inorganic compounds
The type IV polymorph of KEu(PO3)4
aUniversité Cadi Ayyad, Laboratoire de Physico-Chimie des Matériaux et Environnement, Faculté des Sciences Semlalia, Département de Chimie, BP 2390, 40000, Marrakech, Morocco, and bUniversité Blaise Pascal, Laboratoire des Matériaux Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: daniel.zambon@univ-bpclermont.fr
Single crystals of KEu(PO3)4, potassium europium(III) polyphosphate, were obtained by solid-state reactions. This monoclinic form is the second polymorph described for this composition and belongs to type IV of long-chain polyphosphates with general formula AIBIII(PO3)4. It is isotypic with its KEr(PO3)4 and KDy(PO3)4 homologues. The is built of infinite helical chains of corner-sharing PO4 tetrahedra with a repeating unit of eight tetrahedra. These chains are further linked by isolated EuO8 square antiprisms, forming a three-dimensional framework. The K+ ions are located in pseudo-hexagonal channels running along [01] and are surrounded by nine O atoms in a distorted environment.
Related literature
Besides crystals of the title compound, crystals of the type III polymorph (Hu et al., 1984)) have also been obtained. For isotypic AB(PO3)4 structures, where A is an alkali metal, Tl or NH4+, and B is a rare earth element, see: Palkina et al. (1977) for TlNd; Maksimova et al. (1978) for RbNd; Dago et al. (1980) for KEr; Maksimova et al. (1981) for CsNd; Maksimova et al. (1982) for RbHo; Horchani et al. (2004) for RbEr; Rekik et al. (2004) for KGd; Naïli & Mhiri (2005) for CsGd; Ben Zarkouna et al. (2006) for (NH4)Gd; Khlissa & Férid (2006) for RbTb; Ettis et al. (2006) for RbGd; Chehimi-Moumen & Férid (2007) for KDy; Horchani-Naifer & Férid (2007) for CsPr; Zhu et al. (2009) for CsEu. For a review on the crystal chemisty of polyphosphates, see: Durif (1995). Jaouadi et al. (2003) have discussed the main crystal chemical characteristics of the seven AB(PO3)4 structure types. For applications of rare earth polyphosphates, see: Rashchi & Finch (2000); Barsukov et al. (2004). For general background, see: Porai-Koshits & Aslanov (1972). For ionic radii, see: Shannon (1976).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809048788/wm2282sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809048788/wm2282Isup2.hkl
Crystals of the title compound were synthesized by reacting Eu2O3 with (NH4)H2PO4 and K2CO3 in a platinum crucible. A mixture of these reagents in the molar ratio 34:57:9 was used for the synthesis. The mixture was heated at 473 K for 6 h, then at 573 K for 6 h and finally at 873 K for 24 h. The furnace was then cooled down first to 773 K at the rate of 2 K.h-1 and then to room temperature at the rate of K.h-1. Single crystals were extracted from the batch by washing with hot water. Besides crystals of the title compound, crystals of the type III polymorph (Hu et al., 1984)) have also been obtained.
The highest residual peak in the final difference Fourier map was located 0.68 Å from atom Eu and the deepest hole was located 0.45 Å from atom K.
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. ORTEP-3 view of the repeating unit with eight PO4 tetrahedra, leading to helical (PO3)∞ chains. Displacement ellipsoids are drawn at the 50 % probability level. Symmetry codes: (a) -1/2+x, 3/2-y, 1/2+z; (b) -1+x, -1+y, z; (c) x, -1+y, 1+z; (d) -1+x, y, z; (e) -1/2+x, 1/2-y, 1/2+z; (f) 3-x, 1-y, 1-z; (g) 2-x, 1-y, 1-z; (h) 5/2-x, -1/2+y, 1/2-z; (i) -3/2+x, 1/2-y, -1/2+z; (j) 3/2-x, -1/2+y, 1/2-z; (k) 2-x, 1-y, -z. | |
Fig. 2. Partial view of infinite chains of corner-sharing KO9 polyhedra. |
KEu(PO3)4 | F(000) = 952 |
Mr = 506.94 | Dx = 3.476 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6203 reflections |
a = 10.3723 (1) Å | θ = 2.6–40.6° |
b = 8.9721 (1) Å | µ = 7.63 mm−1 |
c = 10.8320 (1) Å | T = 296 K |
β = 106.053 (1)° | Hexagonal prism, colourless |
V = 968.73 (2) Å3 | 0.12 × 0.11 × 0.10 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 6201 independent reflections |
Radiation source: fine-focus sealed tube | 5023 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 40.6°, θmin = 3.1° |
ω and ϕ scans | h = −18→18 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | k = −16→16 |
Tmin = 0.466, Tmax = 0.513 | l = −19→5 |
24299 measured reflections |
Refinement on F2 | 0 constraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.030 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0311P)2 + 1.1689P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
6201 reflections | Δρmax = 1.72 e Å−3 |
163 parameters | Δρmin = −2.04 e Å−3 |
0 restraints |
KEu(PO3)4 | V = 968.73 (2) Å3 |
Mr = 506.94 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.3723 (1) Å | µ = 7.63 mm−1 |
b = 8.9721 (1) Å | T = 296 K |
c = 10.8320 (1) Å | 0.12 × 0.11 × 0.10 mm |
β = 106.053 (1)° |
Bruker APEXII CCD diffractometer | 6201 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 5023 reflections with I > 2σ(I) |
Tmin = 0.466, Tmax = 0.513 | Rint = 0.045 |
24299 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 163 parameters |
wR(F2) = 0.072 | 0 restraints |
S = 1.04 | Δρmax = 1.72 e Å−3 |
6201 reflections | Δρmin = −2.04 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
K | 0.79467 (11) | 0.57090 (14) | 0.04227 (10) | 0.0395 (2) | |
Eu | 0.500385 (11) | 0.772652 (13) | 0.184899 (12) | 0.00645 (3) | |
P1 | 0.85428 (6) | 0.90558 (7) | 0.24010 (7) | 0.00615 (10) | |
P2 | 0.54001 (6) | 0.82848 (7) | −0.14102 (7) | 0.00607 (10) | |
P3 | 0.24938 (6) | 1.02436 (7) | 0.22927 (6) | 0.00609 (10) | |
P4 | 0.17657 (6) | 0.89469 (7) | −0.01962 (6) | 0.00626 (10) | |
O1 | 0.14215 (17) | 0.9549 (2) | 0.10673 (19) | 0.0085 (3) | |
O2 | 0.35389 (19) | 0.9131 (2) | 0.29039 (19) | 0.0093 (3) | |
O3 | −0.02278 (19) | 0.7943 (2) | 0.2518 (2) | 0.0103 (3) | |
O4 | 0.6017 (2) | 0.5368 (2) | 0.1754 (2) | 0.0117 (3) | |
O5 | 0.5648 (2) | 0.7615 (2) | −0.0114 (2) | 0.0117 (3) | |
O6 | 0.17180 (19) | 1.0919 (2) | 0.3112 (2) | 0.0106 (3) | |
O7 | 0.73783 (19) | 0.8192 (2) | 0.2547 (2) | 0.0134 (4) | |
O8 | 0.5691 (2) | 0.7074 (2) | 0.4090 (2) | 0.0114 (3) | |
O9 | 0.31707 (19) | 0.8419 (2) | 0.0175 (2) | 0.0121 (3) | |
O10 | 0.53947 (19) | 1.0334 (2) | 0.1765 (2) | 0.0121 (3) | |
O11 | 0.31589 (17) | 1.1548 (2) | 0.1668 (2) | 0.0092 (3) | |
O12 | 0.8309 (2) | 0.9497 (2) | 0.0936 (2) | 0.0125 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K | 0.0363 (5) | 0.0581 (6) | 0.0243 (4) | 0.0047 (4) | 0.0085 (4) | −0.0045 (4) |
Eu | 0.00596 (4) | 0.00617 (4) | 0.00701 (5) | 0.00051 (3) | 0.00144 (3) | 0.00084 (4) |
P1 | 0.0054 (2) | 0.0053 (2) | 0.0068 (2) | −0.00011 (17) | 0.0002 (2) | 0.00105 (19) |
P2 | 0.0060 (2) | 0.0053 (2) | 0.0071 (2) | −0.00059 (17) | 0.0021 (2) | −0.00025 (19) |
P3 | 0.0057 (2) | 0.0065 (2) | 0.0062 (3) | 0.00066 (17) | 0.0020 (2) | −0.00024 (19) |
P4 | 0.0052 (2) | 0.0077 (2) | 0.0050 (2) | −0.00047 (17) | 0.00004 (19) | 0.00081 (19) |
O1 | 0.0071 (6) | 0.0106 (7) | 0.0078 (7) | −0.0029 (5) | 0.0023 (6) | −0.0027 (6) |
O2 | 0.0094 (7) | 0.0093 (7) | 0.0087 (8) | 0.0032 (5) | 0.0015 (6) | 0.0013 (6) |
O3 | 0.0108 (7) | 0.0104 (7) | 0.0101 (8) | 0.0053 (6) | 0.0036 (6) | 0.0047 (6) |
O4 | 0.0163 (8) | 0.0086 (7) | 0.0117 (8) | 0.0013 (6) | 0.0063 (7) | 0.0015 (6) |
O5 | 0.0135 (8) | 0.0155 (8) | 0.0074 (8) | 0.0021 (6) | 0.0048 (7) | 0.0014 (6) |
O6 | 0.0114 (7) | 0.0126 (7) | 0.0095 (8) | 0.0022 (6) | 0.0059 (7) | −0.0018 (6) |
O7 | 0.0073 (7) | 0.0148 (8) | 0.0173 (10) | −0.0029 (6) | 0.0019 (7) | 0.0051 (7) |
O8 | 0.0114 (7) | 0.0125 (8) | 0.0093 (8) | 0.0046 (6) | 0.0011 (6) | 0.0038 (6) |
O9 | 0.0083 (7) | 0.0193 (9) | 0.0080 (8) | 0.0053 (6) | 0.0011 (6) | 0.0024 (7) |
O10 | 0.0099 (7) | 0.0060 (6) | 0.0212 (10) | 0.0017 (5) | 0.0059 (7) | 0.0020 (7) |
O11 | 0.0060 (6) | 0.0077 (6) | 0.0146 (9) | −0.0005 (5) | 0.0040 (6) | 0.0009 (6) |
O12 | 0.0191 (9) | 0.0087 (7) | 0.0069 (8) | −0.0009 (6) | −0.0009 (7) | 0.0026 (6) |
K—O4 | 2.789 (2) | P1—O7 | 1.480 (2) |
K—O5 | 2.860 (2) | P1—O4vi | 1.483 (2) |
K—O6i | 2.874 (2) | P1—O12 | 1.588 (2) |
K—O2i | 2.961 (2) | P1—O3iii | 1.5968 (19) |
K—O10ii | 3.075 (3) | P1—Kvi | 3.4868 (13) |
K—O3iii | 3.221 (2) | P2—O10iv | 1.4795 (19) |
K—O7ii | 3.234 (3) | P2—O5 | 1.483 (2) |
K—O11iv | 3.326 (2) | P2—O11iv | 1.6015 (18) |
K—O7 | 3.370 (3) | P2—O3i | 1.602 (2) |
K—P3i | 3.4008 (12) | P3—O6 | 1.482 (2) |
K—P1ii | 3.4868 (13) | P3—O2 | 1.4873 (19) |
Eu—O9 | 2.3199 (19) | P3—O11 | 1.6005 (19) |
Eu—O4 | 2.3775 (19) | P3—O1 | 1.6033 (19) |
Eu—O10 | 2.3799 (18) | P3—Kvii | 3.4008 (12) |
Eu—O5 | 2.401 (2) | P4—O9 | 1.4784 (19) |
Eu—O7 | 2.4045 (19) | P4—O8viii | 1.484 (2) |
Eu—O8 | 2.406 (2) | P4—O1 | 1.601 (2) |
Eu—O6v | 2.4214 (18) | P4—O12iv | 1.601 (2) |
Eu—O2 | 2.4827 (19) | ||
O4—K—O5 | 59.57 (6) | O5—Eu—O2 | 141.68 (7) |
O4—K—O6i | 100.70 (7) | O7—Eu—O2 | 118.10 (7) |
O5—K—O6i | 89.02 (7) | O8—Eu—O2 | 72.99 (6) |
O4—K—O2i | 147.48 (7) | O6v—Eu—O2 | 77.51 (6) |
O5—K—O2i | 99.06 (6) | O7—P1—O4vi | 118.08 (13) |
O6i—K—O2i | 51.47 (5) | O7—P1—O12 | 109.51 (12) |
O4—K—O10ii | 76.15 (6) | O4vi—P1—O12 | 110.78 (11) |
O5—K—O10ii | 118.26 (7) | O7—P1—O3iii | 108.73 (11) |
O6i—K—O10ii | 143.04 (7) | O4vi—P1—O3iii | 110.13 (12) |
O2i—K—O10ii | 135.75 (6) | O12—P1—O3iii | 97.66 (11) |
O4—K—O3iii | 94.01 (6) | O10iv—P2—O5 | 121.60 (13) |
O5—K—O3iii | 93.77 (6) | O10iv—P2—O11iv | 110.86 (11) |
O6i—K—O3iii | 164.29 (7) | O5—P2—O11iv | 106.08 (11) |
O2i—K—O3iii | 112.83 (6) | O10iv—P2—O3i | 107.58 (12) |
O10ii—K—O3iii | 46.46 (5) | O5—P2—O3i | 109.67 (12) |
O4—K—O7ii | 49.24 (5) | O11iv—P2—O3i | 98.65 (10) |
O5—K—O7ii | 108.54 (6) | O6—P3—O2 | 117.21 (12) |
O6i—K—O7ii | 97.63 (6) | O6—P3—O11 | 108.85 (11) |
O2i—K—O7ii | 138.36 (6) | O2—P3—O11 | 109.42 (10) |
O10ii—K—O7ii | 52.04 (5) | O6—P3—O1 | 106.70 (11) |
O3iii—K—O7ii | 96.13 (6) | O2—P3—O1 | 111.17 (11) |
O4—K—O11iv | 105.76 (6) | O11—P3—O1 | 102.44 (11) |
O5—K—O11iv | 46.23 (5) | O9—P4—O8viii | 119.05 (12) |
O6i—K—O11iv | 78.27 (6) | O9—P4—O1 | 108.15 (11) |
O2i—K—O11iv | 57.13 (5) | O8viii—P4—O1 | 109.93 (11) |
O10ii—K—O11iv | 138.47 (6) | O9—P4—O12iv | 108.86 (12) |
O3iii—K—O11iv | 92.53 (6) | O8viii—P4—O12iv | 110.62 (12) |
O7ii—K—O11iv | 153.96 (6) | O1—P4—O12iv | 98.17 (11) |
O4—K—O7 | 55.48 (6) | P4—O1—P3 | 124.84 (11) |
O5—K—O7 | 56.64 (6) | P3—O2—Eu | 126.82 (12) |
O6i—K—O7 | 144.25 (6) | P3—O2—Kvii | 93.80 (9) |
O2i—K—O7 | 135.83 (6) | Eu—O2—Kvii | 139.28 (8) |
O10ii—K—O7 | 63.35 (5) | P1ix—O3—P2vii | 130.06 (14) |
O3iii—K—O7 | 44.54 (5) | P1ix—O3—Kix | 91.84 (9) |
O7ii—K—O7 | 85.78 (3) | P2vii—O3—Kix | 97.17 (9) |
O11iv—K—O7 | 83.30 (6) | P1ii—O4—Eu | 138.08 (12) |
O9—Eu—O4 | 118.75 (7) | P1ii—O4—K | 105.27 (10) |
O9—Eu—O10 | 79.54 (7) | Eu—O4—K | 108.28 (7) |
O4—Eu—O10 | 142.30 (6) | P2—O5—Eu | 143.49 (12) |
O9—Eu—O5 | 71.81 (7) | P2—O5—K | 110.57 (10) |
O4—Eu—O5 | 71.94 (7) | Eu—O5—K | 105.40 (8) |
O10—Eu—O5 | 85.13 (7) | P3—O6—Eux | 144.03 (13) |
O9—Eu—O7 | 138.27 (7) | P3—O6—Kvii | 97.49 (9) |
O4—Eu—O7 | 75.03 (7) | Eux—O6—Kvii | 118.48 (8) |
O10—Eu—O7 | 70.79 (7) | P1—O7—Eu | 148.46 (13) |
O5—Eu—O7 | 76.95 (8) | P1—O7—Kvi | 87.05 (10) |
O9—Eu—O8 | 143.51 (7) | Eu—O7—Kvi | 92.57 (7) |
O4—Eu—O8 | 79.39 (7) | P1—O7—K | 88.34 (10) |
O10—Eu—O8 | 105.75 (7) | Eu—O7—K | 91.59 (7) |
O5—Eu—O8 | 143.72 (7) | Kvi—O7—K | 175.37 (7) |
O7—Eu—O8 | 74.50 (7) | P4xi—O8—Eu | 130.26 (12) |
O9—Eu—O6v | 75.16 (7) | P4—O9—Eu | 146.27 (13) |
O4—Eu—O6v | 75.02 (7) | P2iv—O10—Eu | 138.15 (12) |
O10—Eu—O6v | 142.48 (6) | P2iv—O10—Kvi | 106.53 (11) |
O5—Eu—O6v | 112.01 (7) | Eu—O10—Kvi | 97.15 (7) |
O7—Eu—O6v | 143.80 (7) | P3—O11—P2iv | 132.40 (12) |
O8—Eu—O6v | 80.43 (7) | P3—O11—Kiv | 136.15 (9) |
O9—Eu—O2 | 75.52 (7) | P2iv—O11—Kiv | 88.55 (8) |
O4—Eu—O2 | 143.69 (7) | P1—O12—P4iv | 133.66 (14) |
O10—Eu—O2 | 69.57 (7) |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1, y, z; (iv) −x+1, −y+2, −z; (v) −x+1/2, y−1/2, −z+1/2; (vi) −x+3/2, y+1/2, −z+1/2; (vii) x−1/2, −y+3/2, z+1/2; (viii) x−1/2, −y+3/2, z−1/2; (ix) x−1, y, z; (x) −x+1/2, y+1/2, −z+1/2; (xi) x+1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | KEu(PO3)4 |
Mr | 506.94 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 10.3723 (1), 8.9721 (1), 10.8320 (1) |
β (°) | 106.053 (1) |
V (Å3) | 968.73 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.63 |
Crystal size (mm) | 0.12 × 0.11 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.466, 0.513 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 24299, 6201, 5023 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.915 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.072, 1.04 |
No. of reflections | 6201 |
No. of parameters | 163 |
Δρmax, Δρmin (e Å−3) | 1.72, −2.04 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
P1—O7 | 1.480 (2) | P3—O6 | 1.482 (2) |
P1—O4i | 1.483 (2) | P3—O2 | 1.4873 (19) |
P1—O12 | 1.588 (2) | P3—O11 | 1.6005 (19) |
P1—O3ii | 1.5968 (19) | P3—O1 | 1.6033 (19) |
P2—O10iii | 1.4795 (19) | P4—O9 | 1.4784 (19) |
P2—O5 | 1.483 (2) | P4—O8v | 1.484 (2) |
P2—O11iii | 1.6015 (18) | P4—O1 | 1.601 (2) |
P2—O3iv | 1.602 (2) | P4—O12iii | 1.601 (2) |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) −x+1, −y+2, −z; (iv) x+1/2, −y+3/2, z−1/2; (v) x−1/2, −y+3/2, z−1/2. |
References
Barsukov, I. V., Syťko, V. V. & Umreiko, D. S. (2004). J. Appl. Spectrosc. 71, 676–680. CrossRef CAS Google Scholar
Ben Zarkouna, E., Driss, A. & Férid, M. (2006). Acta Cryst. C62, i64–i66. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA. Google Scholar
Chehimi-Moumen, F. & Férid, M. (2007). Acta Cryst. E63, i129–i130. Web of Science CrossRef IUCr Journals Google Scholar
Dago, A. M., Pushcharovskii, D. Yu., Pobedimskaya, E. A. & Belov, N. V. (1980). Sov. Phys. Dolk. 25, 231–233. Google Scholar
Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York and London: Plenum Press. Google Scholar
Ettis, H., Naïli, H. & Mhiri, T. (2006). Acta Cryst. E62, i166–i168. Web of Science CrossRef IUCr Journals Google Scholar
Horchani, K., Amami, J., Merle, D. & Férid, M. (2004). J. Phys. IV, 122, 123–128. CAS Google Scholar
Horchani-Naifer, K. & Férid, M. (2007). Acta Cryst. E63, i131–i132. Web of Science CrossRef IUCr Journals Google Scholar
Hu, N., Lin, Y., Zhou, Q.-L. & Liu, S.-Z. (1984). Yingyong Huaxue, 1, 47–50. CAS Google Scholar
Jaouadi, K., Naïli, H., Zouari, N., Mhiri, T. & Daoud, A. (2003). J. Alloys Compd, 354, 104–114. Web of Science CrossRef CAS Google Scholar
Khlissa, F. & Férid, M. (2006). Acta Cryst. E62, i272–i273. Web of Science CrossRef IUCr Journals Google Scholar
Maksimova, S. I., Palkina, K. K. & Chibiskova, N. T. (1982). Izv. Akad. Nauk SSSR Neorg. Mater. 18, 653–700. CAS Google Scholar
Maksimova, S. I., Palkina, K. K. & Loshchenov, V. V. (1981). Izv. Akad. Nauk SSSR Neorg. Mater. 17, 116–120. CAS Google Scholar
Maksimova, S. I., Palkina, K. K., Loshchenov, V. B. & Kuznetsov, V. G. (1978). Zh. Neorg. Khim. 23, 2959–2965. CAS Google Scholar
Naïli, H. & Mhiri, T. (2005). Acta Cryst. E61, i204–i207. Web of Science CrossRef IUCr Journals Google Scholar
Palkina, K. K., Saifuddinov, V. Z., Kuznetsov, V. G. & Chudinova, N. N. (1977). Sov. Phys. Dolk. 237, 837–839. CAS Google Scholar
Porai-Koshits, M. A. & Aslanov, L. A. (1972). J. Struct. Chem. 13, 244–253. CrossRef Google Scholar
Rashchi, F. & Finch, J. A. (2000). Miner. Eng. 13, 1019–1035. Web of Science CrossRef CAS Google Scholar
Rekik, W., Naïli, H. & Mhiri, T. (2004). Acta Cryst. C60, i50–i52. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, J., Cheng, W.-D. & Zhang, H. (2009). Acta Cryst. E65, i70. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rare earth polyphosphates are interesting materials and bear potential applications (Rashchi & Finch, 2000; Barsukov et al., 2004). The title compound is a member of a large family of polyphosphates with general formula AIBIII(PO3)4 (where AI is a monovalent cation: Li, Na, K, Rb, Cs, Tl, NH4, Ag and BIII is a trivalent cation: Ln,Y, Bi). It is now well known that these compounds are classified into seven structural types usually labelled by roman numerals from I to VII. A short recapitulation of the main crystal chemical characteristics of these seven structural types has recently been given by Jaouadi et al. (2003). The KEu(PO3)4 polymorph described in this article belongs to the IV structural type.
In the crystal structure the Eu3+ ion is eight-coordinated by the oxygen atoms and its 8-coordination polyhedron is better described as a square antiprism than a dodecahedron according to the criteria of Porai-Koshits & Aslanov (1972) (δ1 = 10.37°, δ2 = 10.85°, δ3 = 47.97°, δ4 = 53.54°). The Eu—O distances range from 2.3199 (19) Å to 2.4827 (19) Å with an average <Eu—O> distance of 2.399 Å that is slightly shorter than the sum of the ionic radii i.e. 2.466 Å (Shannon, 1976). The structure of this type IV polymorph is built of infinite helical chains of corner-sharing PO4 tetrahedra further linked by isolated EuO8 square antiprisms. The (PO3)∞ chains exhibit a repeating unit of eight PO4 tetrahedra (Fig. 1) and are running along the [101] direction. The three-dimensional framework resulting from the edge-sharing between the PO4 tetrahedra and the EuO8 square antiprisms exhibits pseudo hexagonal channels where the K+ ions reside. The K+ ion is 9-coordinated by oxygen atoms with distances ranging from 2.789 (2) Å to 3.370 (3) Å. By sharing corners, the KO9 coordination polyhedra form corrugated chains running along the [010] direction (Fig. 2). Whereas the K atoms are separated by 6.599 (2) Å within the chain, the shortest K—K distance in the structure, 4.770 (2) Å, occurs between two adjacent (KO9)∞ chains. This shortest distance corresponds to the separation between two K+ ions within the channels of the structure running along the [201] direction. This separation distance AI—AI is strongly dependent on the nature of the AI element and decreases as the size of the AI element increases. For instance, in the AIGd(PO3)4 homologue series, where AI = K, Rb, Cs, this AI—AI shortest distance varies from 4.801 Å for K to 4.211 Å for Cs (4.524 Å for Rb). For CsEu(PO3)4 the shortest Cs—Cs distance is equal to 4.237Å (Zhu et al. 2009).
For isotypic AB(PO3)4 structures, where A is an alkali metal, Tl or NH4+, and B is a rare earth element, see: Palkina et al. (1977) for TlNd, Maksimova et al. (1978) for RbNd, Dago et al. (1980) for KEr, Maksimova et al. (1981) for CsNd, Maksimova et al. (1982) for RbHo, Horchani et al. (2004) for RbEr, Rekik et al. (2004) for KGd, Naïli & Mhiri (2005) for CsGd, Ben Zarkouna et al. (2006) for (NH4)Gd, Khlissa & Férid (2006) for RbTb, Ettis et al. (2006) for RbGd, Chehimi-Moumen & Férid (2007) for KDy, Horchani-Naifer & Férid (2007) for CsPr, and Zhu et al. (2009) for CsEu. For a review on the crystal chemisty of polyphosphates, see: Durif (1995).