metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1617-m1618

Poly[[μ2-acetato-aquadi-μ3-isonicotinato-erbium(III)silver(I)] perchlorate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn

(Received 4 November 2009; accepted 14 November 2009; online 21 November 2009)

In the title three-dimensional heterometallic complex, {[AgEr(C6H4NO2)2(C2H3O2)(H2O)]ClO4}n, the eight-coordin­ate ErIII ion adopts a distorted bicapped trigonal-prismatic geometry, being coordinated by four O atoms from four different isonicotinate ligands, three O atoms from two different acetate ligands and one O atom of the water mol­ecule. The two-coordinate AgI ion is surrounded by two N atoms from two different isonicotinate anions in a slightly bent configuration. These building blocks are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network. Ths structure is consolidated by O—H⋯O hydrogen bonding between the coordinated water mol­ecule and a carboxyl­ate group of the acetate ligand. The perchlorate anion is disordered over two sites with site-occupancy factors of 0.526 (13) and 0.474 (13), while the methyl group of the acetate ligand is equally disordered over two sites.

Related literature

For background to lanthanide–transition metal heterometallic complexes, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Kuang et al. (2007[Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.]); Peng et al. (2008[Peng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409-1411.]); Zhu et al. (2009[Zhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105.]).

[Scheme 1]

Experimental

Crystal data
  • [AgEr(C6H4NO2)2(C2H3O2)(H2O)]ClO4

  • Mr = 695.84

  • Monoclinic, P 21 /c

  • a = 16.1952 (11) Å

  • b = 14.8673 (11) Å

  • c = 7.8938 (6) Å

  • β = 91.783 (1)°

  • V = 1899.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.62 mm−1

  • T = 296 K

  • 0.23 × 0.20 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.285, Tmax = 0.344

  • 9611 measured reflections

  • 3423 independent reflections

  • 3009 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.057

  • S = 1.05

  • 3423 reflections

  • 320 parameters

  • 158 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O4i 0.82 (4) 2.19 (3) 2.891 (5) 145 (5)
O1W—H1W⋯O6ii 0.81 (4) 1.99 (4) 2.786 (5) 167 (6)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, lanthanide-transition metal heterometallic complexes with bridging multifunctional organic ligands gained increasing interest, not only because of their crystal structures, but also due to their applications in ion exchange, magnetism, catalysis and as luminescent material (Cheng et al., 2006; Kuang et al., 2007; Peng et al., 2008; Zhu et al., 2009). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined and is presented in this article.

In the title compound (Fig. 1), there are one ErIII ion, one AgI ion, two halves of an acetate ligand, two isonicotinate ligands, one coordinated water molecule, and one perchlorate anion in the asymmetric unit. Each ErIII ion is eight-coordinated by four O atoms from four different isonicotinate ligands [Er—O distances ranging from 2.266 (3) to 2.308 (3) Å], three O atoms from two different acetate ligands [Er—O distances ranging from 2.341 (3) to 2.454 (3) Å], and one O atom of water molecule [Er—O distance 2.369 (3) Å]. The Er center can be described as having a distorted bicapped trigonal-prismatic coordination geometry. The two-coordinated AgI ion is bonded to two N atoms from two different isonicotinate anions [Ag—N distances 2.153 (4) and 2.154 (4) Å] and adopts a slight distortion from linearity with an N1—Ag1—N2 angle of 165.44 (19) °. These metal coordination units are connected by bridging isonicotinate and acetate ligands, generating a three-dimensional network (Fig. 2). The coordinated water molecules exhibit O—H···O hydrogen bonding to the uncoordinated O atom of a carboxylate group and to the acetate ligand (Table 1).

Related literature top

For background to lanthanide–transition metal heterometallic complexes, see: Cheng et al. (2006); Kuang et al. (2007); Peng et al. (2008); Zhu et al. (2009).

Experimental top

A mixture of AgNO3 (0.057 g, 0.33 mmol), Er2O3 (0.116 g, 0.33 mmol), isonicotinic acid (0.164 g, 1.33 mmol), CH3COONa (0.057 g, 0.7 mmol), H2O (7 ml), and HClO4 (0.257 mmol) (pH 2) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 6 days and then slowly cooled to room temperature. The product was collected by filtration, washed with water and was air-dried. Colorless block-shaped crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of O—H = 0.81 - 0.82 Å. The perchlorate anion is disordered over two sites with site occupancy factors 0.526 (13) and 0.474 (13), whereas the methyl group of the acetate ligand is disordered over two sites with site occupancy factors 0.51 (5) and 0.49 (5).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Both disorder components are shown. Symmetry codes: (A) 2 - x, 2 - y, -z; (B) x, 1.5 - y, 1/2 + z; (C) 1 - x, 1/2 + y, 0.5 - z; (D) 1 + x, 1.5 - y, -1/2 + z.
[Figure 2] Fig. 2. A view of the three-dimensional arrangement of the title compound. Hydrogen atoms were omitted for clarity.
Poly[[µ2-acetato-aquadi-µ3-isonicotinato-erbium(III)silver(I)] perchlorate] top
Crystal data top
[AgEr(C6H4NO2)2(C2H3O2)(H2O)]ClO4F(000) = 1324
Mr = 695.84Dx = 2.433 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4797 reflections
a = 16.1952 (11) Åθ = 2.5–27.9°
b = 14.8673 (11) ŵ = 5.62 mm1
c = 7.8938 (6) ÅT = 296 K
β = 91.783 (1)°Block, colourless
V = 1899.7 (2) Å30.23 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3423 independent reflections
Radiation source: fine-focus sealed tube3009 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scanθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.285, Tmax = 0.344k = 1717
9611 measured reflectionsl = 59
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0218P)2 + 3.7155P]
where P = (Fo2 + 2Fc2)/3
3423 reflections(Δ/σ)max = 0.002
320 parametersΔρmax = 0.76 e Å3
158 restraintsΔρmin = 1.04 e Å3
Crystal data top
[AgEr(C6H4NO2)2(C2H3O2)(H2O)]ClO4V = 1899.7 (2) Å3
Mr = 695.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.1952 (11) ŵ = 5.62 mm1
b = 14.8673 (11) ÅT = 296 K
c = 7.8938 (6) Å0.23 × 0.20 × 0.19 mm
β = 91.783 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3423 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3009 reflections with I > 2σ(I)
Tmin = 0.285, Tmax = 0.344Rint = 0.030
9611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025158 restraints
wR(F2) = 0.057H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.76 e Å3
3423 reflectionsΔρmin = 1.04 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er10.955305 (12)0.883792 (13)0.05025 (3)0.01689 (8)
Ag10.47352 (3)0.74056 (4)0.10055 (8)0.06366 (18)
N10.3573 (3)0.6969 (3)0.1973 (7)0.0464 (13)
N20.5953 (3)0.7481 (3)0.0007 (6)0.0378 (11)
C10.1321 (3)0.5802 (3)0.3629 (7)0.0287 (12)
C20.2108 (3)0.6229 (3)0.3048 (7)0.0273 (11)
C30.2810 (3)0.5718 (4)0.2968 (8)0.0427 (15)
H80.28000.51140.32710.051*
C40.3527 (4)0.6105 (4)0.2436 (9)0.0523 (18)
H70.40000.57530.23970.063*
C50.2890 (3)0.7466 (4)0.2066 (9)0.0455 (16)
H110.29140.80700.17670.055*
C60.2147 (3)0.7121 (4)0.2589 (8)0.0378 (14)
H100.16810.74850.26300.045*
C70.6342 (3)0.6716 (4)0.0395 (8)0.0438 (15)
H40.60760.61710.02210.053*
C80.7122 (3)0.6709 (4)0.1041 (7)0.0340 (13)
H30.73720.61670.13150.041*
C90.7531 (3)0.7512 (3)0.1281 (6)0.0199 (10)
C100.8387 (3)0.7511 (3)0.1972 (6)0.0203 (10)
C110.7136 (3)0.8299 (3)0.0871 (7)0.0309 (12)
H60.73940.88510.10180.037*
C120.6349 (3)0.8258 (4)0.0237 (7)0.0359 (13)
H50.60850.87920.00400.043*
O10.0753 (2)0.6328 (2)0.4074 (5)0.0354 (9)
O20.1298 (2)0.4963 (2)0.3618 (5)0.0369 (9)
O30.85978 (19)0.6842 (2)0.2806 (4)0.0276 (8)
O40.88366 (18)0.8187 (2)0.1684 (4)0.0237 (7)
O1W0.9992 (2)0.7323 (2)0.0767 (5)0.0327 (9)
H1W1.017 (3)0.702 (3)0.001 (5)0.049*
H2W0.978 (3)0.697 (3)0.142 (5)0.049*
O61.0346 (2)0.8847 (2)0.3130 (4)0.0324 (8)
O51.0476 (2)1.0034 (2)0.1567 (4)0.0289 (8)
C131.0687 (3)0.9591 (3)0.2875 (6)0.0266 (11)
C141.1431 (13)0.9863 (19)0.395 (3)0.040 (4)0.51 (5)
H14A1.17281.03270.33850.059*0.51 (5)
H14B1.17850.93510.41290.059*0.51 (5)
H14C1.12551.00820.50240.059*0.51 (5)
C14'1.1264 (15)1.0028 (19)0.417 (3)0.040 (4)0.49 (5)
H14D1.11421.06590.42300.059*0.49 (5)
H14E1.18240.99470.38360.059*0.49 (5)
H14F1.11910.97560.52550.059*0.49 (5)
Cl10.58069 (12)0.04095 (12)0.7436 (3)0.0642 (5)0.526 (13)
O70.5433 (10)0.0457 (8)0.742 (2)0.076 (5)0.526 (13)
O80.5249 (9)0.1082 (9)0.709 (2)0.133 (6)0.526 (13)
O90.6203 (10)0.0528 (9)0.9021 (14)0.109 (6)0.526 (13)
O100.6454 (9)0.0386 (10)0.6206 (19)0.134 (7)0.526 (13)
Cl1'0.58069 (12)0.04095 (12)0.7436 (3)0.0642 (5)0.474 (13)
O7'0.5399 (11)0.0369 (9)0.691 (2)0.083 (7)0.474 (13)
O8'0.5676 (11)0.1101 (10)0.6227 (19)0.124 (7)0.474 (13)
O9'0.5422 (11)0.0751 (11)0.8943 (18)0.134 (7)0.474 (13)
O10'0.6643 (6)0.0289 (8)0.778 (2)0.092 (5)0.474 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.01467 (12)0.01458 (12)0.02167 (13)0.00074 (8)0.00453 (8)0.00002 (8)
Ag10.0248 (2)0.0863 (4)0.0813 (4)0.0136 (2)0.0248 (3)0.0023 (3)
N10.025 (2)0.047 (3)0.067 (4)0.007 (2)0.017 (2)0.000 (3)
N20.021 (2)0.045 (3)0.048 (3)0.003 (2)0.013 (2)0.000 (2)
C10.028 (3)0.020 (3)0.039 (3)0.005 (2)0.012 (2)0.003 (2)
C20.024 (3)0.028 (3)0.031 (3)0.005 (2)0.009 (2)0.003 (2)
C30.025 (3)0.029 (3)0.075 (5)0.002 (2)0.015 (3)0.001 (3)
C40.026 (3)0.048 (4)0.084 (5)0.004 (3)0.017 (3)0.000 (3)
C50.031 (3)0.036 (3)0.071 (5)0.009 (3)0.016 (3)0.009 (3)
C60.027 (3)0.030 (3)0.058 (4)0.001 (2)0.015 (3)0.005 (3)
C70.035 (3)0.036 (3)0.061 (4)0.016 (3)0.012 (3)0.002 (3)
C80.029 (3)0.026 (3)0.048 (4)0.003 (2)0.012 (3)0.001 (2)
C90.016 (2)0.023 (3)0.020 (3)0.0031 (19)0.0016 (19)0.0025 (19)
C100.018 (2)0.023 (3)0.021 (3)0.0015 (19)0.0023 (19)0.002 (2)
C110.021 (2)0.026 (3)0.046 (3)0.004 (2)0.010 (2)0.001 (2)
C120.026 (3)0.035 (3)0.047 (4)0.007 (2)0.012 (3)0.002 (3)
O10.0258 (19)0.0208 (19)0.061 (3)0.0007 (15)0.0249 (19)0.0012 (16)
O20.0296 (19)0.0196 (19)0.063 (3)0.0016 (15)0.0227 (18)0.0038 (17)
O30.0246 (17)0.0214 (18)0.037 (2)0.0021 (14)0.0110 (16)0.0082 (15)
O40.0179 (16)0.0250 (18)0.0283 (19)0.0051 (14)0.0042 (14)0.0058 (14)
O1W0.045 (2)0.0204 (18)0.034 (2)0.0068 (16)0.0164 (18)0.0022 (15)
O60.039 (2)0.033 (2)0.025 (2)0.0065 (16)0.0043 (16)0.0089 (15)
O50.0335 (19)0.0248 (18)0.028 (2)0.0076 (15)0.0089 (16)0.0043 (15)
C130.030 (3)0.023 (3)0.027 (3)0.001 (2)0.001 (2)0.000 (2)
C140.038 (6)0.042 (6)0.037 (5)0.003 (5)0.011 (5)0.000 (4)
C14'0.038 (6)0.042 (6)0.037 (5)0.003 (5)0.011 (5)0.000 (4)
Cl10.0638 (11)0.0528 (10)0.0756 (13)0.0017 (9)0.0046 (10)0.0013 (9)
O70.071 (8)0.070 (8)0.089 (9)0.025 (6)0.001 (6)0.009 (6)
O80.140 (10)0.104 (9)0.153 (11)0.074 (7)0.032 (8)0.019 (7)
O90.134 (10)0.110 (8)0.081 (8)0.042 (7)0.036 (7)0.001 (6)
O100.133 (10)0.143 (10)0.130 (10)0.033 (8)0.052 (8)0.008 (8)
Cl1'0.0638 (11)0.0528 (10)0.0756 (13)0.0017 (9)0.0046 (10)0.0013 (9)
O7'0.073 (9)0.081 (9)0.096 (10)0.033 (7)0.011 (7)0.034 (7)
O8'0.137 (11)0.121 (10)0.113 (10)0.009 (8)0.012 (8)0.056 (8)
O9'0.150 (11)0.138 (10)0.118 (10)0.017 (8)0.064 (8)0.032 (8)
O10'0.054 (6)0.077 (7)0.144 (11)0.004 (5)0.023 (7)0.009 (7)
Geometric parameters (Å, º) top
Er1—O42.266 (3)C11—C121.386 (7)
Er1—O2i2.289 (3)C11—H60.9300
Er1—O1ii2.290 (3)C12—H50.9300
Er1—O3iii2.308 (3)O1—Er1v2.290 (3)
Er1—O5iv2.341 (3)O2—Er1vi2.289 (3)
Er1—O1W2.369 (3)O3—Er1vii2.308 (3)
Er1—O62.405 (3)O1W—H1W0.81 (4)
Er1—O52.454 (3)O1W—H2W0.82 (4)
Ag1—N12.153 (4)O6—C131.256 (6)
Ag1—N22.154 (4)O5—C131.263 (6)
N1—C51.336 (7)O5—Er1iv2.341 (3)
N1—C41.337 (8)C13—C141.507 (9)
N2—C121.335 (7)C13—C14'1.507 (10)
N2—C71.341 (7)C14—H14A0.9600
C1—O21.248 (6)C14—H14B0.9600
C1—O11.266 (6)C14—H14C0.9600
C1—C21.507 (6)C14'—H14D0.9600
C2—C31.370 (7)C14'—H14E0.9600
C2—C61.376 (7)C14'—H14F0.9600
C3—C41.374 (8)Cl1—O81.368 (9)
C3—H80.9300Cl1—O10'1.384 (8)
C4—H70.9300Cl1—O7'1.390 (9)
C5—C61.382 (7)Cl1—O91.399 (9)
C5—H110.9300Cl1—O8'1.414 (10)
C6—H100.9300Cl1—O71.423 (9)
C7—C81.376 (7)Cl1—O101.451 (9)
C7—H40.9300Cl1—O9'1.452 (10)
C8—C91.381 (7)O8—O8'0.988 (19)
C8—H30.9300O8—O9'1.557 (19)
C9—C111.378 (7)O9—O10'1.278 (15)
C9—C101.505 (6)O9—O9'1.307 (17)
C10—O31.246 (5)O10—O10'1.280 (17)
C10—O41.258 (5)O10—O8'1.650 (18)
O4—Er1—O2i104.11 (13)O4—C10—C9117.9 (4)
O4—Er1—O1ii90.06 (13)C9—C11—C12119.1 (5)
O2i—Er1—O1ii139.15 (12)C9—C11—H6120.4
O4—Er1—O3iii85.24 (12)C12—C11—H6120.4
O2i—Er1—O3iii73.96 (11)N2—C12—C11122.5 (5)
O1ii—Er1—O3iii146.30 (12)N2—C12—H5118.7
O4—Er1—O5iv77.04 (11)C11—C12—H5118.7
O2i—Er1—O5iv71.89 (13)C1—O1—Er1v134.9 (3)
O1ii—Er1—O5iv74.47 (12)C1—O2—Er1vi138.3 (3)
O3iii—Er1—O5iv135.93 (12)C10—O3—Er1vii148.8 (3)
O4—Er1—O1W78.85 (13)C10—O4—Er1139.3 (3)
O2i—Er1—O1W148.19 (12)Er1—O1W—H1W125 (4)
O1ii—Er1—O1W71.58 (12)Er1—O1W—H2W122 (4)
O3iii—Er1—O1W74.77 (12)H1W—O1W—H2W106 (4)
O5iv—Er1—O1W137.91 (12)C13—O6—Er195.3 (3)
O4—Er1—O6154.95 (12)C13—O5—Er1iv160.6 (3)
O2i—Er1—O692.59 (14)C13—O5—Er192.8 (3)
O1ii—Er1—O689.25 (14)Er1iv—O5—Er1106.35 (13)
O3iii—Er1—O681.55 (12)O6—C13—O5118.7 (4)
O5iv—Er1—O6126.62 (11)O6—C13—C14119.6 (11)
O1W—Er1—O677.18 (13)O5—C13—C14120.8 (11)
O4—Er1—O5149.53 (11)O6—C13—C14'122.6 (12)
O2i—Er1—O574.51 (12)O5—C13—C14'118.3 (12)
O1ii—Er1—O574.32 (12)O6—C13—Er158.3 (2)
O3iii—Er1—O5122.10 (12)O5—C13—Er160.6 (2)
O5iv—Er1—O573.65 (13)C14—C13—Er1167.2 (12)
O1W—Er1—O5118.73 (13)C14'—C13—Er1177.2 (13)
O6—Er1—O552.98 (11)C13—C14—H14A109.5
O4—Er1—C13169.94 (13)C13—C14—H14B109.5
O2i—Er1—C1383.95 (14)C13—C14—H14C109.5
O1ii—Er1—C1379.88 (14)C13—C14'—H14D109.5
O3iii—Er1—C13102.99 (13)C13—C14'—H14E109.5
O5iv—Er1—C13100.25 (13)H14D—C14'—H14E109.5
O1W—Er1—C1397.55 (14)C13—C14'—H14F109.5
O6—Er1—C1326.38 (13)H14D—C14'—H14F109.5
O5—Er1—C1326.64 (12)H14E—C14'—H14F109.5
O4—Er1—Er1iv114.47 (8)O8—Cl1—O10'140.3 (9)
O2i—Er1—Er1iv68.88 (8)O8—Cl1—O7'104.2 (12)
O1ii—Er1—Er1iv70.37 (8)O10'—Cl1—O7'113.8 (8)
O3iii—Er1—Er1iv141.06 (8)O8—Cl1—O9111.5 (8)
O5iv—Er1—Er1iv37.84 (8)O10'—Cl1—O954.6 (7)
O1W—Er1—Er1iv139.44 (9)O7'—Cl1—O9124.9 (10)
O6—Er1—Er1iv88.78 (8)O10'—Cl1—O8'110.7 (8)
O5—Er1—Er1iv35.81 (8)O7'—Cl1—O8'110.1 (9)
C13—Er1—Er1iv62.42 (10)O9—Cl1—O8'124.5 (9)
N1—Ag1—N2165.44 (19)O8—Cl1—O7112.4 (8)
C5—N1—C4117.6 (5)O10'—Cl1—O7107.3 (10)
C5—N1—Ag1126.0 (4)O9—Cl1—O7107.7 (8)
C4—N1—Ag1116.3 (4)O8'—Cl1—O7126.7 (10)
C12—N2—C7118.2 (4)O8—Cl1—O10111.8 (8)
C12—N2—Ag1123.0 (4)O10'—Cl1—O1053.6 (7)
C7—N2—Ag1118.8 (4)O7'—Cl1—O1097.3 (10)
O2—C1—O1126.7 (4)O9—Cl1—O10106.3 (7)
O2—C1—C2116.4 (4)O8'—Cl1—O1070.3 (8)
O1—C1—C2116.9 (4)O7—Cl1—O10106.7 (8)
C3—C2—C6118.5 (5)O8—Cl1—O9'66.9 (8)
C3—C2—C1119.4 (5)O10'—Cl1—O9'109.0 (8)
C6—C2—C1122.2 (5)O7'—Cl1—O9'108.9 (8)
C2—C3—C4119.5 (5)O9—Cl1—O9'54.5 (7)
C2—C3—H8120.2O8'—Cl1—O9'103.8 (8)
C4—C3—H8120.2O7—Cl1—O9'97.5 (10)
N1—C4—C3122.7 (5)O10—Cl1—O9'153.4 (9)
N1—C4—H7118.6O8'—O8—Cl171.7 (8)
C3—C4—H7118.6O8'—O8—O9'123.3 (13)
N1—C5—C6122.7 (5)Cl1—O8—O9'59.1 (6)
N1—C5—H11118.6O10'—O9—O9'126.6 (10)
C6—C5—H11118.6O10'—O9—Cl162.1 (6)
C2—C6—C5119.0 (5)O9'—O9—Cl164.8 (7)
C2—C6—H10120.5O10'—O10—Cl160.5 (6)
C5—C6—H10120.5O10'—O10—O8'102.8 (9)
N2—C7—C8122.2 (5)Cl1—O10—O8'53.8 (5)
N2—C7—H4118.9O8—O8'—Cl166.8 (8)
C8—C7—H4118.9O8—O8'—O10122.7 (11)
C7—C8—C9119.7 (5)Cl1—O8'—O1055.9 (6)
C7—C8—H3120.2O9—O9'—Cl160.7 (5)
C9—C8—H3120.2O9—O9'—O8105.7 (9)
C11—C9—C8118.2 (4)Cl1—O9'—O854.0 (5)
C11—C9—C10121.7 (4)O9—O10'—O10126.2 (10)
C8—C9—C10120.0 (4)O9—O10'—Cl163.3 (6)
O3—C10—O4124.5 (4)O10—O10'—Cl165.9 (6)
O3—C10—C9117.6 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+3/2, z1/2; (iii) x, y+3/2, z+1/2; (iv) x+2, y+2, z; (v) x1, y+3/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O4iii0.82 (4)2.19 (3)2.891 (5)145 (5)
O1W—H1W···O6vii0.81 (4)1.99 (4)2.786 (5)167 (6)
Symmetry codes: (iii) x, y+3/2, z+1/2; (vii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[AgEr(C6H4NO2)2(C2H3O2)(H2O)]ClO4
Mr695.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.1952 (11), 14.8673 (11), 7.8938 (6)
β (°) 91.783 (1)
V3)1899.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)5.62
Crystal size (mm)0.23 × 0.20 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.285, 0.344
No. of measured, independent and
observed [I > 2σ(I)] reflections
9611, 3423, 3009
Rint0.030
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.057, 1.05
No. of reflections3423
No. of parameters320
No. of restraints158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.76, 1.04

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O4i0.82 (4)2.19 (3)2.891 (5)145 (5)
O1W—H1W···O6ii0.81 (4)1.99 (4)2.786 (5)167 (6)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, G., Qiu, Y.-C., Hu, Z.-H., Li, Y.-H., Liu, B. & Deng, H. (2008). Inorg. Chem. Commun. 11, 1409–1411.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, L.-C., Zhao, Z.-G. & Yu, S.-J. (2009). Acta Cryst. E65, m1105.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1617-m1618
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds