-hydrogen atoms of the maleamic moiety in the first molecule fit very well to a plane, having the r.m.s. deviation of fitted atoms 0.013 Å. The mean plane through the maleamic moiety in the second molecule has a r.m.s. deviation of 0.098 Å. In the crystal structure, intermolecular N–H···O hydrogen bonds link self-associated molecules into two distinct zig-zag ribbons propagating in the [1 0 0] direction (Fig. 2). These ribbons are weakly coupled by a C—H···π interaction, with atom C7-H acting as the donor and the aryl ring C15—C20 as the acceptor. The centroid of the C15—C20 ring is denoted Cg2 in the Table 1.

Related literature top

For related structures, see: Gowda, Foro et al. (2009); Gowda, Tokarčík et al. (2009a,b); Leiserowitz (1976); Lo & Ng (2009); Prasad et al. (2002). Cg2 is the centroid of the C15–C20 ring.

Experimental top

A solution of maleic anhydride (0.025 mol) in toluene (25 ml) was treated drop-wise with a solution of 2,5-dichloroaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for 30 min and set aside for an additional 30 min at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,5-dichloroaniline. The resultant solid N-(2,5-dichlorophenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. Colourless crystals were grown by slow evaporation (room temperature) of an ethanol solution of (I).

Refinement top

H atoms were visible in difference maps and were subsequently treated as riding atoms with distances 0.93Å (CH), 0.86Å (NH) and 0.82Å (OH). The Uiso(H) values were set at 1.2Ueq(C,N,O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of (I) showing 1-D zig-zag supramolecular chains generated by N—H···O hydrogen bonds (dashed lines). Symmetry codes (i) x - 1/2,y,-z + 1/2; (ii) x - 1/2,y,-z + 3/2.
N-(2,5-Dichlorophenyl)maleamic acid top
Crystal data top
C10H7Cl2NO3F(000) = 2112
Mr = 260.07Dx = 1.564 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 31107 reflections
a = 13.1618 (2) Åθ = 1.6–29.5°
b = 14.6993 (2) ŵ = 0.58 mm1
c = 22.8406 (3) ÅT = 295 K
V = 4418.95 (11) Å3Block, colourless
Z = 160.40 × 0.33 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4191 independent reflections
Graphite monochromator3514 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.029
ω scansθmax = 25.7°, θmin = 2.3°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1616
Tmin = 0.836, Tmax = 0.892k = 1717
61823 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.705P]
where P = (Fo2 + 2Fc2)/3
4191 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H7Cl2NO3V = 4418.95 (11) Å3
Mr = 260.07Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 13.1618 (2) ŵ = 0.58 mm1
b = 14.6993 (2) ÅT = 295 K
c = 22.8406 (3) Å0.40 × 0.33 × 0.24 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
4191 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
3514 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.892Rint = 0.029
61823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
4191 reflectionsΔρmin = 0.25 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73471 (10)0.00911 (10)0.32684 (6)0.0350 (3)
C20.72297 (11)0.04413 (10)0.26641 (7)0.0415 (3)
H20.65670.05630.25470.05*
C30.79490 (12)0.06048 (11)0.22658 (7)0.0441 (4)
H30.76990.08230.19120.053*
C40.90735 (12)0.05043 (11)0.22796 (7)0.0441 (4)
C50.63841 (10)0.02870 (9)0.41515 (6)0.0339 (3)
C60.56221 (11)0.08972 (9)0.43094 (6)0.0364 (3)
C70.54753 (12)0.11305 (10)0.48908 (7)0.0415 (3)
H70.49610.15350.49920.05*
C80.60896 (11)0.07648 (10)0.53206 (7)0.0416 (3)
H80.59940.09180.57120.05*
C90.68479 (11)0.01675 (10)0.51585 (6)0.0374 (3)
C100.70068 (11)0.00722 (10)0.45830 (6)0.0363 (3)
H100.75270.04720.44850.044*
N10.64725 (9)0.00060 (8)0.35603 (5)0.0376 (3)
H1N0.5920.01120.33740.045*
O10.81770 (8)0.01020 (8)0.34893 (4)0.0466 (3)
O20.95290 (9)0.01830 (9)0.27441 (5)0.0616 (3)
H2A0.91050.00620.29950.092*
O30.95614 (9)0.07270 (9)0.18517 (5)0.0602 (3)
Cl10.48365 (3)0.13629 (3)0.378143 (19)0.05137 (12)
Cl20.76232 (3)0.03099 (3)0.569340 (18)0.05382 (13)
C110.54290 (10)0.29825 (10)0.65172 (6)0.0359 (3)
C120.55854 (11)0.30418 (11)0.71586 (6)0.0415 (4)
H120.49980.30710.73840.05*
C130.64578 (11)0.30582 (11)0.74530 (6)0.0420 (3)
H130.63790.310.78570.05*
C140.75294 (11)0.30223 (11)0.72582 (7)0.0410 (3)
C150.41539 (10)0.31099 (9)0.57492 (6)0.0349 (3)
C160.32356 (11)0.27102 (9)0.55905 (7)0.0366 (3)
C170.29294 (12)0.26877 (10)0.50117 (7)0.0444 (4)
H170.23220.24050.4910.053*
C180.35224 (13)0.30829 (11)0.45862 (7)0.0471 (4)
H180.33260.30620.41950.057*
C190.44124 (12)0.35108 (10)0.47466 (7)0.0423 (4)
C200.47341 (11)0.35263 (10)0.53203 (7)0.0397 (3)
H200.53390.38150.54190.048*
N20.44678 (9)0.31040 (9)0.63412 (5)0.0386 (3)
H2N0.40110.31840.66060.046*
O40.61248 (8)0.28343 (8)0.61652 (4)0.0496 (3)
O50.77523 (8)0.28321 (10)0.67163 (5)0.0590 (3)
H5A0.72270.27440.65320.089*
O60.81990 (9)0.31650 (10)0.76074 (6)0.0696 (4)
Cl30.24556 (3)0.22391 (3)0.61215 (2)0.05196 (12)
Cl40.51489 (4)0.40468 (4)0.42195 (2)0.06528 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0294 (8)0.0400 (8)0.0355 (8)0.0015 (6)0.0014 (6)0.0035 (6)
C20.0301 (8)0.0553 (9)0.0390 (8)0.0023 (6)0.0013 (6)0.0030 (7)
C30.0413 (8)0.0563 (9)0.0347 (8)0.0033 (7)0.0042 (7)0.0038 (7)
C40.0385 (8)0.0509 (9)0.0431 (9)0.0007 (7)0.0099 (7)0.0071 (7)
C50.0272 (7)0.0384 (7)0.0362 (7)0.0001 (6)0.0043 (6)0.0015 (6)
C60.0296 (7)0.0363 (7)0.0434 (8)0.0015 (6)0.0032 (6)0.0027 (6)
C70.0366 (8)0.0384 (8)0.0494 (9)0.0028 (6)0.0099 (7)0.0059 (7)
C80.0443 (8)0.0428 (8)0.0376 (8)0.0030 (7)0.0086 (7)0.0067 (6)
C90.0365 (8)0.0389 (8)0.0369 (8)0.0043 (6)0.0000 (6)0.0017 (6)
C100.0303 (7)0.0398 (8)0.0390 (8)0.0046 (6)0.0033 (6)0.0005 (6)
N10.0269 (6)0.0513 (7)0.0346 (6)0.0040 (5)0.0002 (5)0.0021 (5)
O10.0311 (6)0.0708 (7)0.0381 (6)0.0067 (5)0.0014 (5)0.0048 (5)
O20.0323 (6)0.1000 (10)0.0524 (7)0.0044 (6)0.0077 (5)0.0069 (7)
O30.0476 (7)0.0808 (9)0.0523 (7)0.0011 (6)0.0219 (6)0.0027 (6)
Cl10.0399 (2)0.0602 (3)0.0540 (2)0.01679 (18)0.00180 (18)0.00427 (19)
Cl20.0543 (3)0.0671 (3)0.0401 (2)0.0055 (2)0.00553 (18)0.00738 (18)
C110.0255 (7)0.0469 (8)0.0352 (8)0.0010 (6)0.0001 (6)0.0043 (6)
C120.0253 (7)0.0661 (10)0.0331 (8)0.0018 (7)0.0046 (6)0.0053 (7)
C130.0325 (8)0.0634 (9)0.0300 (7)0.0007 (7)0.0005 (6)0.0079 (7)
C140.0284 (7)0.0562 (9)0.0385 (8)0.0011 (6)0.0045 (7)0.0018 (7)
C150.0275 (7)0.0399 (8)0.0371 (8)0.0039 (6)0.0037 (6)0.0061 (6)
C160.0295 (7)0.0344 (7)0.0460 (8)0.0021 (6)0.0031 (6)0.0047 (6)
C170.0375 (8)0.0430 (9)0.0528 (10)0.0028 (7)0.0152 (7)0.0104 (7)
C180.0519 (10)0.0502 (9)0.0393 (8)0.0115 (8)0.0133 (7)0.0074 (7)
C190.0418 (9)0.0452 (8)0.0398 (8)0.0119 (7)0.0017 (7)0.0013 (7)
C200.0309 (8)0.0447 (8)0.0435 (9)0.0003 (6)0.0019 (6)0.0039 (7)
N20.0242 (6)0.0577 (8)0.0339 (6)0.0000 (5)0.0004 (5)0.0058 (5)
O40.0305 (6)0.0850 (8)0.0334 (5)0.0094 (5)0.0014 (5)0.0056 (5)
O50.0273 (6)0.1095 (10)0.0403 (6)0.0074 (6)0.0025 (5)0.0009 (6)
O60.0334 (6)0.1215 (11)0.0539 (7)0.0072 (7)0.0134 (6)0.0058 (7)
Cl30.0386 (2)0.0552 (3)0.0621 (3)0.01198 (17)0.00285 (18)0.00156 (19)
Cl40.0633 (3)0.0810 (3)0.0515 (3)0.0115 (2)0.0144 (2)0.0150 (2)
Geometric parameters (Å, º) top
C1—O11.2364 (17)C11—O41.2380 (17)
C1—N11.3378 (18)C11—N21.3395 (18)
C1—C21.481 (2)C11—C121.482 (2)
C2—C31.335 (2)C12—C131.331 (2)
C2—H20.93C12—H120.93
C3—C41.488 (2)C13—C141.480 (2)
C3—H30.93C13—H130.93
C4—O31.2143 (19)C14—O61.2070 (19)
C4—O21.307 (2)C14—O51.3024 (19)
C5—C101.386 (2)C15—C201.385 (2)
C5—C61.3931 (19)C15—C161.392 (2)
C5—N11.4168 (18)C15—N21.4141 (18)
C6—C71.385 (2)C16—C171.382 (2)
C6—Cl11.7298 (15)C16—Cl31.7334 (15)
C7—C81.381 (2)C17—C181.375 (2)
C7—H70.93C17—H170.93
C8—C91.380 (2)C18—C191.379 (2)
C8—H80.93C18—H180.93
C9—C101.377 (2)C19—C201.377 (2)
C9—Cl21.7397 (15)C19—Cl41.7349 (16)
C10—H100.93C20—H200.93
N1—H1N0.86N2—H2N0.86
O2—H2A0.82O5—H5A0.82
O1—C1—N1122.16 (13)O4—C11—N2121.82 (13)
O1—C1—C2123.52 (13)O4—C11—C12123.35 (13)
N1—C1—C2114.32 (13)N2—C11—C12114.83 (12)
C3—C2—C1128.59 (14)C13—C12—C11128.35 (13)
C3—C2—H2115.7C13—C12—H12115.8
C1—C2—H2115.7C11—C12—H12115.8
C2—C3—C4132.31 (15)C12—C13—C14132.04 (14)
C2—C3—H3113.8C12—C13—H13114
C4—C3—H3113.8C14—C13—H13114
O3—C4—O2120.55 (15)O6—C14—O5120.06 (14)
O3—C4—C3118.83 (15)O6—C14—C13119.40 (14)
O2—C4—C3120.62 (13)O5—C14—C13120.54 (13)
C10—C5—C6119.12 (13)C20—C15—C16118.76 (13)
C10—C5—N1121.19 (12)C20—C15—N2121.22 (13)
C6—C5—N1119.59 (13)C16—C15—N2120.01 (13)
C7—C6—C5120.54 (14)C17—C16—C15120.82 (14)
C7—C6—Cl1119.15 (11)C17—C16—Cl3119.13 (12)
C5—C6—Cl1120.30 (11)C15—C16—Cl3120.05 (11)
C8—C7—C6120.24 (14)C18—C17—C16120.01 (14)
C8—C7—H7119.9C18—C17—H17120
C6—C7—H7119.9C16—C17—H17120
C9—C8—C7118.71 (14)C17—C18—C19119.13 (14)
C9—C8—H8120.6C17—C18—H18120.4
C7—C8—H8120.6C19—C18—H18120.4
C10—C9—C8121.93 (14)C20—C19—C18121.43 (15)
C10—C9—Cl2118.56 (11)C20—C19—Cl4118.75 (13)
C8—C9—Cl2119.50 (11)C18—C19—Cl4119.82 (12)
C9—C10—C5119.44 (13)C19—C20—C15119.76 (14)
C9—C10—H10120.3C19—C20—H20120.1
C5—C10—H10120.3C15—C20—H20120.1
C1—N1—C5125.22 (12)C11—N2—C15124.31 (12)
C1—N1—H1N117.4C11—N2—H2N117.8
C5—N1—H1N117.4C15—N2—H2N117.8
C4—O2—H2A109.5C14—O5—H5A109.5
O1—C1—C2—C30.1 (3)O4—C11—C12—C138.6 (3)
N1—C1—C2—C3179.57 (16)N2—C11—C12—C13171.30 (16)
C1—C2—C3—C40.2 (3)C11—C12—C13—C140.2 (3)
C2—C3—C4—O3178.25 (18)C12—C13—C14—O6170.54 (18)
C2—C3—C4—O21.7 (3)C12—C13—C14—O510.0 (3)
C10—C5—C6—C71.1 (2)C20—C15—C16—C173.2 (2)
N1—C5—C6—C7175.32 (13)N2—C15—C16—C17178.24 (13)
C10—C5—C6—Cl1179.64 (11)C20—C15—C16—Cl3176.38 (11)
N1—C5—C6—Cl13.89 (19)N2—C15—C16—Cl32.19 (18)
C5—C6—C7—C80.5 (2)C15—C16—C17—C181.6 (2)
Cl1—C6—C7—C8179.72 (11)Cl3—C16—C17—C18177.97 (11)
C6—C7—C8—C90.1 (2)C16—C17—C18—C191.0 (2)
C7—C8—C9—C100.0 (2)C17—C18—C19—C202.0 (2)
C7—C8—C9—Cl2179.39 (11)C17—C18—C19—Cl4177.81 (12)
C8—C9—C10—C50.6 (2)C18—C19—C20—C150.4 (2)
Cl2—C9—C10—C5178.73 (11)Cl4—C19—C20—C15179.43 (11)
C6—C5—C10—C91.2 (2)C16—C15—C20—C192.2 (2)
N1—C5—C10—C9175.21 (13)N2—C15—C20—C19179.26 (13)
O1—C1—N1—C53.4 (2)O4—C11—N2—C152.4 (2)
C2—C1—N1—C5176.88 (13)C12—C11—N2—C15177.50 (13)
C10—C5—N1—C145.1 (2)C20—C15—N2—C1139.9 (2)
C6—C5—N1—C1138.55 (15)C16—C15—N2—C11141.55 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.072.8938 (17)160
N2—H2N···O6ii0.862.092.9263 (17)164
O2—H2A···O10.821.682.4979 (15)175
O5—H5A···O40.821.682.4846 (15)166
C7—H7···Cg20.932.773.6745 (15)163
C18—H18···O5iii0.932.583.4186 (19)151
C20—H20···O40.932.462.8477 (18)105
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1/2, y, z+3/2; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H7Cl2NO3
Mr260.07
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)13.1618 (2), 14.6993 (2), 22.8406 (3)
V3)4418.95 (11)
Z16
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.40 × 0.33 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.836, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
61823, 4191, 3514
Rint0.029
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.08
No. of reflections4191
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.862.072.8938 (17)160
N2—H2N···O6ii0.862.092.9263 (17)164
O2—H2A···O10.821.682.4979 (15)175
O5—H5A···O40.821.682.4846 (15)166
C7—H7···Cg20.932.773.6745 (15)163
C18—H18···O5iii0.932.583.4186 (19)151
C20—H20···O40.932.462.8477 (18)105
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1/2, y, z+3/2; (iii) x1/2, y+1/2, z+1.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009a). Acta Cryst. E65, o2807.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009b). Acta Cryst. E65, o2874.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLeiserowitz, L. (1976). Acta Cryst. B32, 775–802.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPrasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds