metal-organic compounds
Di-μ-iodido-bis[acetyl(4-methyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane)(N-nitroso-N-oxidoaniline-κ2O,O′)rhodium(III)]
aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: venterja.sci@ufs.ac.za
The title compound, [Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2], contains a binuclear centrosymmetric RhIII dimer bridged by iodide anions, with respective Rh⋯Rh and I⋯I distances of 4.1437 (5) and 3.9144 (5) Å. The RhIII atom is in a distorted octahedral RhCI2O2P coordination with considerably different Rh—I distances to the bridging iodide anions. There are no classical hydrogen-bonding interactions observed for this complex.
Related literature
For the synthesis of similar Rh complexes and information on et al. (1984; 1986a,b; 1987, 1992); Roodt & Steyn (2000); Smit et al. (1994); Steyn et al. (1992); Van Leewen & Roobeeck (1981).
products, see: BassonExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2004); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809043050/wm2267sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809043050/wm2267Isup2.hkl
The bicyclic phosphite ester, P(OCH2)3CCH3, and [Rh(C6H5N2O2)(CO)2] was prepared according to the respective methods reported previously (Van Leewen & Roobeeck, 1981; Basson et al., 1986a). Equimolar amounts of the cyclic phosphite was mixed with [Rh(C6H5N2O2)(CO)2] in acetone to form [Rh(C6H5N2O2)(CO)(P(OCH2)3CCH3)]. The reaction mixture was concentrated by evaporation after which a tenfold excess of CH3I was added. The container was covered with a perforated plastic film and left to stand for two days at 271 K after which brown-red single crystals of the title compound were isolated.
The methylene, aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93 – 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene and aromatic protons and Uiso(H) = 1.5Ueq(C) for methyl protons respectively. The highest residual electron density was located 0.93 Å from I.
Data collection: SMART (Bruker, 2004); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).[Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2] | F(000) = 1080 |
Mr = 1116.14 | Dx = 2.116 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 859 reflections |
a = 10.055 (2) Å | θ = 2.3–28.1° |
b = 16.944 (3) Å | µ = 2.86 mm−1 |
c = 11.149 (2) Å | T = 293 K |
β = 112.75 (3)° | Cuboid, brown-red |
V = 1751.7 (7) Å3 | 0.10 × 0.08 × 0.06 mm |
Z = 2 |
Bruker SMART CCD 1K diffractometer | 4344 independent reflections |
Radiation source: fine-focus sealed tube | 3129 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −13→11 |
Tmin = 0.763, Tmax = 0.847 | k = −22→14 |
12035 measured reflections | l = −12→14 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0354P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.075 | (Δ/σ)max < 0.001 |
S = 0.95 | Δρmax = 0.93 e Å−3 |
4344 reflections | Δρmin = −0.50 e Å−3 |
220 parameters |
[Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2] | V = 1751.7 (7) Å3 |
Mr = 1116.14 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.055 (2) Å | µ = 2.86 mm−1 |
b = 16.944 (3) Å | T = 293 K |
c = 11.149 (2) Å | 0.10 × 0.08 × 0.06 mm |
β = 112.75 (3)° |
Bruker SMART CCD 1K diffractometer | 4344 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3129 reflections with I > 2σ(I) |
Tmin = 0.763, Tmax = 0.847 | Rint = 0.051 |
12035 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 1 restraint |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.93 e Å−3 |
4344 reflections | Δρmin = −0.50 e Å−3 |
220 parameters |
Experimental. The intensity data were collected on a Bruker SMART CCD 1 K diffractometer using an exposure time of 20 s/frame. A total of 1315 frames were collected with a frame width of 0.3° covering up to θ = 28.29° with 99.8% completeness accomplished. The first 50 frames were recollected at the end of the data collection to check for decay; none was found. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C6 | 0.3530 (9) | 0.3279 (4) | 0.4556 (7) | 0.0389 (18) | |
C5 | 0.3479 (11) | 0.2939 (5) | 0.5784 (8) | 0.053 (2) | |
H1A | 0.4329 | 0.3102 | 0.6522 | 0.064* | |
H1B | 0.2637 | 0.314 | 0.5908 | 0.064* | |
C4 | 0.4801 (10) | 0.2932 (5) | 0.4347 (9) | 0.050 (2) | |
H2A | 0.4849 | 0.3154 | 0.3563 | 0.06* | |
H2B | 0.568 | 0.3073 | 0.5072 | 0.06* | |
C7 | 0.3688 (11) | 0.4178 (5) | 0.4674 (9) | 0.060 (3) | |
H5A | 0.4549 | 0.431 | 0.5408 | 0.091* | |
H5B | 0.2867 | 0.4399 | 0.479 | 0.091* | |
H5C | 0.3747 | 0.4389 | 0.3897 | 0.091* | |
O1 | 0.1009 (7) | 0.0872 (4) | 0.5202 (7) | 0.0698 (19) | |
C1 | 0.1039 (9) | 0.0605 (5) | 0.4219 (9) | 0.045 (2) | |
C2 | −0.0248 (11) | 0.0383 (7) | 0.3093 (10) | 0.074 (3) | |
H9A | −0.0107 | −0.0129 | 0.279 | 0.111* | |
H9B | −0.0418 | 0.0763 | 0.2412 | 0.111* | |
H9C | −0.1064 | 0.0366 | 0.3338 | 0.111* | |
I | 0.43362 (5) | −0.00049 (3) | 0.64352 (4) | 0.03779 (16) | |
Rh | 0.29476 (7) | 0.04485 (4) | 0.40073 (6) | 0.03779 (16) | |
P | 0.3320 (2) | 0.17126 (11) | 0.43763 (19) | 0.0342 (4) | |
O2 | 0.2452 (6) | −0.0699 (3) | 0.3412 (5) | 0.0382 (12) | |
N1 | 0.1775 (7) | −0.0076 (4) | 0.1406 (6) | 0.0433 (16) | |
O3 | 0.2017 (6) | 0.0583 (3) | 0.2034 (5) | 0.0413 (13) | |
N2 | 0.1995 (7) | −0.0702 (3) | 0.2114 (6) | 0.0366 (14) | |
C11 | 0.1793 (8) | −0.1465 (4) | 0.1476 (7) | 0.0355 (17) | |
O6 | 0.4702 (6) | 0.2079 (3) | 0.4228 (6) | 0.0495 (14) | |
O4 | 0.2045 (6) | 0.2201 (3) | 0.3337 (5) | 0.0511 (15) | |
O5 | 0.3416 (7) | 0.2073 (3) | 0.5719 (5) | 0.0535 (16) | |
C15 | 0.2426 (11) | −0.2819 (5) | 0.1644 (10) | 0.061 (3) | |
H010 | 0.292 | −0.3249 | 0.2131 | 0.073* | |
C16 | 0.2521 (10) | −0.2091 (5) | 0.2224 (8) | 0.050 (2) | |
H011 | 0.3069 | −0.2026 | 0.3107 | 0.061* | |
C13 | 0.0867 (11) | −0.2264 (6) | −0.0368 (10) | 0.068 (3) | |
H012 | 0.0298 | −0.2321 | −0.1248 | 0.082* | |
C12 | 0.0962 (10) | −0.1545 (5) | 0.0197 (8) | 0.058 (2) | |
H013 | 0.0463 | −0.1114 | −0.0288 | 0.07* | |
C14 | 0.1587 (11) | −0.2907 (6) | 0.0322 (10) | 0.065 (3) | |
H014 | 0.1518 | −0.3393 | −0.0083 | 0.078* | |
C3 | 0.2178 (10) | 0.3068 (4) | 0.3415 (9) | 0.051 (2) | |
H01A | 0.1346 | 0.3297 | 0.3522 | 0.061* | |
H01B | 0.2222 | 0.3275 | 0.262 | 0.061* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C6 | 0.059 (5) | 0.025 (4) | 0.037 (4) | 0.005 (4) | 0.022 (4) | 0.005 (3) |
C5 | 0.086 (7) | 0.039 (5) | 0.042 (5) | 0.001 (4) | 0.033 (5) | −0.008 (4) |
C4 | 0.064 (6) | 0.030 (4) | 0.064 (6) | −0.013 (4) | 0.034 (5) | −0.010 (4) |
C7 | 0.097 (8) | 0.035 (5) | 0.056 (6) | 0.003 (5) | 0.036 (5) | 0.007 (4) |
O1 | 0.070 (5) | 0.070 (5) | 0.085 (5) | 0.003 (4) | 0.047 (4) | −0.006 (4) |
C1 | 0.050 (5) | 0.040 (5) | 0.053 (5) | 0.010 (4) | 0.027 (4) | 0.004 (4) |
C2 | 0.060 (7) | 0.091 (8) | 0.076 (7) | 0.000 (6) | 0.032 (6) | 0.008 (6) |
I | 0.0466 (3) | 0.0360 (2) | 0.0325 (2) | 0.00276 (18) | 0.01725 (17) | 0.00362 (16) |
Rh | 0.0466 (3) | 0.0360 (2) | 0.0325 (2) | 0.00276 (18) | 0.01725 (17) | 0.00362 (16) |
P | 0.0421 (11) | 0.0291 (10) | 0.0324 (10) | 0.0012 (8) | 0.0155 (8) | 0.0015 (8) |
O2 | 0.058 (3) | 0.024 (2) | 0.035 (3) | −0.008 (2) | 0.021 (3) | −0.002 (2) |
N1 | 0.043 (4) | 0.051 (4) | 0.029 (3) | 0.001 (3) | 0.007 (3) | 0.005 (3) |
O3 | 0.054 (3) | 0.024 (3) | 0.044 (3) | 0.001 (2) | 0.017 (3) | 0.007 (2) |
N2 | 0.046 (4) | 0.028 (3) | 0.035 (3) | −0.003 (3) | 0.015 (3) | 0.001 (3) |
C11 | 0.040 (4) | 0.030 (4) | 0.038 (4) | −0.004 (3) | 0.017 (3) | −0.006 (3) |
O6 | 0.051 (3) | 0.032 (3) | 0.076 (4) | −0.004 (3) | 0.036 (3) | −0.007 (3) |
O4 | 0.056 (4) | 0.030 (3) | 0.052 (3) | 0.009 (3) | 0.004 (3) | 0.002 (3) |
O5 | 0.100 (5) | 0.032 (3) | 0.038 (3) | −0.001 (3) | 0.038 (3) | 0.000 (2) |
C15 | 0.078 (7) | 0.039 (5) | 0.064 (6) | 0.004 (5) | 0.025 (5) | −0.002 (4) |
C16 | 0.067 (6) | 0.038 (4) | 0.041 (5) | 0.002 (4) | 0.016 (4) | −0.006 (4) |
C13 | 0.071 (7) | 0.066 (7) | 0.053 (6) | −0.016 (5) | 0.008 (5) | −0.022 (5) |
C12 | 0.062 (6) | 0.055 (6) | 0.041 (5) | 0.002 (5) | 0.001 (4) | −0.005 (4) |
C14 | 0.067 (7) | 0.053 (6) | 0.079 (7) | −0.021 (5) | 0.033 (6) | −0.030 (5) |
C3 | 0.072 (6) | 0.026 (4) | 0.054 (5) | 0.010 (4) | 0.022 (5) | 0.003 (4) |
C6—C5 | 1.504 (10) | Rh—P | 2.186 (2) |
C6—C4 | 1.504 (11) | Rh—Ii | 3.0511 (9) |
C6—C3 | 1.502 (12) | P—O6 | 1.588 (6) |
C6—C7 | 1.533 (10) | P—O5 | 1.585 (5) |
C5—O5 | 1.468 (9) | P—O4 | 1.589 (5) |
C5—H1A | 0.97 | O2—N2 | 1.339 (7) |
C5—H1B | 0.97 | N1—O3 | 1.290 (8) |
C4—O6 | 1.451 (8) | N1—N2 | 1.289 (8) |
C4—H2A | 0.97 | N2—C11 | 1.451 (9) |
C4—H2B | 0.97 | C11—C12 | 1.352 (10) |
C7—H5A | 0.96 | C11—C16 | 1.374 (11) |
C7—H5B | 0.96 | O4—C3 | 1.474 (9) |
C7—H5C | 0.96 | C15—C16 | 1.379 (11) |
O1—C1 | 1.196 (10) | C15—C14 | 1.394 (13) |
C1—C2 | 1.461 (13) | C15—H010 | 0.93 |
C1—Rh | 2.040 (8) | C16—H011 | 0.93 |
C2—H9A | 0.96 | C13—C14 | 1.368 (14) |
C2—H9B | 0.96 | C13—C12 | 1.358 (12) |
C2—H9C | 0.96 | C13—H012 | 0.93 |
I—Rh | 2.6351 (8) | C12—H013 | 0.93 |
I—Rhi | 3.0511 (9) | C14—H014 | 0.93 |
Rh—O3 | 2.044 (5) | C3—H01A | 0.97 |
Rh—O2 | 2.052 (5) | C3—H01B | 0.97 |
C5—C6—C4 | 108.7 (7) | C1—Rh—Ii | 172.7 (2) |
C5—C6—C3 | 110.0 (7) | O3—Rh—Ii | 85.36 (16) |
C4—C6—C3 | 108.7 (7) | O2—Rh—Ii | 80.51 (15) |
C5—C6—C7 | 110.0 (6) | P—Rh—Ii | 99.96 (6) |
C4—C6—C7 | 109.6 (7) | I—Rh—Ii | 86.70 (2) |
C3—C6—C7 | 109.8 (6) | O6—P—O5 | 102.2 (3) |
O5—C5—C6 | 110.7 (6) | O6—P—O4 | 102.2 (3) |
O5—C5—H1A | 109.5 | O5—P—O4 | 103.0 (3) |
C6—C5—H1A | 109.5 | O6—P—Rh | 117.2 (2) |
O5—C5—H1B | 109.5 | O5—P—Rh | 120.0 (2) |
C6—C5—H1B | 109.5 | O4—P—Rh | 110.0 (2) |
H1A—C5—H1B | 108.1 | N2—O2—Rh | 107.0 (4) |
O6—C4—C6 | 111.8 (6) | O3—N1—N2 | 115.4 (6) |
O6—C4—H2A | 109.3 | N1—O3—Rh | 113.5 (4) |
C6—C4—H2A | 109.3 | N1—N2—O2 | 124.3 (6) |
O6—C4—H2B | 109.3 | N1—N2—C11 | 118.3 (6) |
C6—C4—H2B | 109.3 | O2—N2—C11 | 117.3 (6) |
H2A—C4—H2B | 107.9 | C12—C11—C16 | 122.0 (7) |
C6—C7—H5A | 109.5 | C12—C11—N2 | 121.2 (7) |
C6—C7—H5B | 109.5 | C16—C11—N2 | 116.7 (7) |
H5A—C7—H5B | 109.5 | C4—O6—P | 114.3 (5) |
C6—C7—H5C | 109.5 | C3—O4—P | 116.6 (5) |
H5A—C7—H5C | 109.5 | C5—O5—P | 114.7 (4) |
H5B—C7—H5C | 109.5 | C16—C15—C14 | 119.7 (9) |
O1—C1—C2 | 123.8 (9) | C16—C15—H010 | 120.2 |
O1—C1—Rh | 120.9 (7) | C14—C15—H010 | 120.2 |
C2—C1—Rh | 115.3 (7) | C11—C16—C15 | 118.8 (8) |
C1—C2—H9A | 109.5 | C11—C16—H011 | 120.6 |
C1—C2—H9B | 109.5 | C15—C16—H011 | 120.6 |
H9A—C2—H9B | 109.5 | C14—C13—C12 | 121.8 (9) |
C1—C2—H9C | 109.5 | C14—C13—H012 | 119.1 |
H9A—C2—H9C | 109.5 | C12—C13—H012 | 119.1 |
H9B—C2—H9C | 109.5 | C11—C12—C13 | 118.9 (9) |
Rh—I—Rhi | 93.30 (2) | C11—C12—H013 | 120.6 |
C1—Rh—O3 | 92.9 (3) | C13—C12—H013 | 120.6 |
C1—Rh—O2 | 92.2 (3) | C13—C14—C15 | 118.8 (8) |
O3—Rh—O2 | 78.74 (19) | C13—C14—H014 | 120.6 |
C1—Rh—P | 87.2 (2) | C15—C14—H014 | 120.6 |
O3—Rh—P | 93.85 (14) | O4—C3—C6 | 108.6 (6) |
O2—Rh—P | 172.54 (15) | O4—C3—H01A | 110 |
C1—Rh—I | 93.9 (2) | C6—C3—H01A | 110 |
O3—Rh—I | 168.12 (14) | O4—C3—H01B | 110 |
O2—Rh—I | 91.25 (14) | C6—C3—H01B | 110 |
P—Rh—I | 96.21 (6) | H01A—C3—H01B | 108.4 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Rh2(C6H5N2O2)2(C2H3O)2I2(C5H9O3P)2] |
Mr | 1116.14 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 10.055 (2), 16.944 (3), 11.149 (2) |
β (°) | 112.75 (3) |
V (Å3) | 1751.7 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.86 |
Crystal size (mm) | 0.10 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART CCD 1K diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.763, 0.847 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12035, 4344, 3129 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.075, 0.95 |
No. of reflections | 4344 |
No. of parameters | 220 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.93, −0.50 |
Computer programs: SMART (Bruker, 2004), SAINT-Plus (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
C1—Rh | 2.040 (8) | Rh—P | 2.186 (2) |
I—Rh | 2.6351 (8) | Rh—Ii | 3.0511 (9) |
Rh—O3 | 2.044 (5) | P—O6 | 1.588 (6) |
Rh—O2 | 2.052 (5) | P—O5 | 1.585 (5) |
Rh—I—Rhi | 93.30 (2) | O2—Rh—P | 172.54 (15) |
C1—Rh—O3 | 92.9 (3) | C1—Rh—I | 93.9 (2) |
C1—Rh—O2 | 92.2 (3) | O3—Rh—I | 168.12 (14) |
O3—Rh—O2 | 78.74 (19) | C1—Rh—Ii | 172.7 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
Acknowledgements
The University of the Witwatersrand (Professor D. Levendis and Dr D. G. Billing) is thanked for the use of its diffractometer. Financial assistance by the South African National Research Foundation (grant No. 2038915), the Central Research Fund of the University of the Free State, THRIP and Sasol is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Research Foundation.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Basson, S. S., Leipoldt, J. G. & Nel, J. T. (1984). Inorg. Chim. Acta, 84, 167–169. CrossRef CAS Web of Science Google Scholar
Basson, S. S., Leipoldt, J. G., Purcell, W. & Venter, J. A. (1992). Acta Cryst. C48, 171–173. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Basson, S. S., Leipoldt, J. G., Roodt, A. & Venter, J. A. (1986a). Inorg. Chim. Acta, 118, 45–46. CSD CrossRef Web of Science Google Scholar
Basson, S. S., Leipoldt, J. G., Roodt, A. & Venter, J. A. (1987). Inorg. Chim. Acta, 128, 31–37. CSD CrossRef CAS Web of Science Google Scholar
Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. & Van der Walt, T. J. (1986b). Inorg. Chim. Acta, 119, 35–38. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SADABS, SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Roodt, A. & Steyn, G. J. J. (2000). Res. Dev. Inorg. Chem. 2, 1–23. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smit, D. M. C., Basson, S. S. & Steynberg, E. C. (1994). Rhodium Ex. 7–8, 12–14. CAS Google Scholar
Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481. CSD CrossRef CAS Web of Science Google Scholar
Van Leewen, P. W. N. M. & Roobeeck, C. F. (1981). Tetrahedron, 37, 1973–1975. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound (Fig. 1) is the product of the oxidative addition of CH3I to [Rh(cupf)(CO){P(OCH2)3CCH3}] (cupf = cupferrate, (C6H5N2O2) (Basson et al., 1992) which forms part of a series of rhodium complexes used in the kinetic studies of these reactions (Basson et al., 1984; 1986b; Steyn et al., 1992; Smit et al., 1994; Roodt & Steyn, 2000).
In the structure, the RhIII metal centre is coordinated to two bridging iodide ligands, an acyl ligand, a cyclic phosphite ligand (P(OCH2)3CCH3) and an O,O'-bidentate cupferrate ligand. The coordination sphere around the metal is somewhat distorted from the octahedral geometry and a number of angles deviate significantly from the ideal (see Table 1). This is probably due to the small bite angle of 78.74 (19) ° formed by the cupferrate ligand and the metal centre. The angles, P—Rh—O2 of 172.54 (15) °, P—Rh—I of 96.21 (6)° and P—Rh—C1 of 87.2 (2) ° clearly support the visual impression of Fig. 1 showing the phosphite ligand bent outward to minimise steric interaction. The respective Rh—Rh and I—I distances were calculated as 4.1437 (5) and 3.9144 (5) Å. At 2.186 (2) Å the Rh—P bond lenght is short, compared to the 2.327 (4) Å of [Rh(cupf)(CO)(CH3)(I)(PPh3)] (Basson et al., 1987). This stems from the nature of phosphites to be excellent π-acceptors, causing stronger back donation from rhodium resulting in a shorter Rh—P bond. Also, the sterically small cyclic phosphite ligand allows for a closer fit in the coordination sphere. The Rh-I' distance (symmetry operator -x+1, -y, -z+1), the one trans to the acyl ligand, is significantly longer than the other Rh—I distance, demonstrating the large trans-influence of the acyl ligand. The formation of [Rh(cupf)(COCH3)(µ-I){P(OCH2)3CCH3}]2 can most probably be attributed to the minor steric requirements of both the cupferrate ligand with its narrow bite angle and even more importantly the small cone angle of the phosphite. No classical hydrogen-bonding interactions are observed in the title compound.