metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carbon­yl(N-nitroso-N-oxido-1-naphtylamine-κ2O,O′)(tri­phenyl­phosphine-κP)rhodium(I) acetone solvate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: venterja.sci@ufs.ac.za

(Received 4 November 2009; accepted 9 November 2009; online 14 November 2009)

The title compound, [Rh(C10H7N2O2)(C18H15P)(CO)]·(CH3)2CO, is the second structural report of a metal complex formed with the O,O′-C10H7N2O2 (neocupferrate) ligand. In the crystal structure, the metal centre is surrounded by one carbonyl ligand, one triphenyl­phosphine ligand and the bidentate neocupferrate ligand, forming a distorted square-planar RhCO2P coordination set which is best illustrated by the small O—Rh—O bite angle of 77.74 (10)°. There are no classical hydrogen-bond inter­actions observed for this complex.

Related literature

For synthesis of similar Rh complexes and information on oxidative addition products, see: Basson et al. (1984[Basson, S. S., Leipoldt, J. G. & Nel, J. T. (1984). Inorg. Chim. Acta, 84, 167-169.], 1986[Basson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. & Van der Walt, T. J. (1986). Inorg. Chim. Acta, 119, 35-38.]); Steyn et al. (1992[Steyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477-3481.]); Smit et al. (1994[Smit, D. M. C., Basson, S. S. & Steynberg, E. C. (1994). Rhodium Ex. 7-8, 12-14.]); Roodt & Steyn (2000[Roodt, A. & Steyn, G. J. J. (2000). Res. Devel. Inorg. Chem. 2, 1-23.]). For another structural report of a complex with the bidentate neocupferrate ligand, see: Tamaki & Okabe (1998[Tamaki, K. & Okabe, N. (1998). Acta Cryst. C54, 195-197.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C10H7N2O2)(C18H15P)(CO)]·C3H6O

  • Mr = 638.44

  • Triclinic, [P \overline 1]

  • a = 9.709 (5) Å

  • b = 10.186 (5) Å

  • c = 15.393 (5) Å

  • α = 77.499 (5)°

  • β = 85.045 (5)°

  • γ = 70.279 (5)°

  • V = 1398.9 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 100 K

  • 0.21 × 0.21 × 0.08 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan SADABS (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 0.847

  • 23989 measured reflections

  • 6710 independent reflections

  • 5377 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.157

  • S = 1.16

  • 6710 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −1.18 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—Rh1 1.817 (4)
O2—Rh1 2.026 (3)
O3—Rh1 2.082 (2)
P1—Rh1 2.2240 (11)
C1—Rh1—O2 176.15 (13)
C1—Rh1—O3 101.74 (14)
O2—Rh1—O3 77.74 (10)
C1—Rh1—P1 90.54 (12)
O2—Rh1—P1 89.92 (8)
O3—Rh1—P1 167.66 (8)

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (Figure 1) forms part of a series of rhodium complexes used in the kinetic studies of oxidative addition reactions (Basson et al., 1984, 1986; Steyn et al., 1992; Smit et al., 1994; Roodt & Steyn, 2000).

In the crystal structure, the Rh(I) metal centre is coordinated to one carbonyl ligand, one triphenylphosphine ligand and the bidentate neocupferrate ligand, (C10H7N2O2) to form a distorted square planar complex best illustrated by the small O–Rh–O bite angle of 77.74 (10) °. The Rh–O2 bond length of 2.026 (3) Å is significantly smaller than the Rh–O3 bond length of 2.082 (2) Å and is indicative of the larger trans-influence of the PPh3 ligand as opposed to the carbonyl ligand. This is the second structural report involving the neocupferrate ligand (Tamaki & Okabe, 1998). There is no classical hydrogen interaction observed for this complex.

Related literature top

For synthesis of similar Rh complexes and information on oxidative addition products, see: Basson et al. (1984, 1986); Steyn et al. (1992); Smit et al. (1994); Roodt & Steyn (2000). For another structural report of a complex with the bidentate neocupferrate ligand, see: Tamaki & Okabe (1998).

Experimental top

A solution of [Rh2Cl2(CO)4] was prepared by refluxing a solution of hydrated RhCl3 in DMF for approximately 30 minutes. An equivalent amount of N-hydroxy-N-nitrosonaphtylamine (neocupf) was added to this solution to produce [Rh(neocupf)(CO)(PPh3)], which was isolated through precipitation with water. The title compound was obtained by leaving a 5 cm3 beaker containing a concentrated acetone solution of [Rh(neocupf)(CO)(PPh3)] uncovered at room temperature. Well shaped yellow crystals formed within 4 h.

Refinement top

The methylene, aromatic and methyl H atoms were placed in geometrically idealized positions (C—H = 0.93 – 0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene and aromatic protons and Uiso(H) = 1.5Ueq(C) for methyl protons, respectively. The highest residual electron density was located 0.99 Å from H4A and the deepest hole was 0.85 Å from Rh1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the complex molecule of the title compound and of the solvent molecule. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
Carbonyl(N-nitroso-N-oxido-1-naphtylamine- κ2O,O')(triphenylphosphine-κP)rhodium(I) acetone solvate top
Crystal data top
[Rh(C10H7N2O2)(C18H15P)(CO)]·C3H6OZ = 2
Mr = 638.44F(000) = 652
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.709 (5) ÅCell parameters from 5578 reflections
b = 10.186 (5) Åθ = 2.1–28.1°
c = 15.393 (5) ŵ = 0.71 mm1
α = 77.499 (5)°T = 100 K
β = 85.045 (5)°Plate, yellow
γ = 70.279 (5)°0.21 × 0.21 × 0.08 mm
V = 1398.9 (11) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
6710 independent reflections
Radiation source: sealed tube5377 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 28°, θmin = 1.4°
Absorption correction: multi-scan
SADABS (Bruker, 2004)
h = 1112
Tmin = 0.763, Tmax = 0.847k = 1313
23989 measured reflectionsl = 1920
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.0853P)2 + 0.0168P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max = 0.001
S = 1.16Δρmax = 1.75 e Å3
6710 reflectionsΔρmin = 1.18 e Å3
363 parameters
Crystal data top
[Rh(C10H7N2O2)(C18H15P)(CO)]·C3H6Oγ = 70.279 (5)°
Mr = 638.44V = 1398.9 (11) Å3
Triclinic, P1Z = 2
a = 9.709 (5) ÅMo Kα radiation
b = 10.186 (5) ŵ = 0.71 mm1
c = 15.393 (5) ÅT = 100 K
α = 77.499 (5)°0.21 × 0.21 × 0.08 mm
β = 85.045 (5)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
6710 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2004)
5377 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.847Rint = 0.053
23989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.16Δρmax = 1.75 e Å3
6710 reflectionsΔρmin = 1.18 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6328 (4)0.0332 (4)0.3430 (2)0.0177 (8)
C21.0765 (4)0.7216 (5)0.1312 (3)0.0239 (9)
C31.1293 (5)0.8324 (5)0.1536 (3)0.0319 (10)
H3A1.07370.92450.12130.048*
H3B1.23090.81270.13740.048*
H3C1.1170.83080.21630.048*
C41.1869 (5)0.5745 (5)0.1384 (3)0.0377 (12)
H4A1.13840.5090.13240.057*
H4B1.23290.54530.19540.057*
H4C1.25970.57540.09220.057*
C110.6713 (4)0.2154 (4)0.1495 (2)0.0142 (7)
C120.7244 (4)0.0790 (4)0.1287 (2)0.0181 (8)
H120.79630.00680.16370.022*
C130.6713 (4)0.0515 (4)0.0572 (3)0.0203 (8)
H130.70790.0390.04390.024*
C140.5630 (4)0.1580 (4)0.0043 (2)0.0203 (8)
H140.52810.13940.04450.024*
C150.5083 (4)0.2912 (4)0.0251 (2)0.0206 (8)
H150.43470.36220.00930.025*
C160.5624 (4)0.3204 (4)0.0974 (2)0.0170 (8)
H160.5250.41090.11060.02*
C210.9422 (4)0.2162 (4)0.2069 (2)0.0165 (8)
C221.0527 (4)0.1445 (4)0.2703 (2)0.0162 (8)
H221.02770.11470.32920.019*
C231.2001 (4)0.1179 (4)0.2450 (3)0.0198 (8)
H231.27260.07120.28730.024*
C241.2381 (4)0.1601 (4)0.1585 (3)0.0205 (8)
H241.33620.14170.14220.025*
C251.1307 (5)0.2304 (4)0.0950 (3)0.0221 (9)
H251.15710.25920.03630.027*
C260.9827 (4)0.2581 (4)0.1189 (3)0.0204 (8)
H260.91120.30470.0760.024*
C310.6668 (4)0.4369 (4)0.2389 (2)0.0158 (8)
C320.7292 (4)0.5387 (4)0.1976 (2)0.0171 (8)
H320.81990.51110.16920.021*
C330.6579 (4)0.6807 (4)0.1984 (3)0.0198 (8)
H330.70110.74820.1710.024*
C340.5219 (5)0.7233 (4)0.2398 (3)0.0215 (9)
H340.47330.81930.23950.026*
C350.4598 (4)0.6231 (4)0.2813 (2)0.0198 (8)
H350.36870.65110.30910.024*
C360.5321 (4)0.4806 (4)0.2818 (2)0.0186 (8)
H360.49010.41310.31110.022*
C410.8788 (4)0.3118 (4)0.5592 (2)0.0150 (8)
C421.0024 (4)0.2448 (4)0.6094 (2)0.0184 (8)
H421.0470.14680.61710.022*
C431.0612 (4)0.3262 (4)0.6493 (2)0.0215 (9)
H431.14610.28240.68250.026*
C440.9926 (4)0.4700 (4)0.6387 (2)0.0206 (8)
H441.03190.52290.66520.025*
C450.8626 (4)0.5407 (4)0.5882 (2)0.0172 (8)
C460.8031 (4)0.4598 (4)0.5459 (2)0.0143 (7)
C470.6743 (4)0.5309 (4)0.4946 (2)0.0165 (8)
H470.63550.47960.46640.02*
C480.6073 (4)0.6744 (4)0.4867 (3)0.0202 (8)
H480.52240.71970.45370.024*
C490.6656 (4)0.7544 (4)0.5281 (3)0.0211 (9)
H490.61890.8520.52210.025*
C500.7902 (4)0.6894 (4)0.5769 (2)0.0192 (8)
H500.82810.74370.60320.023*
N10.8228 (3)0.2270 (3)0.51666 (19)0.0141 (6)
N70.7762 (3)0.1307 (3)0.5647 (2)0.0165 (7)
O10.5680 (3)0.0262 (3)0.31778 (19)0.0293 (7)
O20.8240 (3)0.2552 (3)0.42710 (16)0.0162 (6)
O30.7281 (3)0.0595 (3)0.51892 (16)0.0172 (6)
O40.9494 (3)0.7466 (3)0.1110 (2)0.0331 (7)
P10.75192 (10)0.24553 (10)0.24302 (6)0.0132 (2)
Rh10.72947 (3)0.13381 (3)0.381902 (17)0.01389 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0155 (19)0.015 (2)0.0185 (19)0.0022 (16)0.0009 (15)0.0012 (15)
C20.019 (2)0.031 (2)0.019 (2)0.0048 (18)0.0013 (16)0.0045 (17)
C30.028 (2)0.032 (3)0.034 (2)0.010 (2)0.0047 (19)0.004 (2)
C40.028 (3)0.029 (3)0.056 (3)0.001 (2)0.007 (2)0.018 (2)
C110.0118 (17)0.017 (2)0.0139 (17)0.0053 (15)0.0017 (14)0.0026 (14)
C120.0152 (19)0.016 (2)0.0204 (19)0.0018 (16)0.0023 (15)0.0032 (15)
C130.024 (2)0.017 (2)0.021 (2)0.0059 (17)0.0032 (16)0.0079 (16)
C140.022 (2)0.027 (2)0.0160 (18)0.0123 (18)0.0006 (15)0.0065 (16)
C150.019 (2)0.025 (2)0.0168 (19)0.0090 (17)0.0019 (15)0.0012 (16)
C160.0164 (19)0.015 (2)0.0202 (19)0.0058 (16)0.0027 (15)0.0035 (15)
C210.0148 (18)0.0135 (19)0.0211 (19)0.0032 (15)0.0008 (15)0.0055 (15)
C220.0146 (19)0.015 (2)0.0178 (18)0.0037 (15)0.0039 (14)0.0038 (15)
C230.018 (2)0.021 (2)0.022 (2)0.0057 (16)0.0004 (16)0.0064 (16)
C240.0154 (19)0.017 (2)0.030 (2)0.0062 (16)0.0063 (16)0.0098 (17)
C250.026 (2)0.024 (2)0.018 (2)0.0099 (18)0.0074 (16)0.0076 (17)
C260.022 (2)0.020 (2)0.021 (2)0.0073 (17)0.0044 (16)0.0044 (16)
C310.0189 (19)0.0141 (19)0.0121 (17)0.0022 (15)0.0062 (14)0.0010 (14)
C320.019 (2)0.018 (2)0.0162 (18)0.0081 (16)0.0061 (15)0.0025 (15)
C330.025 (2)0.015 (2)0.022 (2)0.0097 (17)0.0054 (16)0.0024 (16)
C340.027 (2)0.012 (2)0.024 (2)0.0001 (16)0.0081 (17)0.0067 (16)
C350.017 (2)0.017 (2)0.0195 (19)0.0021 (16)0.0019 (15)0.0037 (16)
C360.022 (2)0.018 (2)0.0151 (18)0.0068 (17)0.0020 (15)0.0020 (15)
C410.0142 (18)0.019 (2)0.0144 (18)0.0070 (16)0.0014 (14)0.0077 (15)
C420.018 (2)0.017 (2)0.0162 (18)0.0006 (16)0.0003 (15)0.0040 (15)
C430.019 (2)0.027 (2)0.0180 (19)0.0052 (17)0.0008 (15)0.0054 (16)
C440.022 (2)0.026 (2)0.0190 (19)0.0122 (18)0.0008 (16)0.0068 (16)
C450.0175 (19)0.020 (2)0.0180 (19)0.0092 (16)0.0047 (15)0.0090 (16)
C460.0123 (18)0.0146 (19)0.0169 (18)0.0047 (15)0.0023 (14)0.0057 (15)
C470.0158 (19)0.016 (2)0.0189 (19)0.0059 (16)0.0003 (15)0.0041 (15)
C480.0142 (19)0.019 (2)0.023 (2)0.0009 (16)0.0011 (15)0.0044 (16)
C490.019 (2)0.016 (2)0.026 (2)0.0036 (16)0.0058 (16)0.0044 (16)
C500.027 (2)0.020 (2)0.0180 (19)0.0153 (18)0.0090 (16)0.0086 (16)
N10.0145 (16)0.0126 (16)0.0143 (15)0.0028 (13)0.0005 (12)0.0036 (12)
N70.0158 (16)0.0121 (16)0.0190 (16)0.0019 (13)0.0038 (13)0.0009 (13)
O10.0324 (18)0.0344 (19)0.0309 (16)0.0209 (15)0.0054 (13)0.0089 (14)
O20.0209 (14)0.0182 (14)0.0101 (12)0.0076 (12)0.0009 (10)0.0023 (10)
O30.0206 (14)0.0158 (14)0.0130 (13)0.0035 (11)0.0021 (10)0.0015 (10)
O40.0233 (17)0.040 (2)0.0330 (17)0.0042 (14)0.0052 (13)0.0079 (14)
P10.0131 (5)0.0114 (5)0.0141 (5)0.0018 (4)0.0013 (4)0.0035 (4)
Rh10.01397 (18)0.01172 (19)0.01518 (18)0.00255 (13)0.00048 (12)0.00361 (12)
Geometric parameters (Å, º) top
C1—O11.146 (5)C31—C361.389 (5)
C1—Rh11.817 (4)C31—P11.832 (4)
C2—O41.226 (5)C32—C331.379 (5)
C2—C31.497 (6)C32—H320.93
C2—C41.507 (6)C33—C341.388 (6)
C3—H3A0.96C33—H330.93
C3—H3B0.96C34—C351.371 (6)
C3—H3C0.96C34—H340.93
C4—H4A0.96C35—C361.381 (5)
C4—H4B0.96C35—H350.93
C4—H4C0.96C36—H360.93
C11—C161.385 (5)C41—C421.372 (5)
C11—C121.407 (5)C41—C461.414 (5)
C11—P11.823 (4)C41—N11.448 (5)
C12—C131.373 (5)C42—C431.410 (6)
C12—H120.93C42—H420.93
C13—C141.393 (5)C43—C441.368 (6)
C13—H130.93C43—H430.93
C14—C151.377 (6)C44—C451.424 (5)
C14—H140.93C44—H440.93
C15—C161.398 (5)C45—C501.416 (5)
C15—H150.93C45—C461.433 (5)
C16—H160.93C46—C471.423 (5)
C21—C261.394 (5)C47—C481.367 (5)
C21—C221.407 (5)C47—H470.93
C21—P11.825 (4)C48—C491.410 (6)
C22—C231.401 (5)C48—H480.93
C22—H220.93C49—C501.367 (6)
C23—C241.367 (5)C49—H490.93
C23—H230.93C50—H500.93
C24—C251.387 (6)N1—N71.281 (4)
C24—H240.93N1—O21.346 (4)
C25—C261.400 (6)N7—O31.323 (4)
C25—H250.93O2—Rh12.026 (3)
C26—H260.93O3—Rh12.082 (2)
C31—C321.385 (5)P1—Rh12.2240 (11)
O1—C1—Rh1177.7 (4)C32—C33—H33119.8
O4—C2—C3122.5 (4)C34—C33—H33119.8
O4—C2—C4121.1 (4)C35—C34—C33119.6 (4)
C3—C2—C4116.3 (4)C35—C34—H34120.2
C2—C3—H3A109.5C33—C34—H34120.2
C2—C3—H3B109.5C34—C35—C36120.2 (4)
H3A—C3—H3B109.5C34—C35—H35119.9
C2—C3—H3C109.5C36—C35—H35119.9
H3A—C3—H3C109.5C35—C36—C31120.7 (4)
H3B—C3—H3C109.5C35—C36—H36119.6
C2—C4—H4A109.5C31—C36—H36119.6
C2—C4—H4B109.5C42—C41—C46123.7 (3)
H4A—C4—H4B109.5C42—C41—N1118.5 (3)
C2—C4—H4C109.5C46—C41—N1117.8 (3)
H4A—C4—H4C109.5C41—C42—C43119.3 (4)
H4B—C4—H4C109.5C41—C42—H42120.3
C16—C11—C12118.5 (3)C43—C42—H42120.3
C16—C11—P1123.3 (3)C44—C43—C42119.5 (4)
C12—C11—P1118.1 (3)C44—C43—H43120.2
C13—C12—C11120.7 (4)C42—C43—H43120.2
C13—C12—H12119.7C43—C44—C45121.9 (4)
C11—C12—H12119.7C43—C44—H44119.1
C12—C13—C14120.5 (4)C45—C44—H44119.1
C12—C13—H13119.7C50—C45—C44122.5 (3)
C14—C13—H13119.7C50—C45—C46118.3 (3)
C15—C14—C13119.3 (3)C44—C45—C46119.2 (3)
C15—C14—H14120.3C41—C46—C47124.5 (3)
C13—C14—H14120.3C41—C46—C45116.3 (3)
C14—C15—C16120.5 (4)C47—C46—C45119.2 (3)
C14—C15—H15119.7C48—C47—C46120.3 (4)
C16—C15—H15119.7C48—C47—H47119.8
C11—C16—C15120.4 (4)C46—C47—H47119.8
C11—C16—H16119.8C47—C48—C49120.7 (4)
C15—C16—H16119.8C47—C48—H48119.6
C26—C21—C22118.7 (3)C49—C48—H48119.6
C26—C21—P1122.8 (3)C50—C49—C48120.3 (4)
C22—C21—P1118.4 (3)C50—C49—H49119.8
C23—C22—C21120.2 (3)C48—C49—H49119.8
C23—C22—H22119.9C49—C50—C45121.2 (4)
C21—C22—H22119.9C49—C50—H50119.4
C24—C23—C22120.4 (4)C45—C50—H50119.4
C24—C23—H23119.8N7—N1—O2123.9 (3)
C22—C23—H23119.8N7—N1—C41119.5 (3)
C23—C24—C25120.2 (4)O2—N1—C41116.7 (3)
C23—C24—H24119.9N1—N7—O3114.3 (3)
C25—C24—H24119.9N1—O2—Rh1110.0 (2)
C24—C25—C26120.3 (4)N7—O3—Rh1113.7 (2)
C24—C25—H25119.8C11—P1—C21102.64 (17)
C26—C25—H25119.8C11—P1—C31103.59 (16)
C21—C26—C25120.2 (4)C21—P1—C31106.98 (17)
C21—C26—H26119.9C11—P1—Rh1121.83 (13)
C25—C26—H26119.9C21—P1—Rh1113.03 (12)
C32—C31—C36118.7 (4)C31—P1—Rh1107.63 (12)
C32—C31—P1124.3 (3)C1—Rh1—O2176.15 (13)
C36—C31—P1117.0 (3)C1—Rh1—O3101.74 (14)
C33—C32—C31120.4 (4)O2—Rh1—O377.74 (10)
C33—C32—H32119.8C1—Rh1—P190.54 (12)
C31—C32—H32119.8O2—Rh1—P189.92 (8)
C32—C33—C34120.3 (4)O3—Rh1—P1167.66 (8)

Experimental details

Crystal data
Chemical formula[Rh(C10H7N2O2)(C18H15P)(CO)]·C3H6O
Mr638.44
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.709 (5), 10.186 (5), 15.393 (5)
α, β, γ (°)77.499 (5), 85.045 (5), 70.279 (5)
V3)1398.9 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.21 × 0.21 × 0.08
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 2004)
Tmin, Tmax0.763, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
23989, 6710, 5377
Rint0.053
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.157, 1.16
No. of reflections6710
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.75, 1.18

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—Rh11.817 (4)O3—Rh12.082 (2)
O2—Rh12.026 (3)P1—Rh12.2240 (11)
C1—Rh1—O2176.15 (13)C1—Rh1—P190.54 (12)
C1—Rh1—O3101.74 (14)O2—Rh1—P189.92 (8)
O2—Rh1—O377.74 (10)O3—Rh1—P1167.66 (8)
 

Acknowledgements

The research fund of the University of the Free State and the NRF is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBasson, S. S., Leipoldt, J. G. & Nel, J. T. (1984). Inorg. Chim. Acta, 84, 167–169.  CrossRef CAS Web of Science Google Scholar
First citationBasson, S. S., Leipoldt, J. G., Roodt, A., Venter, J. A. & Van der Walt, T. J. (1986). Inorg. Chim. Acta, 119, 35–38.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus (including XPREP) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationRoodt, A. & Steyn, G. J. J. (2000). Res. Devel. Inorg. Chem. 2, 1–23.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmit, D. M. C., Basson, S. S. & Steynberg, E. C. (1994). Rhodium Ex. 7–8, 12–14.  CAS Google Scholar
First citationSteyn, G. J. J., Roodt, A. & Leipoldt, J. G. (1992). Inorg. Chem. 31, 3477–3481.  CSD CrossRef CAS Web of Science Google Scholar
First citationTamaki, K. & Okabe, N. (1998). Acta Cryst. C54, 195–197.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds