metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­acetato{4′-[4-(benz­yl­oxy)phen­yl]-2,2′:6′,2′′-terpyridine}zinc(II)

aSchool of Food Engineering, Harbin University of Commerce, Harbin 150076, People's Republic of China
*Correspondence e-mail: liw@hrbcu.edu.cn

(Received 13 November 2009; accepted 19 November 2009; online 25 November 2009)

In the title compound, [Zn(CH3COO)2(C28H21N3O)], the ZnII ion is in a trigonal–bipyramidal ZnN3O2 coordination with a tridentate N-chelating 4′-[4-(benz­yloxy)phen­yl)-2,2′:6′,2′′-terpyridine ligand in the equatorial position and two acetate anions in the axial positions. The three pyridine rings are approximately coplanar, with a maximum deviation of 0.03 Å from the mean plane. The phen­oxy substituent makes a dihedral angle of 18.1 (2)° with the central pyridine ring. The benzyl group has a C—O—C—C torsion angle of 77.62 (8)° relative to the phen­oxy ring. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds.

Related literature

For the synthesis of functionalized terpyridines, see: Heller & Schubert (2003[Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947-961.]). For other structures with terpyridine ligands, see: Duprez et al. (2005[Duprez, V., Biancardo, M., Spanggaard, H. & Krebs, F. C. (2005). Macromolecules, 38, 10436-10448.]). For a transtrans arrangement of the pyridine rings about the inter­annular C—C bonds in the structure of a similar ligand, see: Anthonysamy et al. (2007[Anthonysamy, A., Balasubramanian, S., Chinnakali, K. & Fun, H.-K. (2007). Acta Cryst. E63, o1148-o1150.]). PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) was used for structure evaluation.

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H3O2)2(C28H21N3O)]

  • Mr = 598.94

  • Monoclinic, P n

  • a = 8.3959 (17) Å

  • b = 15.564 (3) Å

  • c = 10.702 (2) Å

  • β = 102.23 (3)°

  • V = 1366.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 291 K

  • 0.26 × 0.23 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.791, Tmax = 0.826

  • 13194 measured reflections

  • 5859 independent reflections

  • 3538 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.106

  • S = 0.98

  • 5859 reflections

  • 373 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2733 Friedel pairs

  • Flack parameter: 0.108 (13)

Table 1
Selected bond lengths (Å)

Zn1—N1 2.187 (4)
Zn1—N2 2.090 (3)
Zn1—N3 2.151 (5)
Zn1—O2 2.014 (4)
Zn1—O4 1.961 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5i 0.93 2.39 3.293 (7) 163
C12—H12⋯O3ii 0.93 2.24 3.147 (7) 165
C22—H22B⋯O4iii 0.97 2.48 3.429 (6) 166
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Functionalized terpyridines are interesting materials (Heller & Schubert, 2003). 2,2':6',2"-terpyridine and its derivatives have been used as key building blocks in supramolecular frameworks (Duprez et al., 2005). We report here the crystal structure of the title compound, (I).

In the molecular structure of (I) (Fig. 1), the three pyridine rings are approximately coplanar (max. deviation from the mean plane 0.03 Å). The ZnII ion is in a trigonal-bipyramidal coordination by a neutral tridentate 4'-[4-(benzyloxy)phenyl)-2,2':6',2"-terpyridine ligand in equatorial and two acetate anions in axial positions (Table 1). The phenoxy substituent makes a dihedral angle of 18.1 (2)° with the central pyridine ring. The torsion angle between the benzoyl group and the attached phenoxy ring, defined by atoms C19—O01—C22—C23, is 77.6 (7)°.

Molecules of (I) are linked via O—H···C hydrogen bonds, as shown in Fig. 2. Molecules associate via C(22)—H(22B)···O(4)#3 interactions, forming a chain along the b axis. Adjacent chains are interconnected via C(4)—H(4)···O(5)#1 and C(12)—H(12)···O(3)#2 interactions, leading to the formation of a two dimensional network (Table 2).

In the structure of a similar ligand molecule (Anthonysamy et al., 2007) a trans-trans arrangement of the pyridine rings about the interannular C—C bonds is observed.

Related literature top

For the synthesis of functionalized terpyridines, see: Heller & Schubert (2003). For other structures with terpyridine ligands, see: Duprez et al. (2005). For a transtrans arrangement of the pyridine rings about the interannular C—C bonds in the structure of a similar ligand, see: Anthonysamy et al. (2007). PLATON (Spek, 2009) was used for structure evaluation.

Experimental top

To a tetrahydrofuran solution (10 ml) of the ligand L (0.100 g, 0.241 mmol) was slowly added a methanolic solution (10 ml) of zinc acetate (0.044 g, 0.241 mmol). After stirring for 3 h at ambient temperature, a white solid was collected by filtration and washed with MeOH. Colorless single crystals suitable for X-ray determination were obtained by vapour diffusion of diethyl ether into a methanol solution of the powder sample over the course of 5 days.

Refinement top

Aromatic H atoms were fixed at C—H distances of 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C). Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.96–0.97 Å and with Uiso(H) = 1.5 Ueq(C). PLATON (Spek, 2009) suggests a (pseudo)-centrosymmetric structure in space group P21/c. However, attempts to refine the structure in the centrosymmetric space group led to significantly higher residuals, high anisotropic displacement parameters and some disordered atoms. The crystal under investigation was refined as an inversion twin with a twin component ration of ca. 9:1.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of a hydrogen-bonded (dashed lines) chain in (I). H atoms not involved in hydrogen bonding have been omitted.
Diacetato{4'-[4-(benzyloxy)phenyl]-2,2':6',2''-terpyridine}zinc(II) top
Crystal data top
[Zn(C2H3O2)2(C28H21N3O)]F(000) = 620
Mr = 598.94Dx = 1.455 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 8985 reflections
a = 8.3959 (17) Åθ = 3.1–27.4°
b = 15.564 (3) ŵ = 0.95 mm1
c = 10.702 (2) ÅT = 291 K
β = 102.23 (3)°Block, colorless
V = 1366.7 (5) Å30.26 × 0.23 × 0.21 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5859 independent reflections
Radiation source: fine-focus sealed tube3538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scanθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.791, Tmax = 0.826k = 2020
13194 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0503P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5859 reflectionsΔρmax = 0.48 e Å3
373 parametersΔρmin = 0.56 e Å3
2 restraintsAbsolute structure: Flack (1983), 2733 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.108 (13)
Crystal data top
[Zn(C2H3O2)2(C28H21N3O)]V = 1366.7 (5) Å3
Mr = 598.94Z = 2
Monoclinic, PnMo Kα radiation
a = 8.3959 (17) ŵ = 0.95 mm1
b = 15.564 (3) ÅT = 291 K
c = 10.702 (2) Å0.26 × 0.23 × 0.21 mm
β = 102.23 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5859 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3538 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.826Rint = 0.043
13194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.48 e Å3
S = 0.98Δρmin = 0.56 e Å3
5859 reflectionsAbsolute structure: Flack (1983), 2733 Friedel pairs
373 parametersAbsolute structure parameter: 0.108 (13)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8831 (7)0.3046 (4)0.9729 (6)0.0593 (17)
H10.86400.24570.96950.071*
C21.0368 (7)0.3342 (4)1.0203 (7)0.071 (2)
H21.12250.29561.04320.085*
C31.0655 (6)0.4200 (4)1.0342 (5)0.0584 (15)
H31.16900.44041.07070.070*
C40.9378 (6)0.4766 (4)0.9929 (5)0.0547 (14)
H40.95380.53570.99890.066*
C50.7855 (6)0.4424 (3)0.9424 (5)0.0457 (12)
C60.6379 (6)0.4966 (3)0.8920 (5)0.0436 (13)
C70.6359 (6)0.5845 (3)0.8898 (5)0.0505 (14)
H70.73200.61500.91870.061*
C80.4896 (7)0.6291 (2)0.8440 (7)0.0441 (10)
C90.3513 (6)0.5806 (3)0.8006 (5)0.0478 (13)
H90.25180.60760.77020.057*
C100.3608 (6)0.4912 (3)0.8023 (5)0.0423 (13)
C110.2215 (6)0.4320 (3)0.7578 (5)0.0475 (13)
C120.0654 (6)0.4599 (4)0.7014 (5)0.0571 (15)
H120.04260.51810.68800.068*
C130.0562 (7)0.3980 (4)0.6655 (6)0.0645 (17)
H130.16220.41480.62920.077*
C140.0200 (7)0.3134 (4)0.6834 (6)0.0600 (16)
H140.09970.27180.65850.072*
C150.1373 (7)0.2905 (4)0.7393 (6)0.0615 (16)
H150.16060.23250.75360.074*
C160.4862 (7)0.7251 (2)0.8434 (6)0.0482 (11)
C170.6114 (7)0.7729 (4)0.9184 (6)0.0603 (15)
H170.69950.74490.96960.072*
C180.6047 (7)0.8626 (4)0.9167 (6)0.0638 (16)
H180.68780.89430.96760.077*
C190.4755 (6)0.9042 (3)0.8400 (6)0.0562 (14)
C200.3523 (6)0.8577 (3)0.7660 (6)0.0611 (15)
H200.26460.88590.71460.073*
C210.3582 (6)0.7699 (3)0.7674 (5)0.0573 (14)
H210.27400.73920.71610.069*
C220.3569 (6)1.0418 (3)0.7676 (6)0.0794 (14)
H22A0.33361.01690.68250.095*
H22B0.39541.10000.76060.095*
C230.2019 (6)1.0450 (3)0.8165 (5)0.0635 (13)
C240.2036 (7)1.0670 (3)0.9414 (5)0.0758 (14)
H240.30271.07750.99720.091*
C250.0619 (8)1.0737 (4)0.9849 (7)0.0897 (18)
H250.06731.08861.06990.108*
C260.0850 (8)1.0595 (4)0.9082 (8)0.0888 (19)
H260.17981.06330.93970.107*
C270.0913 (7)1.0392 (4)0.7829 (8)0.100 (2)
H270.19201.03080.72830.120*
C280.0516 (8)1.0309 (4)0.7351 (6)0.0859 (18)
H280.04561.01610.65000.103*
C290.4567 (6)0.2751 (4)1.0846 (6)0.0572 (15)
C300.4161 (8)0.2233 (5)1.1989 (7)0.100 (2)
H30A0.31330.19471.17160.149*
H30B0.40990.26191.26760.149*
H30C0.49990.18151.22760.149*
C310.5525 (6)0.2511 (4)0.6214 (6)0.0605 (15)
C320.5948 (9)0.1794 (4)0.5365 (6)0.086 (2)
H32A0.49850.16260.47570.129*
H32B0.63710.13090.58850.129*
H32C0.67540.19970.49190.129*
N10.7606 (5)0.3578 (3)0.9319 (5)0.0481 (11)
N20.5019 (6)0.45091 (16)0.8450 (5)0.0440 (7)
N30.2591 (6)0.3473 (3)0.7745 (5)0.0523 (12)
O10.4850 (6)0.99246 (16)0.8480 (6)0.0784 (10)
O20.4764 (5)0.2367 (3)0.9965 (4)0.0664 (11)
O30.4605 (6)0.3537 (3)1.1031 (5)0.0977 (14)
O40.5539 (5)0.2307 (2)0.7346 (4)0.0696 (11)
O50.5191 (7)0.3222 (3)0.5782 (5)0.1088 (18)
Zn10.50944 (8)0.31689 (2)0.85645 (8)0.05098 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (3)0.046 (3)0.082 (4)0.007 (2)0.012 (3)0.009 (3)
C20.042 (3)0.078 (4)0.092 (5)0.017 (3)0.010 (3)0.010 (3)
C30.042 (3)0.066 (3)0.063 (3)0.001 (3)0.002 (2)0.000 (3)
C40.043 (3)0.056 (3)0.065 (3)0.001 (2)0.011 (2)0.004 (3)
C50.040 (3)0.044 (3)0.056 (3)0.001 (2)0.017 (2)0.000 (2)
C60.039 (3)0.037 (3)0.056 (3)0.003 (2)0.013 (2)0.005 (2)
C70.046 (3)0.042 (3)0.064 (3)0.009 (2)0.013 (2)0.003 (2)
C80.043 (3)0.0359 (16)0.055 (3)0.003 (2)0.013 (2)0.001 (3)
C90.037 (3)0.041 (3)0.065 (3)0.000 (2)0.010 (2)0.000 (2)
C100.040 (3)0.037 (3)0.049 (3)0.004 (2)0.009 (2)0.003 (2)
C110.040 (3)0.047 (3)0.057 (3)0.004 (2)0.012 (2)0.003 (2)
C120.050 (3)0.051 (3)0.068 (4)0.004 (2)0.007 (3)0.003 (3)
C130.039 (3)0.071 (4)0.081 (4)0.005 (3)0.007 (2)0.001 (3)
C140.048 (3)0.055 (3)0.073 (4)0.014 (2)0.005 (3)0.009 (2)
C150.053 (3)0.045 (3)0.088 (5)0.011 (3)0.017 (3)0.001 (3)
C160.051 (3)0.0395 (18)0.057 (3)0.007 (2)0.018 (2)0.007 (3)
C170.053 (3)0.044 (3)0.080 (4)0.002 (2)0.005 (3)0.002 (3)
C180.050 (3)0.043 (3)0.093 (4)0.004 (2)0.004 (3)0.010 (3)
C190.050 (4)0.0365 (19)0.082 (4)0.002 (2)0.014 (3)0.000 (3)
C200.052 (3)0.039 (3)0.092 (4)0.001 (2)0.014 (3)0.005 (3)
C210.053 (3)0.039 (3)0.077 (4)0.001 (2)0.008 (2)0.007 (3)
C220.082 (4)0.039 (2)0.122 (4)0.002 (2)0.031 (3)0.009 (3)
C230.061 (3)0.034 (2)0.093 (4)0.007 (2)0.011 (3)0.007 (2)
C240.065 (3)0.065 (3)0.095 (4)0.001 (3)0.013 (3)0.000 (3)
C250.088 (5)0.080 (4)0.109 (5)0.003 (3)0.038 (4)0.008 (3)
C260.081 (5)0.067 (4)0.124 (6)0.004 (3)0.036 (4)0.001 (4)
C270.059 (4)0.087 (5)0.144 (7)0.006 (3)0.001 (4)0.009 (4)
C280.082 (4)0.080 (4)0.090 (5)0.000 (3)0.008 (3)0.001 (3)
C290.031 (2)0.059 (4)0.074 (4)0.007 (2)0.006 (2)0.012 (3)
C300.076 (4)0.106 (6)0.113 (5)0.001 (4)0.013 (4)0.036 (5)
C310.045 (3)0.048 (3)0.084 (4)0.003 (2)0.002 (2)0.002 (3)
C320.089 (4)0.094 (5)0.074 (4)0.022 (4)0.017 (3)0.017 (3)
N10.040 (2)0.037 (2)0.071 (3)0.0050 (19)0.020 (2)0.000 (2)
N20.0421 (15)0.0334 (13)0.056 (2)0.001 (2)0.0103 (14)0.002 (2)
N30.047 (3)0.040 (2)0.068 (3)0.000 (2)0.010 (2)0.002 (2)
O10.062 (3)0.0335 (13)0.141 (3)0.0014 (18)0.024 (2)0.000 (3)
O20.072 (3)0.049 (2)0.083 (3)0.0032 (19)0.027 (2)0.004 (2)
O30.113 (3)0.073 (3)0.112 (3)0.017 (3)0.034 (3)0.019 (3)
O40.078 (3)0.049 (2)0.080 (3)0.008 (2)0.014 (2)0.001 (2)
O50.138 (5)0.077 (3)0.118 (4)0.024 (3)0.042 (3)0.026 (3)
Zn10.0465 (2)0.0366 (2)0.0702 (3)0.0007 (4)0.01314 (18)0.0003 (4)
Geometric parameters (Å, º) top
C1—N11.320 (7)C19—C201.369 (7)
C1—C21.363 (9)C19—O11.377 (5)
C1—H10.9300C20—C211.369 (8)
C2—C31.359 (8)C20—H200.9300
C2—H20.9300C21—H210.9300
C3—C41.385 (7)C22—O11.448 (6)
C3—H30.9300C22—C231.503 (7)
C4—C51.385 (7)C22—H22A0.9700
C4—H40.9300C22—H22B0.9700
C5—N11.334 (7)C23—C241.377 (7)
C5—C61.503 (7)C23—C281.391 (7)
C6—N21.349 (6)C24—C251.370 (8)
C6—C71.368 (8)C24—H240.9300
C7—C81.406 (7)C25—C261.347 (8)
C7—H70.9300C25—H250.9300
C8—C91.381 (7)C26—C271.367 (9)
C8—C161.494 (5)C26—H260.9300
C9—C101.394 (8)C27—C281.406 (9)
C9—H90.9300C27—H270.9300
C10—N21.333 (6)C28—H280.9300
C10—C111.486 (7)C29—O21.158 (6)
C11—N31.359 (7)C29—O31.238 (7)
C11—C121.391 (7)C29—C301.562 (8)
C12—C131.397 (7)C30—H30A0.9600
C12—H120.9300C30—H30B0.9600
C13—C141.355 (8)C30—H30C0.9600
C13—H130.9300C31—O51.209 (7)
C14—C151.376 (8)C31—O41.249 (7)
C14—H140.9300C31—C321.527 (8)
C15—N31.344 (7)C32—H32A0.9600
C15—H150.9300C32—H32B0.9600
C16—C211.390 (7)C32—H32C0.9600
C16—C171.394 (7)Zn1—N12.187 (4)
C17—C181.399 (9)Zn1—N22.090 (3)
C17—H170.9300Zn1—N32.151 (5)
C18—C191.376 (7)Zn1—O22.014 (4)
C18—H180.9300Zn1—O41.961 (4)
N1—C1—C2121.4 (6)O1—C22—H22A108.9
N1—C1—H1119.3C23—C22—H22A108.9
C2—C1—H1119.3O1—C22—H22B108.9
C3—C2—C1120.3 (6)C23—C22—H22B108.9
C3—C2—H2119.9H22A—C22—H22B107.7
C1—C2—H2119.9C24—C23—C28118.0 (5)
C2—C3—C4118.8 (5)C24—C23—C22121.0 (5)
C2—C3—H3120.6C28—C23—C22120.9 (5)
C4—C3—H3120.6C25—C24—C23121.1 (5)
C5—C4—C3117.9 (6)C25—C24—H24119.4
C5—C4—H4121.0C23—C24—H24119.4
C3—C4—H4121.0C26—C25—C24122.0 (7)
N1—C5—C4121.8 (5)C26—C25—H25119.0
N1—C5—C6115.0 (4)C24—C25—H25119.0
C4—C5—C6123.2 (5)C25—C26—C27118.4 (6)
N2—C6—C7121.0 (5)C25—C26—H26120.8
N2—C6—C5113.9 (4)C27—C26—H26120.8
C7—C6—C5125.1 (5)C26—C27—C28121.3 (5)
C6—C7—C8120.4 (5)C26—C27—H27119.3
C6—C7—H7119.8C28—C27—H27119.3
C8—C7—H7119.8C23—C28—C27119.2 (6)
C9—C8—C7117.3 (3)C23—C28—H28120.4
C9—C8—C16122.1 (5)C27—C28—H28120.4
C7—C8—C16120.6 (5)O2—C29—O3129.6 (6)
C8—C9—C10120.0 (5)O2—C29—C30117.6 (5)
C8—C9—H9120.0O3—C29—C30112.8 (6)
C10—C9—H9120.0C29—C30—H30A109.5
N2—C10—C9121.2 (5)C29—C30—H30B109.5
N2—C10—C11113.6 (5)H30A—C30—H30B109.5
C9—C10—C11125.2 (5)C29—C30—H30C109.5
N3—C11—C12122.1 (5)H30A—C30—H30C109.5
N3—C11—C10114.4 (4)H30B—C30—H30C109.5
C12—C11—C10123.4 (5)O5—C31—O4123.8 (6)
C11—C12—C13118.1 (6)O5—C31—C32120.4 (7)
C11—C12—H12121.0O4—C31—C32115.8 (5)
C13—C12—H12121.0C31—C32—H32A109.5
C14—C13—C12120.1 (5)C31—C32—H32B109.5
C14—C13—H13119.9H32A—C32—H32B109.5
C12—C13—H13119.9C31—C32—H32C109.5
C13—C14—C15118.6 (6)H32A—C32—H32C109.5
C13—C14—H14120.7H32B—C32—H32C109.5
C15—C14—H14120.7C1—N1—C5119.6 (5)
N3—C15—C14123.7 (6)C1—N1—Zn1124.2 (4)
N3—C15—H15118.1C5—N1—Zn1116.1 (3)
C14—C15—H15118.1C10—N2—C6120.0 (3)
C21—C16—C17117.7 (4)C10—N2—Zn1120.2 (4)
C21—C16—C8121.0 (5)C6—N2—Zn1119.5 (4)
C17—C16—C8121.3 (5)C15—N3—C11117.3 (5)
C16—C17—C18120.2 (5)C15—N3—Zn1126.1 (4)
C16—C17—H17119.9C11—N3—Zn1116.6 (3)
C18—C17—H17119.9C19—O1—C22117.8 (4)
C19—C18—C17120.1 (5)C29—O2—Zn1110.5 (4)
C19—C18—H18119.9C31—O4—Zn1120.5 (4)
C17—C18—H18119.9O4—Zn1—O298.42 (13)
C20—C19—C18120.0 (4)O4—Zn1—N2130.6 (2)
C20—C19—O1126.1 (5)O2—Zn1—N2130.9 (2)
C18—C19—O1113.8 (5)O4—Zn1—N3100.76 (19)
C21—C20—C19120.0 (5)O2—Zn1—N399.39 (18)
C21—C20—H20120.0N2—Zn1—N375.02 (19)
C19—C20—H20120.0N4—Zn1—N198.04 (17)
C20—C21—C16122.0 (5)O2—Zn1—N1100.36 (18)
C20—C21—H21119.0N2—Zn1—N175.28 (18)
C16—C21—H21119.0N3—Zn1—N1150.30 (11)
O1—C22—C23113.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5i0.932.393.293 (7)163
C12—H12···O3ii0.932.243.147 (7)165
C22—H22B···O4iii0.972.483.429 (6)166
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x1/2, y+1, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C2H3O2)2(C28H21N3O)]
Mr598.94
Crystal system, space groupMonoclinic, Pn
Temperature (K)291
a, b, c (Å)8.3959 (17), 15.564 (3), 10.702 (2)
β (°) 102.23 (3)
V3)1366.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.26 × 0.23 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.791, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
13194, 5859, 3538
Rint0.043
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.106, 0.98
No. of reflections5859
No. of parameters373
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.56
Absolute structureFlack (1983), 2733 Friedel pairs
Absolute structure parameter0.108 (13)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.187 (4)Zn1—O22.014 (4)
Zn1—N22.090 (3)Zn1—O41.961 (4)
Zn1—N32.151 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5i0.932.393.293 (7)163.4
C12—H12···O3ii0.932.243.147 (7)164.8
C22—H22B···O4iii0.972.483.429 (6)166.1
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x1/2, y+1, z1/2; (iii) x, y+1, z.
 

Acknowledgements

The authors thank Dr Guang Feng Hou for the single-crystal analysis.

References

First citationAnthonysamy, A., Balasubramanian, S., Chinnakali, K. & Fun, H.-K. (2007). Acta Cryst. E63, o1148–o1150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuprez, V., Biancardo, M., Spanggaard, H. & Krebs, F. C. (2005). Macromolecules, 38, 10436–10448.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947–961.  CrossRef Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds