organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E,E)-N,N′-Bis[4-(methyl­sulfon­yl)benzyl­­idene]ethane-1,2-di­amine

aSchool of Life Sciences, ShanDong University of Technology, ZiBo 255049, People's Republic of China, and bSchool of Chemical Engineering, ShanDong University of Technology, ZiBo 255049, People's Republic of China
*Correspondence e-mail: njuqss@yahoo.com.cn

(Received 8 November 2009; accepted 10 November 2009; online 14 November 2009)

In the crystal structure of the title Schiff base compound, C18H20N2O4S2, the mol­ecule lies across a crystallographic inversion centre. The torsion angle of the N—C—C—N fragment is 180°, as the inversion centre bis­ects the central C—C bond. The crystal packing is stabilized by C—H⋯O hydrogen bonds and aromatic ππ stacking inter­actions with a centroid–centroid distance of 3.913 (2) Å.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); For the crystal structure of a similar Schiff base compound, see: Sun et al. (2004[Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707-o1708.]). For the crystal structure of a precursor mol­ecule used in the synthesis of the title compound, see: Qian & Cui (2009[Qian, S.-S. & Cui, H.-Y. (2009). Acta Cryst. E65, o3029.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O4S2

  • Mr = 392.48

  • Triclinic, [P \overline 1]

  • a = 7.0100 (14) Å

  • b = 8.0530 (16) Å

  • c = 8.8740 (18) Å

  • α = 88.06 (3)°

  • β = 67.56 (3)°

  • γ = 87.60 (3)°

  • V = 462.53 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.940, Tmax = 0.969

  • 1830 measured reflections

  • 1683 independent reflections

  • 1374 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.153

  • S = 1.00

  • 1683 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.93 2.52 3.241 (4) 135
Symmetry code: (i) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), acts as an important precursor for the synthesis of Schiff base complexes. As an extension of our work on the structural characterization of Schiff base compounds, the crystal structure is reported here.

The asymmetric unit contains one-half of the molecule of (I), the other half being inversion-related by symmetry operation (-x, -y, 2-z) (Fig.1). All the bond lengths are within normal ranges (Allen et al., 1987) and comparable to the values observed in other similar compounds (Qian & Cui, 2009; Sun et al., 2004). The crystal packing is stabilized by C—H···O hydrogen bonds and aromatic π-π stacking interactions with a centroid-centroid distance of 3.913 (2) Å (Figure 2, Table 1). The torsion angle of the N—C—C—N fragment is 180 °, as the inversion centre bisects the central C—C bond.

Related literature top

For bond-length data, see: Allen et al. (1987); For the crystal structure of a similar Schiff base compound, see: Sun et al. (2004). For the crystal structure of a precursor molecule used in the synthesis of the title compound, see: Qian & Cui (2009).

Experimental top

4-(methylsulfonyl)benzaldehyde (0.184 g, 1 mmol) (Qian & Cui, 2009) and ethylene diamine (0.03 g, 0.5 mmol) were dissolved in acetonitrile (20 ml). The mixture was stirred at room temperature for 10 min to give a clear yellow solution. After keeping the solution in air for 10 d, yellow block-shaped crystals of (I) were formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å, They were treated as riding atoms, with Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. The molecule is completed by symmetry operation (-x, -y, 2-z) across the central C—C bond.
[Figure 2] Fig. 2. Plot of the crystal packing of compound (I). C—H···O hydrogen bonds are indicated with dotted lines.
(E,E)-N,N'-Bis[4- (methylsulfonyl)benzylidene]ethane-1,2-diamine top
Crystal data top
C18H20N2O4S2Z = 1
Mr = 392.48F(000) = 206
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0100 (14) ÅCell parameters from 25 reflections
b = 8.0530 (16) Åθ = 9–13°
c = 8.8740 (18) ŵ = 0.31 mm1
α = 88.06 (3)°T = 293 K
β = 67.56 (3)°Block, yellow
γ = 87.60 (3)°0.20 × 0.10 × 0.10 mm
V = 462.53 (19) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1374 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.3°, θmin = 2.5°
ω/2θ scansh = 08
Absorption correction: multi-scan
(SHELXTL; Sheldrick, 2008)
k = 99
Tmin = 0.940, Tmax = 0.969l = 910
1830 measured reflections3 standard reflections every 200 reflections
1683 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.140P]
where P = (Fo2 + 2Fc2)/3
1683 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C18H20N2O4S2γ = 87.60 (3)°
Mr = 392.48V = 462.53 (19) Å3
Triclinic, P1Z = 1
a = 7.0100 (14) ÅMo Kα radiation
b = 8.0530 (16) ŵ = 0.31 mm1
c = 8.8740 (18) ÅT = 293 K
α = 88.06 (3)°0.20 × 0.10 × 0.10 mm
β = 67.56 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1374 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SHELXTL; Sheldrick, 2008)
Rint = 0.017
Tmin = 0.940, Tmax = 0.9693 standard reflections every 200 reflections
1830 measured reflections intensity decay: 1%
1683 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
1683 reflectionsΔρmin = 0.33 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.75133 (11)0.83172 (8)0.57111 (9)0.0414 (3)
N0.1391 (4)0.1964 (3)0.9738 (3)0.0443 (6)
O10.9506 (3)0.7668 (3)0.5545 (4)0.0715 (8)
C10.0335 (5)0.0843 (4)1.0382 (4)0.0479 (8)
H1B0.14920.12921.01360.057*
H1C0.07740.07351.15570.057*
O20.7244 (4)0.8981 (3)0.4285 (3)0.0532 (6)
C20.1219 (4)0.3116 (3)0.8807 (3)0.0410 (7)
H2B0.00130.32000.86010.049*
C30.2822 (4)0.4346 (3)0.8017 (3)0.0366 (6)
C40.2457 (4)0.5596 (4)0.7043 (4)0.0422 (7)
H4A0.12270.56240.68710.051*
C50.3882 (4)0.6802 (3)0.6324 (3)0.0405 (7)
H5A0.36190.76410.56770.049*
C60.5702 (4)0.6742 (3)0.6579 (3)0.0362 (6)
C70.6120 (5)0.5482 (4)0.7525 (4)0.0503 (8)
H7A0.73640.54410.76750.060*
C80.4670 (5)0.4292 (4)0.8242 (4)0.0472 (8)
H8A0.49370.34470.88810.057*
C90.6747 (6)0.9854 (4)0.7201 (4)0.0578 (9)
H9A0.76521.07720.68290.087*
H9B0.68110.93990.81950.087*
H9C0.53571.02310.73930.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0377 (4)0.0343 (4)0.0478 (5)0.0113 (3)0.0116 (3)0.0135 (3)
N0.0499 (15)0.0369 (13)0.0412 (14)0.0182 (11)0.0110 (11)0.0078 (11)
O10.0380 (13)0.0554 (14)0.111 (2)0.0117 (10)0.0194 (13)0.0313 (14)
C10.0466 (17)0.0404 (16)0.0470 (17)0.0190 (13)0.0059 (13)0.0091 (13)
O20.0648 (15)0.0483 (12)0.0440 (12)0.0185 (10)0.0178 (10)0.0166 (10)
C20.0378 (15)0.0369 (15)0.0445 (16)0.0103 (12)0.0106 (13)0.0008 (12)
C30.0399 (15)0.0289 (13)0.0362 (14)0.0081 (11)0.0086 (12)0.0024 (11)
C40.0345 (15)0.0385 (15)0.0533 (18)0.0040 (12)0.0167 (13)0.0079 (13)
C50.0419 (16)0.0330 (14)0.0455 (16)0.0032 (12)0.0160 (13)0.0109 (12)
C60.0372 (15)0.0300 (13)0.0387 (14)0.0081 (11)0.0116 (12)0.0078 (11)
C70.0437 (17)0.0461 (17)0.067 (2)0.0149 (13)0.0280 (15)0.0225 (15)
C80.0528 (18)0.0381 (15)0.0572 (18)0.0143 (13)0.0287 (15)0.0213 (13)
C90.068 (2)0.0509 (19)0.055 (2)0.0248 (16)0.0214 (17)0.0071 (15)
Geometric parameters (Å, º) top
S—O11.426 (2)C3—C41.384 (4)
S—O21.433 (2)C4—C51.379 (4)
S—C91.755 (4)C4—H4A0.9300
S—C61.771 (3)C5—C61.377 (4)
N—C21.254 (4)C5—H5A0.9300
N—C11.461 (3)C6—C71.388 (4)
C1—C1i1.513 (6)C7—C81.380 (4)
C1—H1B0.9700C7—H7A0.9300
C1—H1C0.9700C8—H8A0.9300
C2—C31.476 (4)C9—H9A0.9600
C2—H2B0.9300C9—H9B0.9600
C3—C81.382 (4)C9—H9C0.9600
O1—S—O2118.21 (16)C5—C4—H4A119.4
O1—S—C9108.72 (19)C3—C4—H4A119.4
O2—S—C9108.48 (16)C6—C5—C4118.9 (3)
O1—S—C6108.36 (14)C6—C5—H5A120.6
O2—S—C6108.51 (14)C4—C5—H5A120.6
C9—S—C6103.57 (15)C5—C6—C7121.0 (3)
C2—N—C1116.2 (3)C5—C6—S119.4 (2)
N—C1—C1i109.3 (3)C7—C6—S119.6 (2)
N—C1—H1B109.8C8—C7—C6119.2 (3)
C1i—C1—H1B109.8C8—C7—H7A120.4
N—C1—H1C109.8C6—C7—H7A120.4
C1i—C1—H1C109.8C7—C8—C3120.6 (3)
H1B—C1—H1C108.3C7—C8—H8A119.7
N—C2—C3123.8 (3)C3—C8—H8A119.7
N—C2—H2B118.1S—C9—H9A109.5
C3—C2—H2B118.1S—C9—H9B109.5
C8—C3—C4119.1 (2)H9A—C9—H9B109.5
C8—C3—C2121.7 (3)S—C9—H9C109.5
C4—C3—C2119.2 (3)H9A—C9—H9C109.5
C5—C4—C3121.2 (3)H9B—C9—H9C109.5
C2—N—C1—C1i110.1 (4)O2—S—C6—C526.6 (3)
C1—N—C2—C3178.8 (3)C9—S—C6—C588.5 (3)
N—C2—C3—C80.9 (5)O1—S—C6—C724.9 (3)
N—C2—C3—C4178.3 (3)O2—S—C6—C7154.4 (3)
C8—C3—C4—C51.3 (5)C9—S—C6—C790.4 (3)
C2—C3—C4—C5177.9 (3)C5—C6—C7—C81.2 (5)
C3—C4—C5—C60.4 (4)S—C6—C7—C8177.8 (3)
C4—C5—C6—C70.8 (5)C6—C7—C8—C30.3 (5)
C4—C5—C6—S178.2 (2)C4—C3—C8—C70.9 (5)
O1—S—C6—C5156.1 (3)C2—C3—C8—C7178.2 (3)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1ii0.932.523.241 (4)135
Symmetry code: (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H20N2O4S2
Mr392.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0100 (14), 8.0530 (16), 8.8740 (18)
α, β, γ (°)88.06 (3), 67.56 (3), 87.60 (3)
V3)462.53 (19)
Z1
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.940, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
1830, 1683, 1374
Rint0.017
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.153, 1.00
No. of reflections1683
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.33

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.523.241 (4)134.6
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This project was sponsored by ShanDong Province Science & Technology Innovation Foundation.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationQian, S.-S. & Cui, H.-Y. (2009). Acta Cryst. E65, o3029.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds