metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1528-m1529

Di-μ-iodido-bis­­[acet­yl(4-methyl-2,6,7-trioxa-1-phosphabi­cyclo­[2.2.2]octa­ne)(N-nitroso-N-oxidoaniline-κ2O,O′)rhodium(III)]

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: venterja.sci@ufs.ac.za

(Received 12 October 2009; accepted 19 October 2009; online 7 November 2009)

The title compound, [Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2], contains a binuclear centrosymmetric RhIII dimer bridged by iodide anions, with respective Rh⋯Rh and I⋯I distances of 4.1437 (5) and 3.9144 (5) Å. The RhIII atom is in a distorted octa­hedral RhCI2O2P coordination with considerably different Rh—I distances to the bridging iodide anions. There are no classical hydrogen-bonding inter­actions observed for this complex.

Related literature

For the synthesis of similar Rh complexes and information on oxidative addition products, see: Basson et al. (1984[Basson, S. S., Leipoldt, J. G. & Nel, J. T. (1984). Inorg. Chim. Acta, 84, 167-169.]; 1986a[Basson, S. S., Leipoldt, J. G., Roodt, A. & Venter, J. A. (1986a). Inorg. Chim. Acta, 118, 45-46.],b[Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. & Van der Walt, T. J. (1986b). Inorg. Chim. Acta, 119, 35-38.]; 1987[Basson, S. S., Leipoldt, J. G., Roodt, A. & Venter, J. A. (1987). Inorg. Chim. Acta, 128, 31-37.], 1992[Basson, S. S., Leipoldt, J. G., Purcell, W. & Venter, J. A. (1992). Acta Cryst. C48, 171-173.]); Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Res. Dev. Inorg. Chem. 2, 1-23.]); Smit et al. (1994[Smit, D. M. C., Basson, S. S. & Steynberg, E. C. (1994). Rhodium Ex. 7-8, 12-14.]); Steyn et al. (1992[Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.]); Van Leewen & Roobeeck (1981[Van Leewen, P. W. N. M. & Roobeeck, C. F. (1981). Tetrahedron, 37, 1973-1975.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2]

  • Mr = 1116.14

  • Monoclinic, P 21 /c

  • a = 10.055 (2) Å

  • b = 16.944 (3) Å

  • c = 11.149 (2) Å

  • β = 112.75 (3)°

  • V = 1751.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.86 mm−1

  • T = 293 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker SMART CCD 1K diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 0.847

  • 12035 measured reflections

  • 4344 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.075

  • S = 0.95

  • 4344 reflections

  • 220 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—Rh 2.040 (8)
I—Rh 2.6351 (8)
Rh—O3 2.044 (5)
Rh—O2 2.052 (5)
Rh—P 2.186 (2)
Rh—Ii 3.0511 (9)
Rh—I—Rhi 93.30 (2)
C1—Rh—O3 92.9 (3)
C1—Rh—O2 92.2 (3)
O3—Rh—O2 78.74 (19)
O2—Rh—P 172.54 (15)
C1—Rh—I 93.9 (2)
O3—Rh—I 168.12 (14)
C1—Rh—Ii 172.7 (2)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (Fig. 1) is the product of the oxidative addition of CH3I to [Rh(cupf)(CO){P(OCH2)3CCH3}] (cupf = cupferrate, (C6H5N2O2) (Basson et al., 1992) which forms part of a series of rhodium complexes used in the kinetic studies of these reactions (Basson et al., 1984; 1986b; Steyn et al., 1992; Smit et al., 1994; Roodt & Steyn, 2000).

In the structure, the RhIII metal centre is coordinated to two bridging iodide ligands, an acyl ligand, a cyclic phosphite ligand (P(OCH2)3CCH3) and an O,O'-bidentate cupferrate ligand. The coordination sphere around the metal is somewhat distorted from the octahedral geometry and a number of angles deviate significantly from the ideal (see Table 1). This is probably due to the small bite angle of 78.74 (19) ° formed by the cupferrate ligand and the metal centre. The angles, P—Rh—O2 of 172.54 (15) °, P—Rh—I of 96.21 (6)° and P—Rh—C1 of 87.2 (2) ° clearly support the visual impression of Fig. 1 showing the phosphite ligand bent outward to minimise steric interaction. The respective Rh—Rh and I—I distances were calculated as 4.1437 (5) and 3.9144 (5) Å. At 2.186 (2) Å the Rh—P bond lenght is short, compared to the 2.327 (4) Å of [Rh(cupf)(CO)(CH3)(I)(PPh3)] (Basson et al., 1987). This stems from the nature of phosphites to be excellent π-acceptors, causing stronger back donation from rhodium resulting in a shorter Rh—P bond. Also, the sterically small cyclic phosphite ligand allows for a closer fit in the coordination sphere. The Rh-I' distance (symmetry operator -x+1, -y, -z+1), the one trans to the acyl ligand, is significantly longer than the other Rh—I distance, demonstrating the large trans-influence of the acyl ligand. The formation of [Rh(cupf)(COCH3)(µ-I){P(OCH2)3CCH3}]2 can most probably be attributed to the minor steric requirements of both the cupferrate ligand with its narrow bite angle and even more importantly the small cone angle of the phosphite. No classical hydrogen-bonding interactions are observed in the title compound.

Related literature top

For the synthesis of similar Rh complexes and information on oxidative addition products, see: Basson et al. (1984; 1986a,b; 1987, 1992); Roodt & Steyn (2000); Smit et al. (1994); Steyn et al. (1992); Van Leewen & Roobeeck (1981).

Experimental top

The bicyclic phosphite ester, P(OCH2)3CCH3, and [Rh(C6H5N2O2)(CO)2] was prepared according to the respective methods reported previously (Van Leewen & Roobeeck, 1981; Basson et al., 1986a). Equimolar amounts of the cyclic phosphite was mixed with [Rh(C6H5N2O2)(CO)2] in acetone to form [Rh(C6H5N2O2)(CO)(P(OCH2)3CCH3)]. The reaction mixture was concentrated by evaporation after which a tenfold excess of CH3I was added. The container was covered with a perforated plastic film and left to stand for two days at 271 K after which brown-red single crystals of the title compound were isolated.

Refinement top

The methylene, aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93 – 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene and aromatic protons and Uiso(H) = 1.5Ueq(C) for methyl protons respectively. The highest residual electron density was located 0.93 Å from I.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the dimeric compex present in the title compound. Probability level for displacement ellipsoids is 50%. Symmetry-related atoms are generated by the symmetry operator i) -x+1, -y, -z+1.
Di-µ-iodido-bis[acetyl(4-methyl-2,6,7-trioxa-1- phosphabicyclo[2.2.2]octane)(N-nitroso-N-oxidoaniline- κ2O,O')rhodium(III)] top
Crystal data top
[Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2]F(000) = 1080
Mr = 1116.14Dx = 2.116 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 859 reflections
a = 10.055 (2) Åθ = 2.3–28.1°
b = 16.944 (3) ŵ = 2.86 mm1
c = 11.149 (2) ÅT = 293 K
β = 112.75 (3)°Cuboid, brown-red
V = 1751.7 (7) Å30.10 × 0.08 × 0.06 mm
Z = 2
Data collection top
Bruker SMART CCD 1K
diffractometer
4344 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1311
Tmin = 0.763, Tmax = 0.847k = 2214
12035 measured reflectionsl = 1214
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0354P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.93 e Å3
4344 reflectionsΔρmin = 0.50 e Å3
220 parameters
Crystal data top
[Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2]V = 1751.7 (7) Å3
Mr = 1116.14Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.055 (2) ŵ = 2.86 mm1
b = 16.944 (3) ÅT = 293 K
c = 11.149 (2) Å0.10 × 0.08 × 0.06 mm
β = 112.75 (3)°
Data collection top
Bruker SMART CCD 1K
diffractometer
4344 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3129 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.847Rint = 0.051
12035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.075H-atom parameters constrained
S = 0.95Δρmax = 0.93 e Å3
4344 reflectionsΔρmin = 0.50 e Å3
220 parameters
Special details top

Experimental. The intensity data were collected on a Bruker SMART CCD 1 K diffractometer using an exposure time of 20 s/frame. A total of 1315 frames were collected with a frame width of 0.3° covering up to θ = 28.29° with 99.8% completeness accomplished. The first 50 frames were recollected at the end of the data collection to check for decay; none was found.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C60.3530 (9)0.3279 (4)0.4556 (7)0.0389 (18)
C50.3479 (11)0.2939 (5)0.5784 (8)0.053 (2)
H1A0.43290.31020.65220.064*
H1B0.26370.3140.59080.064*
C40.4801 (10)0.2932 (5)0.4347 (9)0.050 (2)
H2A0.48490.31540.35630.06*
H2B0.5680.30730.50720.06*
C70.3688 (11)0.4178 (5)0.4674 (9)0.060 (3)
H5A0.45490.4310.54080.091*
H5B0.28670.43990.4790.091*
H5C0.37470.43890.38970.091*
O10.1009 (7)0.0872 (4)0.5202 (7)0.0698 (19)
C10.1039 (9)0.0605 (5)0.4219 (9)0.045 (2)
C20.0248 (11)0.0383 (7)0.3093 (10)0.074 (3)
H9A0.01070.01290.2790.111*
H9B0.04180.07630.24120.111*
H9C0.10640.03660.33380.111*
I0.43362 (5)0.00049 (3)0.64352 (4)0.03779 (16)
Rh0.29476 (7)0.04485 (4)0.40073 (6)0.03779 (16)
P0.3320 (2)0.17126 (11)0.43763 (19)0.0342 (4)
O20.2452 (6)0.0699 (3)0.3412 (5)0.0382 (12)
N10.1775 (7)0.0076 (4)0.1406 (6)0.0433 (16)
O30.2017 (6)0.0583 (3)0.2034 (5)0.0413 (13)
N20.1995 (7)0.0702 (3)0.2114 (6)0.0366 (14)
C110.1793 (8)0.1465 (4)0.1476 (7)0.0355 (17)
O60.4702 (6)0.2079 (3)0.4228 (6)0.0495 (14)
O40.2045 (6)0.2201 (3)0.3337 (5)0.0511 (15)
O50.3416 (7)0.2073 (3)0.5719 (5)0.0535 (16)
C150.2426 (11)0.2819 (5)0.1644 (10)0.061 (3)
H0100.2920.32490.21310.073*
C160.2521 (10)0.2091 (5)0.2224 (8)0.050 (2)
H0110.30690.20260.31070.061*
C130.0867 (11)0.2264 (6)0.0368 (10)0.068 (3)
H0120.02980.23210.12480.082*
C120.0962 (10)0.1545 (5)0.0197 (8)0.058 (2)
H0130.04630.11140.02880.07*
C140.1587 (11)0.2907 (6)0.0322 (10)0.065 (3)
H0140.15180.33930.00830.078*
C30.2178 (10)0.3068 (4)0.3415 (9)0.051 (2)
H01A0.13460.32970.35220.061*
H01B0.22220.32750.2620.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C60.059 (5)0.025 (4)0.037 (4)0.005 (4)0.022 (4)0.005 (3)
C50.086 (7)0.039 (5)0.042 (5)0.001 (4)0.033 (5)0.008 (4)
C40.064 (6)0.030 (4)0.064 (6)0.013 (4)0.034 (5)0.010 (4)
C70.097 (8)0.035 (5)0.056 (6)0.003 (5)0.036 (5)0.007 (4)
O10.070 (5)0.070 (5)0.085 (5)0.003 (4)0.047 (4)0.006 (4)
C10.050 (5)0.040 (5)0.053 (5)0.010 (4)0.027 (4)0.004 (4)
C20.060 (7)0.091 (8)0.076 (7)0.000 (6)0.032 (6)0.008 (6)
I0.0466 (3)0.0360 (2)0.0325 (2)0.00276 (18)0.01725 (17)0.00362 (16)
Rh0.0466 (3)0.0360 (2)0.0325 (2)0.00276 (18)0.01725 (17)0.00362 (16)
P0.0421 (11)0.0291 (10)0.0324 (10)0.0012 (8)0.0155 (8)0.0015 (8)
O20.058 (3)0.024 (2)0.035 (3)0.008 (2)0.021 (3)0.002 (2)
N10.043 (4)0.051 (4)0.029 (3)0.001 (3)0.007 (3)0.005 (3)
O30.054 (3)0.024 (3)0.044 (3)0.001 (2)0.017 (3)0.007 (2)
N20.046 (4)0.028 (3)0.035 (3)0.003 (3)0.015 (3)0.001 (3)
C110.040 (4)0.030 (4)0.038 (4)0.004 (3)0.017 (3)0.006 (3)
O60.051 (3)0.032 (3)0.076 (4)0.004 (3)0.036 (3)0.007 (3)
O40.056 (4)0.030 (3)0.052 (3)0.009 (3)0.004 (3)0.002 (3)
O50.100 (5)0.032 (3)0.038 (3)0.001 (3)0.038 (3)0.000 (2)
C150.078 (7)0.039 (5)0.064 (6)0.004 (5)0.025 (5)0.002 (4)
C160.067 (6)0.038 (4)0.041 (5)0.002 (4)0.016 (4)0.006 (4)
C130.071 (7)0.066 (7)0.053 (6)0.016 (5)0.008 (5)0.022 (5)
C120.062 (6)0.055 (6)0.041 (5)0.002 (5)0.001 (4)0.005 (4)
C140.067 (7)0.053 (6)0.079 (7)0.021 (5)0.033 (6)0.030 (5)
C30.072 (6)0.026 (4)0.054 (5)0.010 (4)0.022 (5)0.003 (4)
Geometric parameters (Å, º) top
C6—C51.504 (10)Rh—P2.186 (2)
C6—C41.504 (11)Rh—Ii3.0511 (9)
C6—C31.502 (12)P—O61.588 (6)
C6—C71.533 (10)P—O51.585 (5)
C5—O51.468 (9)P—O41.589 (5)
C5—H1A0.97O2—N21.339 (7)
C5—H1B0.97N1—O31.290 (8)
C4—O61.451 (8)N1—N21.289 (8)
C4—H2A0.97N2—C111.451 (9)
C4—H2B0.97C11—C121.352 (10)
C7—H5A0.96C11—C161.374 (11)
C7—H5B0.96O4—C31.474 (9)
C7—H5C0.96C15—C161.379 (11)
O1—C11.196 (10)C15—C141.394 (13)
C1—C21.461 (13)C15—H0100.93
C1—Rh2.040 (8)C16—H0110.93
C2—H9A0.96C13—C141.368 (14)
C2—H9B0.96C13—C121.358 (12)
C2—H9C0.96C13—H0120.93
I—Rh2.6351 (8)C12—H0130.93
I—Rhi3.0511 (9)C14—H0140.93
Rh—O32.044 (5)C3—H01A0.97
Rh—O22.052 (5)C3—H01B0.97
C5—C6—C4108.7 (7)C1—Rh—Ii172.7 (2)
C5—C6—C3110.0 (7)O3—Rh—Ii85.36 (16)
C4—C6—C3108.7 (7)O2—Rh—Ii80.51 (15)
C5—C6—C7110.0 (6)P—Rh—Ii99.96 (6)
C4—C6—C7109.6 (7)I—Rh—Ii86.70 (2)
C3—C6—C7109.8 (6)O6—P—O5102.2 (3)
O5—C5—C6110.7 (6)O6—P—O4102.2 (3)
O5—C5—H1A109.5O5—P—O4103.0 (3)
C6—C5—H1A109.5O6—P—Rh117.2 (2)
O5—C5—H1B109.5O5—P—Rh120.0 (2)
C6—C5—H1B109.5O4—P—Rh110.0 (2)
H1A—C5—H1B108.1N2—O2—Rh107.0 (4)
O6—C4—C6111.8 (6)O3—N1—N2115.4 (6)
O6—C4—H2A109.3N1—O3—Rh113.5 (4)
C6—C4—H2A109.3N1—N2—O2124.3 (6)
O6—C4—H2B109.3N1—N2—C11118.3 (6)
C6—C4—H2B109.3O2—N2—C11117.3 (6)
H2A—C4—H2B107.9C12—C11—C16122.0 (7)
C6—C7—H5A109.5C12—C11—N2121.2 (7)
C6—C7—H5B109.5C16—C11—N2116.7 (7)
H5A—C7—H5B109.5C4—O6—P114.3 (5)
C6—C7—H5C109.5C3—O4—P116.6 (5)
H5A—C7—H5C109.5C5—O5—P114.7 (4)
H5B—C7—H5C109.5C16—C15—C14119.7 (9)
O1—C1—C2123.8 (9)C16—C15—H010120.2
O1—C1—Rh120.9 (7)C14—C15—H010120.2
C2—C1—Rh115.3 (7)C11—C16—C15118.8 (8)
C1—C2—H9A109.5C11—C16—H011120.6
C1—C2—H9B109.5C15—C16—H011120.6
H9A—C2—H9B109.5C14—C13—C12121.8 (9)
C1—C2—H9C109.5C14—C13—H012119.1
H9A—C2—H9C109.5C12—C13—H012119.1
H9B—C2—H9C109.5C11—C12—C13118.9 (9)
Rh—I—Rhi93.30 (2)C11—C12—H013120.6
C1—Rh—O392.9 (3)C13—C12—H013120.6
C1—Rh—O292.2 (3)C13—C14—C15118.8 (8)
O3—Rh—O278.74 (19)C13—C14—H014120.6
C1—Rh—P87.2 (2)C15—C14—H014120.6
O3—Rh—P93.85 (14)O4—C3—C6108.6 (6)
O2—Rh—P172.54 (15)O4—C3—H01A110
C1—Rh—I93.9 (2)C6—C3—H01A110
O3—Rh—I168.12 (14)O4—C3—H01B110
O2—Rh—I91.25 (14)C6—C3—H01B110
P—Rh—I96.21 (6)H01A—C3—H01B108.4
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2]
Mr1116.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.055 (2), 16.944 (3), 11.149 (2)
β (°) 112.75 (3)
V3)1751.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.86
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker SMART CCD 1K
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.763, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
12035, 4344, 3129
Rint0.051
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.075, 0.95
No. of reflections4344
No. of parameters220
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.50

Computer programs: SMART (Bruker, 2004), SAINT-Plus (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—Rh2.040 (8)Rh—P2.186 (2)
I—Rh2.6351 (8)Rh—Ii3.0511 (9)
Rh—O32.044 (5)P—O61.588 (6)
Rh—O22.052 (5)P—O51.585 (5)
Rh—I—Rhi93.30 (2)O2—Rh—P172.54 (15)
C1—Rh—O392.9 (3)C1—Rh—I93.9 (2)
C1—Rh—O292.2 (3)O3—Rh—I168.12 (14)
O3—Rh—O278.74 (19)C1—Rh—Ii172.7 (2)
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The University of the Witwatersrand (Professor D. Levendis and Dr D. G. Billing) is thanked for the use of its diffractometer. Financial assistance by the South African National Research Foundation (grant No. 2038915), the Central Research Fund of the University of the Free State, THRIP and Sasol is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Research Foundation.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBasson, S. S., Leipoldt, J. G. & Nel, J. T. (1984). Inorg. Chim. Acta, 84, 167–169.  CrossRef CAS Web of Science Google Scholar
First citationBasson, S. S., Leipoldt, J. G., Purcell, W. & Venter, J. A. (1992). Acta Cryst. C48, 171–173.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBasson, S. S., Leipoldt, J. G., Roodt, A. & Venter, J. A. (1986a). Inorg. Chim. Acta, 118, 45–46.  CSD CrossRef Web of Science Google Scholar
First citationBasson, S. S., Leipoldt, J. G., Roodt, A. & Venter, J. A. (1987). Inorg. Chim. Acta, 128, 31–37.  CSD CrossRef CAS Web of Science Google Scholar
First citationBasson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. & Van der Walt, T. J. (1986b). Inorg. Chim. Acta, 119, 35–38.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRoodt, A. & Steyn, G. J. J. (2000). Res. Dev. Inorg. Chem. 2, 1–23.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmit, D. M. C., Basson, S. S. & Steynberg, E. C. (1994). Rhodium Ex. 7–8, 12–14.  CAS Google Scholar
First citationSteyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481.  CSD CrossRef CAS Web of Science Google Scholar
First citationVan Leewen, P. W. N. M. & Roobeeck, C. F. (1981). Tetrahedron, 37, 1973–1975.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1528-m1529
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds