organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(4-Methyl­piperazin-1-ylmeth­yl)phen­yl]di­phenyl­phosphane

aUniversitatea Babeş-Bolyai, Facultatea de Chimie şi Inginerie Chimicã, 11 Arany Janos, 400028 Cluj-Napoca, Romania
*Correspondence e-mail: crat@chem.ubbcluj.ro

(Received 16 November 2009; accepted 19 November 2009; online 25 November 2009)

In the title compound, C24H27N2P, the P atom is bonded to three C atoms in a trigonal–pyramidal geometry. The overall Ψ-trigonal-bipyramidal coordination of the P atom is established when the contribution of the electron lone pair and of the N—P donor–acceptor distance of 3.051 (3)Å are considered. The 4-methyl­piperazinyl ring adopts a chair conformation. Intra- and inter­molecular C—H⋯π hydrogen bonding leads to the consolidation of the structure.

Related literature

For organophospho­rus compounds containing substituents with the capability of intra­molecular donor⋯acceptor inter­actions, see: Alberico et al. (2007[Alberico, E., Braun, W., Calmuschi-Cula, B., Englert, U., Salzer, A. & Totev, D. (2007). Eur. J. Inorg. Chem. pp. 4923-4945.]); Chandrasekaran et al. (2002[Chandrasekaran, A., Timosheva, N. V., Day, R. O. & Holmes, R. R. (2002). Inorg. Chem. 41, 5235-5240.]); Chuit et al. (1993[Chuit, C., Corriu, R. J. P., Monforte, P., Reyé, C., Declercq, J.-P. & Dubourg, A. (1993). Angew. Chem. Int. Ed. 32, 1430-1432.]); Pretorius et al. (2004[Pretorius, M., Williams, D. B. G., Roodt, A. & Muller, A. (2004). Acta Cryst. C60, o384-o386.]). For the structures of triclinic polymorphs of triphenyl­phosphine, see: Ziemer et al. (2000[Ziemer, B., Rabis, A. & Steinberger, H.-U. (2000). Acta Cryst. C56, e58-e59.]).

[Scheme 1]

Experimental

Crystal data
  • C24H27N2P

  • Mr = 374.45

  • Monoclinic, P 21 /n

  • a = 9.3689 (10) Å

  • b = 14.6735 (16) Å

  • c = 15.4362 (16) Å

  • β = 100.849 (2)°

  • V = 2084.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 297 K

  • 0.30 × 0.26 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.971

  • 14906 measured reflections

  • 3667 independent reflections

  • 2811 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.085

  • wR(F2) = 0.178

  • S = 1.20

  • 3667 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—P1 1.841 (4)
C13—P1 1.829 (4)
C19—P1 1.839 (4)
C13—P1—C19 101.62 (16)
C13—P1—C1 103.38 (16)
C19—P1—C1 100.26 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9BCg3 0.97 2.91 3.835 (4) 160
C14—H14⋯Cg4i 0.97 2.74 3.651 (5) 166
C23—H23⋯Cg2ii 0.97 2.98 3.830 (5) 154
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2, Cg3, and Cg4 are the centroids of the C1–C6, C13–C18, and C19–C24 benzene rings, respectively.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

We report here on the preparation and structural characterization in solution and the crystalline state of an asymetric triphosphane, PPh2[C6H4{CH2N(CH2CH2)2NMe}-2] (I).

Asymmetric organophosphorus(III) derivatives of the type PPh2R, where R is a substituent capable of intramolecular coordination, were reported in the literature (Pretorius et al., 2004; Alberico et al., 2007). Nevertheless, only in the symmetrical triorganophospane P[C6H4(CH2NMe2)-2]3 the nitrogen atom is coordinated to the phosphorous atom via N—P donor···acceptor interactions (Chuit et al., 1993; Chandrasekaran et al., 2002).

In the structure of (I) the nitrogen atom bonded to the benzyl fragment is coordinated to the phosphorous atom trans to a phenyl group. This induces chirality at the Ψ-trigonal-bipyramidal phosphorus centre, in addition to the planar chirality (the nitrogen atom acts as the pilot atom and the phenyl group as the chiral plane). (I) crystallizes in the racemic form. The (RNAP) isomer is shown in Fig. 1. The (SNCP) isomer is generated by symmetry with respect to the inversion centre.

The P—C bond lengths and C—P—C angles (Table 1) are in the range of those of triclinic PPh3 (Ziemer et al., 2000). As expected, the P—CPh bond in trans-position to the P—N bond is slightly longer than the other P—C bond. The length of the P—N bond donor···acceptor interaction is in the range of values found in P[C6H4(CH2NMe2)-2]3 (Chandrasekaran et al., 2002).

The structure displays intramolecular C–H···π bonds between one hydrogen atom of the piperazinyl group and a phenyl group (Fig. 2). Four intermolecular C–H···π bonds are established between the hydrogen atoms of the phenyl groups and π electrons of the benzene rings of neighbouring molecules. Geometrical parameters of the hydrogen bonds are listed in Table 2.

Related literature top

For organophosphorus compounds containing substituents with the capability of intramolecular donor···acceptor interactions, see: Alberico et al. (2007); Chandrasekaran et al. (2002); Chuit et al. (1993); Pretorius et al. (2004). For the structures of triclinic polymorphs of triphenylphosphine, see: Ziemer et al. (2000). Cg2, Cg3, and

Cg4 are the centroids of the benzene rings C1-C6, C13-C18, and C19-C24,

respectively.

Experimental top

To a cooled solution of [2-{4-MeN(CH2CH2)2NCH2}C6H4]Li (2.55 g, 13 mmol) in tetrahydrofuran (thf) (203 K) was added dropwise a solution of PPh2Cl (2.40 ml, ρ = 1.23 g/ml, 13 mmol) in thf. The reaction mixture was stirred at 203 K for 2 h and was allowed to warm to room temperature. The solvent was removed under reduced pressure and over the resulting oily product was added dichloromethane. The obtained suspension was filtered and the dichloromethane was removed under reduced pressure. The remaining oily product solidified on addition of hexane. (I) was isolated as a colourless solid. Colourless crystals were obtained by the diffusion method from a dichloromethane/hexane mixture. Yield: 2.87 g (59%). mp 69 °C. 1H NMR (400 MHz, CDCl3): δ 1.96 (s, 3H, NMe), 2.26 (s,br, 8H, H8,11+H9,10), 3.62 (d, 2H, H7, 4JPH = 0.8 Hz), 6.88 (m, 1H, H6), 7.09 (ddd, 1H, H4, 3JHH = 7.5 Hz, 4JHH = 1.3 Hz), 7.18 (m, 11H, P—C6H5 + H5), 7.29 (m, 1H, H3). 13C NMR (100 MHz, CDCl3): δ 45.86 (s, NMe), 52.15 (s, C8,11), 54.24 (s, C9,10), 61.95 (d, C7, 3JPC = 15.5 Hz), 127.17 (s, C4), 128.14 (m, C6H5-meta+para), 128.32 (s, C5), 129.48 (d, C3, 3JPC = 5.8 Hz), 133.55 (d, C6H5-ortho, 2JPC = 19.6 Hz), 134.89 (s, C6), 137.03 (d, C2, 2JPC = 15.9 Hz), 138.45 (d, C6H5-ipso, 1JPC = 9.9 Hz), 143.76 (d, C1, 1JPC = 24.2 Hz). 31P NMR (162 MHz, CDCl3): δ -16.1 (s).

Refinement top

Hydrogen atoms were placed in calculated positions with isotropic displacement parameters set at 1.2 times of those of the parent carbon atoms for aromatic and methylene hydrogen atoms, and at 1.5 times for hydrogen atoms of the methyl group.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Graphical representation of the molecular structure of RNAP-I. Hydrogen atoms were omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Intramolecular H···π and N···P interactions in the structure of I (shown as dashed lines). All the hydrogen atoms, except for those involved in hydrogen bonds, were omitted for clarity. Cg2, Cg3, and Cg4 are the centroids of the benzene rings C1—C6, C13—C18, and C19—C24, respectively. Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) -x + 3/2, y - 1/2, -z + 1/2.
[2-(4-Methylpiperazin-1-ylmethyl)phenyl]diphenylphosphane top
Crystal data top
C24H27N2PF(000) = 800
Mr = 374.45Dx = 1.193 Mg m3
Monoclinic, P21/nMelting point: 342 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.3689 (10) ÅCell parameters from 3207 reflections
b = 14.6735 (16) Åθ = 2.4–23.9°
c = 15.4362 (16) ŵ = 0.14 mm1
β = 100.849 (2)°T = 297 K
V = 2084.2 (4) Å3Block, colourless
Z = 40.30 × 0.26 × 0.21 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3667 independent reflections
Radiation source: fine-focus sealed tube2811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 25°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.959, Tmax = 0.971k = 1717
14906 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0598P)2 + 1.2183P]
where P = (Fo2 + 2Fc2)/3
3667 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C24H27N2PV = 2084.2 (4) Å3
Mr = 374.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3689 (10) ŵ = 0.14 mm1
b = 14.6735 (16) ÅT = 297 K
c = 15.4362 (16) Å0.30 × 0.26 × 0.21 mm
β = 100.849 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3667 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2811 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.971Rint = 0.064
14906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.20Δρmax = 0.25 e Å3
3667 reflectionsΔρmin = 0.25 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6682 (4)0.5851 (2)0.1668 (3)0.0428 (9)
C20.5236 (4)0.6120 (2)0.1377 (3)0.0486 (10)
C30.4311 (5)0.6148 (3)0.1980 (4)0.0666 (13)
H30.33490.63250.17940.08*
C40.4792 (6)0.5920 (3)0.2845 (4)0.0783 (16)
H40.41530.59360.32390.094*
C50.6207 (6)0.5670 (3)0.3133 (3)0.0731 (14)
H50.65350.55250.37240.088*
C60.7139 (5)0.5633 (3)0.2549 (3)0.0542 (11)
H60.80990.54590.27490.065*
C70.4705 (4)0.6395 (3)0.0433 (3)0.0541 (11)
H7A0.48050.58840.00490.065*
H7B0.36830.65540.03480.065*
C80.5243 (4)0.7993 (2)0.0655 (3)0.0516 (10)
H8A0.54660.78890.12870.062*
H8B0.42230.81520.04940.062*
C90.6161 (4)0.8769 (2)0.0421 (3)0.0493 (10)
H9A0.59530.93160.07260.059*
H9B0.71810.86230.06150.059*
C100.6156 (5)0.8106 (3)0.0969 (3)0.0603 (12)
H10A0.71750.79460.07990.072*
H10B0.59510.82070.16020.072*
C110.5246 (5)0.7335 (3)0.0750 (3)0.0610 (12)
H11A0.42260.74790.09480.073*
H11B0.54630.6790.10550.073*
C120.6772 (5)0.9677 (3)0.0734 (3)0.0725 (14)
H12A0.66061.0210.04060.109*
H12B0.65250.98070.13540.109*
H12C0.77770.95070.05840.109*
C130.8981 (4)0.6775 (2)0.1019 (2)0.0374 (9)
C140.9778 (4)0.6993 (3)0.0381 (3)0.0526 (10)
H140.97380.66120.01050.063*
C151.0624 (5)0.7758 (3)0.0448 (3)0.0672 (13)
H151.11670.78850.00160.081*
C161.0676 (5)0.8335 (3)0.1143 (3)0.0666 (13)
H161.12410.8860.11830.08*
C170.9895 (5)0.8137 (3)0.1778 (3)0.0626 (12)
H170.99310.8530.22550.075*
C180.9055 (4)0.7367 (3)0.1725 (3)0.0485 (10)
H180.85320.72410.21670.058*
C190.9139 (4)0.4871 (2)0.1368 (2)0.0400 (9)
C201.0627 (4)0.4962 (3)0.1523 (3)0.0554 (11)
H201.10330.55160.14050.066*
C211.1529 (5)0.4251 (3)0.1850 (3)0.0639 (12)
H211.25320.43280.19420.077*
C221.0960 (5)0.3439 (3)0.2037 (3)0.0582 (11)
H221.1570.29640.22690.07*
C230.9485 (5)0.3325 (3)0.1881 (3)0.0546 (11)
H230.90910.27690.20040.065*
C240.8585 (4)0.4026 (2)0.1544 (2)0.0461 (10)
H240.75850.39350.1430.055*
N10.5526 (3)0.7170 (2)0.0195 (2)0.0432 (8)
N20.5876 (4)0.8936 (2)0.0522 (2)0.0534 (9)
P10.78585 (10)0.57472 (7)0.08427 (6)0.0391 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.044 (2)0.032 (2)0.054 (2)0.0038 (17)0.0124 (18)0.0048 (17)
C20.041 (2)0.032 (2)0.075 (3)0.0081 (17)0.017 (2)0.0027 (19)
C30.053 (3)0.046 (3)0.109 (4)0.011 (2)0.037 (3)0.001 (3)
C40.101 (4)0.046 (3)0.109 (5)0.006 (3)0.073 (4)0.006 (3)
C50.109 (4)0.048 (3)0.072 (3)0.010 (3)0.043 (3)0.013 (2)
C60.069 (3)0.044 (2)0.055 (3)0.009 (2)0.025 (2)0.007 (2)
C70.037 (2)0.044 (2)0.075 (3)0.0056 (18)0.007 (2)0.005 (2)
C80.056 (3)0.041 (2)0.059 (3)0.0023 (19)0.014 (2)0.0035 (19)
C90.049 (2)0.036 (2)0.062 (3)0.0010 (18)0.010 (2)0.0048 (19)
C100.071 (3)0.064 (3)0.045 (2)0.002 (2)0.008 (2)0.001 (2)
C110.065 (3)0.056 (3)0.054 (3)0.001 (2)0.007 (2)0.009 (2)
C120.072 (3)0.059 (3)0.091 (4)0.003 (2)0.029 (3)0.021 (3)
C130.034 (2)0.037 (2)0.039 (2)0.0023 (16)0.0011 (16)0.0081 (17)
C140.050 (2)0.054 (3)0.054 (2)0.002 (2)0.011 (2)0.004 (2)
C150.059 (3)0.070 (3)0.076 (3)0.015 (2)0.022 (3)0.018 (3)
C160.055 (3)0.056 (3)0.082 (3)0.019 (2)0.003 (3)0.012 (3)
C170.066 (3)0.055 (3)0.061 (3)0.018 (2)0.004 (2)0.006 (2)
C180.048 (2)0.050 (2)0.045 (2)0.0071 (19)0.0030 (18)0.0022 (19)
C190.043 (2)0.041 (2)0.035 (2)0.0044 (17)0.0066 (16)0.0081 (16)
C200.047 (2)0.049 (3)0.068 (3)0.001 (2)0.005 (2)0.002 (2)
C210.042 (2)0.061 (3)0.084 (3)0.006 (2)0.001 (2)0.003 (3)
C220.062 (3)0.047 (3)0.063 (3)0.015 (2)0.003 (2)0.005 (2)
C230.073 (3)0.040 (2)0.053 (3)0.001 (2)0.018 (2)0.0044 (19)
C240.045 (2)0.040 (2)0.054 (2)0.0047 (18)0.0112 (19)0.0038 (18)
N10.0405 (18)0.0381 (18)0.0483 (19)0.0022 (14)0.0012 (14)0.0042 (14)
N20.055 (2)0.046 (2)0.058 (2)0.0053 (16)0.0083 (17)0.0103 (17)
P10.0366 (5)0.0398 (6)0.0404 (6)0.0027 (4)0.0058 (4)0.0008 (4)
Geometric parameters (Å, º) top
C1—C61.384 (5)C12—N21.448 (5)
C1—C21.402 (5)C12—H12A0.96
C1—P11.841 (4)C12—H12B0.96
C2—C31.386 (6)C12—H12C0.96
C2—C71.504 (6)C13—C141.381 (5)
C3—C41.368 (7)C13—C181.386 (5)
C3—H30.93C13—P11.829 (4)
C4—C51.367 (7)C14—C151.366 (6)
C4—H40.93C14—H140.93
C5—C61.369 (6)C15—C161.360 (6)
C5—H50.93C15—H150.93
C6—H60.93C16—C171.361 (6)
C7—N11.458 (5)C16—H160.93
C7—H7A0.97C17—C181.370 (5)
C7—H7B0.97C17—H170.93
C8—N11.452 (5)C18—H180.93
C8—C91.510 (5)C19—C201.376 (5)
C8—H8A0.97C19—C241.391 (5)
C8—H8B0.97C19—P11.839 (4)
C9—N21.450 (5)C20—C211.376 (5)
C9—H9A0.97C20—H200.93
C9—H9B0.97C21—C221.359 (6)
C10—N21.449 (5)C21—H210.93
C10—C111.493 (6)C22—C231.368 (6)
C10—H10A0.97C22—H220.93
C10—H10B0.97C23—C241.368 (5)
C11—N11.453 (5)C23—H230.93
C11—H11A0.97C24—H240.93
C11—H11B0.97N1—P13.051 (3)
C6—C1—C2118.8 (4)H12A—C12—H12B109.5
C6—C1—P1123.1 (3)N2—C12—H12C109.5
C2—C1—P1118.0 (3)H12A—C12—H12C109.5
C3—C2—C1118.8 (4)H12B—C12—H12C109.5
C3—C2—C7120.6 (4)C14—C13—C18117.5 (4)
C1—C2—C7120.6 (4)C14—C13—P1117.3 (3)
C4—C3—C2121.0 (5)C18—C13—P1125.2 (3)
C4—C3—H3119.5C15—C14—C13121.4 (4)
C2—C3—H3119.5C15—C14—H14119.3
C5—C4—C3120.3 (4)C13—C14—H14119.3
C5—C4—H4119.9C16—C15—C14120.3 (4)
C3—C4—H4119.9C16—C15—H15119.8
C4—C5—C6119.7 (5)C14—C15—H15119.8
C4—C5—H5120.1C15—C16—C17119.4 (4)
C6—C5—H5120.1C15—C16—H16120.3
C5—C6—C1121.4 (4)C17—C16—H16120.3
C5—C6—H6119.3C16—C17—C18120.9 (4)
C1—C6—H6119.3C16—C17—H17119.5
N1—C7—C2111.1 (3)C18—C17—H17119.5
N1—C7—H7A109.4C17—C18—C13120.5 (4)
C2—C7—H7A109.4C17—C18—H18119.8
N1—C7—H7B109.4C13—C18—H18119.8
C2—C7—H7B109.4C20—C19—C24117.0 (4)
H7A—C7—H7B108C20—C19—P1124.4 (3)
N1—C8—C9110.2 (3)C24—C19—P1118.2 (3)
N1—C8—H8A109.6C19—C20—C21121.6 (4)
C9—C8—H8A109.6C19—C20—H20119.2
N1—C8—H8B109.6C21—C20—H20119.2
C9—C8—H8B109.6C22—C21—C20120.2 (4)
H8A—C8—H8B108.1C22—C21—H21119.9
N2—C9—C8111.3 (3)C20—C21—H21119.9
N2—C9—H9A109.4C21—C22—C23119.6 (4)
C8—C9—H9A109.4C21—C22—H22120.2
N2—C9—H9B109.4C23—C22—H22120.2
C8—C9—H9B109.4C22—C23—C24120.3 (4)
H9A—C9—H9B108C22—C23—H23119.8
N2—C10—C11111.5 (4)C24—C23—H23119.8
N2—C10—H10A109.3C23—C24—C19121.2 (4)
C11—C10—H10A109.3C23—C24—H24119.4
N2—C10—H10B109.3C19—C24—H24119.4
C11—C10—H10B109.3C8—N1—C11109.7 (3)
H10A—C10—H10B108C8—N1—C7111.9 (3)
N1—C11—C10110.6 (3)C11—N1—C7112.3 (3)
N1—C11—H11A109.5C12—N2—C10111.1 (3)
C10—C11—H11A109.5C12—N2—C9110.5 (3)
N1—C11—H11B109.5C10—N2—C9108.7 (3)
C10—C11—H11B109.5C13—P1—C19101.62 (16)
H11A—C11—H11B108.1C13—P1—C1103.38 (16)
N2—C12—H12A109.5C19—P1—C1100.26 (16)
N2—C12—H12B109.5
C6—C1—C2—C30.8 (5)C21—C22—C23—C240.4 (6)
P1—C1—C2—C3176.2 (3)C22—C23—C24—C191.2 (6)
C6—C1—C2—C7177.8 (3)C20—C19—C24—C231.9 (5)
P1—C1—C2—C75.3 (5)P1—C19—C24—C23175.7 (3)
C1—C2—C3—C40.1 (6)C9—C8—N1—C1157.1 (4)
C7—C2—C3—C4178.4 (4)C9—C8—N1—C7177.6 (3)
C2—C3—C4—C50.8 (7)C10—C11—N1—C857.5 (4)
C3—C4—C5—C61.1 (7)C10—C11—N1—C7177.4 (3)
C4—C5—C6—C10.4 (7)C2—C7—N1—C867.7 (4)
C2—C1—C6—C50.5 (6)C2—C7—N1—C11168.4 (3)
P1—C1—C6—C5176.2 (3)C11—C10—N2—C12179.6 (3)
C3—C2—C7—N1118.9 (4)C11—C10—N2—C957.9 (4)
C1—C2—C7—N159.6 (5)C8—C9—N2—C12179.6 (3)
N1—C8—C9—N258.3 (4)C8—C9—N2—C1057.6 (4)
N2—C10—C11—N158.8 (5)C14—C13—P1—C1989.3 (3)
C18—C13—C14—C150.9 (6)C18—C13—P1—C1993.1 (3)
P1—C13—C14—C15178.7 (3)C14—C13—P1—C1167.1 (3)
C13—C14—C15—C161.3 (7)C18—C13—P1—C110.5 (4)
C14—C15—C16—C171.0 (7)C20—C19—P1—C1321.0 (4)
C15—C16—C17—C180.2 (7)C24—C19—P1—C13165.6 (3)
C16—C17—C18—C130.3 (6)C20—C19—P1—C1127.1 (3)
C14—C13—C18—C170.1 (6)C24—C19—P1—C159.5 (3)
P1—C13—C18—C17177.7 (3)C6—C1—P1—C1379.7 (3)
C24—C19—C20—C210.9 (6)C2—C1—P1—C13103.5 (3)
P1—C19—C20—C21174.3 (3)C6—C1—P1—C1925.0 (3)
C19—C20—C21—C220.7 (7)C2—C1—P1—C19151.8 (3)
C20—C21—C22—C231.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cg30.972.913.835 (4)160
C14—H14···Cg4i0.972.743.651 (5)166
C23—H23···Cg2ii0.972.983.830 (5)154
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H27N2P
Mr374.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)9.3689 (10), 14.6735 (16), 15.4362 (16)
β (°) 100.849 (2)
V3)2084.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.30 × 0.26 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.959, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
14906, 3667, 2811
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.178, 1.20
No. of reflections3667
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
C1—P11.841 (4)C19—P11.839 (4)
C13—P11.829 (4)
C13—P1—C19101.62 (16)C19—P1—C1100.26 (16)
C13—P1—C1103.38 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Cg30.972.913.835 (4)160
C14—H14···Cg4i0.972.743.651 (5)166
C23—H23···Cg2ii0.972.983.830 (5)154
Symmetry codes: (i) x+2, y+1, z; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the National University Research Council (CNCSIS) of România (research project TD-40/2007).

References

First citationAlberico, E., Braun, W., Calmuschi-Cula, B., Englert, U., Salzer, A. & Totev, D. (2007). Eur. J. Inorg. Chem. pp. 4923–4945.  Web of Science CSD CrossRef Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekaran, A., Timosheva, N. V., Day, R. O. & Holmes, R. R. (2002). Inorg. Chem. 41, 5235–5240.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChuit, C., Corriu, R. J. P., Monforte, P., Reyé, C., Declercq, J.-P. & Dubourg, A. (1993). Angew. Chem. Int. Ed. 32, 1430–1432.  CrossRef Google Scholar
First citationPretorius, M., Williams, D. B. G., Roodt, A. & Muller, A. (2004). Acta Cryst. C60, o384–o386.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZiemer, B., Rabis, A. & Steinberger, H.-U. (2000). Acta Cryst. C56, e58–e59.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds