organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Guanidinium quinoline-2-carboxyl­ate

aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
*Correspondence e-mail: g.smith@qut.edu.au

(Received 16 November 2009; accepted 20 November 2009; online 25 November 2009)

In the structure of the guanidinium salt of quinaldic acid, CH6N3+·C10H6NO2, the asymmetric unit contains two independent cations and anions having similar inter-species hydrogen-bonding environments, which include cyclic R22(8), R21(6) and R12(5) associations. These and additional weak aromatic ring ππ inter­actions [minimum ring-centroid separation = 3.662 (2) Å] give a two-dimensional layered structure.

Related literature

For guanidinium salts of aromatic acids, see: Parthasarathi et al. (1982[Parthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Kennard, C. H. L., Smith, G. & O'Reilly, E. J. (1982). Cryst. Struct. Commun. 11, 1519-1524.]); Schürmann et al. (1998[Schürmann, D.-C., Preut, H. & Bleckmann, P. (1998). Z. Kristallogr. New Cryst. Struct. 213, 581-582.]); Najafpour et al. (2007[Najafpour, M. M., Hołyńska, M. & Lis, T. (2007). Acta Cryst. E63, o3727.]); Pereira Silva et al. (2007[Pereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007). Acta Cryst. E63, o2783.]). For quinaldic acid structures, see: Dobrzyńska & Jerzykiewicz (2004[Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51-55.]); Smith et al. (2004[Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o687-o689.], 2007[Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o867-o868.], 2008a[Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. E64, o132-o133.],b[Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o180-o183.]).

[Scheme 1]

Experimental

Crystal data
  • CH6N3+·C10H6NO2

  • Mr = 232.25

  • Monoclinic, P 21 /c

  • a = 7.4318 (3) Å

  • b = 42.2105 (18) Å

  • c = 7.3035 (4) Å

  • β = 94.045 (4)°

  • V = 2285.40 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 297 K

  • 0.35 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.740, Tmax = 0.870

  • 10626 measured reflections

  • 3981 independent reflections

  • 2931 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.162

  • S = 1.04

  • 3981 reflections

  • 355 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1C—H11C⋯O21B 0.82 (4) 2.12 (4) 2.937 (5) 176 (3)
N1C—H12C⋯O21Ai 0.92 (4) 2.03 (4) 2.852 (5) 149 (3)
N1D—H11D⋯O22A 0.87 (4) 2.04 (4) 2.902 (4) 177 (4)
N1D—H12D⋯O21Bii 0.85 (5) 2.47 (5) 3.312 (5) 173 (4)
N2C—H21C⋯O22A 0.94 (4) 1.87 (4) 2.784 (4) 166 (4)
N2C—H22C⋯O21Ai 0.91 (4) 2.57 (4) 3.163 (5) 124 (4)
N2C—H22C⋯N1Ai 0.91 (4) 2.08 (5) 2.964 (4) 165 (4)
N2D—H21D⋯O21Biii 0.84 (4) 2.11 (4) 2.899 (5) 155 (3)
N2D—H22D⋯O21A 0.89 (4) 2.01 (5) 2.890 (4) 173 (4)
N3C—H31C⋯O22B 0.93 (5) 1.96 (5) 2.891 (4) 173 (4)
N3C—H32C⋯O22A 0.84 (4) 2.57 (5) 3.216 (5) 135 (4)
N3D—H31D⋯O21Biii 0.93 (4) 2.60 (4) 3.268 (5) 130 (3)
N3D—H31D⋯N1Biii 0.93 (4) 2.12 (4) 3.000 (4) 159 (3)
N3D—H32D⋯O22Bii 0.93 (4) 1.95 (4) 2.826 (4) 157 (4)
Symmetry codes: (i) x-1, y, z; (ii) x, y, z-1; (iii) x+1, y, z-1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The guanidinium salts of aromatic and heteroaromatic carboxylic acids have proved to be a particularly useful means of generating stable hydrogen-bonded supramolecular framework structures. Three-dimensional structures are most common, largely the result of the interactive efficiency of the symmetrical guanidinium cation in commonly forming cyclic R22(8) hydrogen-bonding associations with carboxylate-O acceptors. Among the known structures are the guanidinium salts with the aromatic monocarboxylic acids, 4-chloro-3-nitrobenzoic acid (a monohydrate) (Najafpour et al., 2007), and the anhydrous salts with benzoic acid (Pereira Silva et al., 2007), 4-nitrobenzoic acid (Schürmann et al., 1998), 3,5-dinitrobenzoic acid (Smith et al., 2007) and 4-amino-3,5,6-trichloropicolinic acid (Parthasarathi et al., 1982).

Our 1:1 stoichiometric reaction of quinoline-2-carboxylic acid (quinaldic acid) in 50% 2-propanol-water gave large chemically stable crystals of the title compound, anhydrous guanidinium quinoline-2-carboxylate, CH6N3+ C10H6NO2- and the structure is reported here. Quinaldic acid in the solid state exists as a zwitterionic hydrogen-bonded dimer (Dobrzyńska & Jerzykiewicz, 2004) and is commonly found in that form as an adduct species in some proton-transfer compounds where it acts as a Lewis base rather than an acid. Examples are the 1/1/1 quinolinium salt adducts with 5-sulfosalicylic acid (Smith et al., 2004), picrylsulfonic acid (Smith et al., 2008a) and 4,5-dichlorophthalic acid (Smith et al., 2008b).

In the structure of the title compound the asymmetric unit contains two guanidinium cations (C and D) and two quinoline-2-carboxylate anions (A and B) (Fig. 1). The H atom donors of the two cations form similar cyclic hydrogen-bonding interactions with carboxylate O and quinoline N acceptors (Table 1) (Fig. 2), both pairs having two guanidinium-N–H, N'–H'···O associations [graph set R21(6)] and one N–H, N'–H'···O,O' association [R22(8)]. In addition, each has an R12(5) guanidinium NH···N,Oquinoline-carboxyl association. A two-dimensional layered structure is generated (Fig. 3), in which some aromatic ring overlap down the c cell direction gives weak ππ interactions [minimum ring centroid separation,for the six-membered ring N1B–C5B, 3.662 (2) Å]. The quinoline-2-carboxylate cations are conformationally similar with only minor differences in the N1–C2–C21–O22 torsion angles [170.3 (3)° (A), 163.6 (3)° (B)].

Related literature top

For guanidinium salts of aromatic acids, see: Parthasarathi et al. (1982); Schürmann et al. (1998); Najafpour et al. (2007); Smith et al. (2007); Pereira Silva et al. (2007). For quinaldic acid structures, see: Dobrzyńska & Jerzykiewicz (2004); Smith et al. (2004); Smith et al. (2007); Smith et al. (2008a,b).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of quinoline-2-carboxylic acid and guanidine carbonate in 50 ml of 50% aqueous propan-2-ol. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless prisms [m.p. 543–544 K].

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic H atoms were included in the refinement in calculated positions (C—H = 0.93 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom naming scheme for the two guanidinium cations (C and D) and the two quinoline-2-carboxylate anions (A and B) in the asymmetric unit. Inter-species hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The hydrogen-bonding extensions of the asymmetric unit, showing hydrogen-bonds as dashed lines. For symmetry codes, see Table 1.
[Figure 3] Fig. 3. The two-dimensional hydrogen-bonded layered structure, viewed down the c axial direction, showing also quinoline ring overlap. Non-interactive hydrogen atoms are omitted. For symmetry codes, see Table 1.
Guanidinium quinoline-2-carboxylate top
Crystal data top
CH6N3+·C10H6NO2F(000) = 976
Mr = 232.25Dx = 1.350 Mg m3
Monoclinic, P21/cMelting point = 543–544 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.4318 (3) ÅCell parameters from 4234 reflections
b = 42.2105 (18) Åθ = 2.9–28.8°
c = 7.3035 (4) ŵ = 0.10 mm1
β = 94.045 (4)°T = 297 K
V = 2285.40 (18) Å3Prism, colourless
Z = 80.35 × 0.20 × 0.18 mm
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
3981 independent reflections
Radiation source: Enhance (Mo) X-ray source2931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.740, Tmax = 0.870k = 5049
10626 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0614P)2 + 2.2259P]
where P = (Fo2 + 2Fc2)/3
3981 reflections(Δ/σ)max = 0.003
355 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
CH6N3+·C10H6NO2V = 2285.40 (18) Å3
Mr = 232.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.4318 (3) ŵ = 0.10 mm1
b = 42.2105 (18) ÅT = 297 K
c = 7.3035 (4) Å0.35 × 0.20 × 0.18 mm
β = 94.045 (4)°
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
3981 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2931 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.870Rint = 0.035
10626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.15 e Å3
3981 reflectionsΔρmin = 0.18 e Å3
355 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21A0.8508 (4)0.09058 (6)0.2611 (3)0.0621 (10)
O22A0.5996 (3)0.07308 (6)0.1162 (4)0.0645 (10)
N1A0.9927 (3)0.03079 (6)0.2631 (3)0.0344 (8)
C2A0.8222 (4)0.03520 (7)0.2056 (4)0.0347 (9)
C3A0.7048 (4)0.01015 (8)0.1538 (4)0.0432 (11)
C4A0.7670 (5)0.02006 (8)0.1610 (4)0.0470 (11)
C5A1.0237 (5)0.05662 (8)0.2320 (5)0.0526 (14)
C6A1.1980 (6)0.06067 (9)0.2937 (5)0.0607 (14)
C7A1.3053 (5)0.03505 (10)0.3470 (5)0.0573 (14)
C8A1.2375 (4)0.00486 (8)0.3367 (4)0.0463 (11)
C9A1.0562 (4)0.00047 (7)0.2721 (4)0.0350 (10)
C10A0.9469 (4)0.02599 (7)0.2209 (4)0.0386 (10)
C21A0.7531 (5)0.06891 (8)0.1948 (4)0.0434 (11)
O21B0.2113 (4)0.16103 (6)0.7760 (4)0.0595 (9)
O22B0.4256 (3)0.17922 (6)0.6099 (3)0.0547 (9)
N1B0.0628 (3)0.22063 (6)0.7787 (3)0.0337 (8)
C2B0.2260 (4)0.21671 (7)0.7234 (4)0.0331 (9)
C3B0.3404 (4)0.24202 (7)0.6830 (4)0.0383 (10)
C4B0.2823 (4)0.27223 (7)0.7016 (4)0.0399 (10)
C5B0.0359 (5)0.30838 (8)0.7780 (4)0.0467 (11)
C6B0.1343 (5)0.31222 (9)0.8310 (5)0.0521 (12)
C7B0.2392 (5)0.28594 (9)0.8685 (5)0.0500 (11)
C8B0.1739 (4)0.25609 (8)0.8528 (4)0.0417 (11)
C9B0.0024 (4)0.25108 (7)0.7961 (4)0.0326 (9)
C10B0.1082 (4)0.27776 (7)0.7584 (4)0.0360 (10)
C21B0.2913 (4)0.18309 (8)0.7021 (4)0.0389 (10)
N1C0.1537 (5)0.11364 (9)0.4833 (5)0.0598 (12)
N2C0.2735 (5)0.08075 (8)0.2766 (5)0.0671 (14)
N3C0.4496 (5)0.11943 (9)0.4200 (5)0.0622 (12)
C1C0.2924 (5)0.10473 (8)0.3933 (5)0.0506 (11)
N1D0.6118 (5)0.13337 (8)0.0734 (5)0.0553 (11)
N2D0.9196 (5)0.13416 (8)0.0311 (5)0.0500 (11)
N3D0.7754 (5)0.17077 (7)0.2190 (4)0.0554 (11)
C1D0.7690 (5)0.14616 (7)0.1083 (4)0.0415 (11)
H3A0.585200.014300.114900.0520*
H4A0.690500.036800.126200.0560*
H5A0.953700.074100.196600.0630*
H6A1.246400.081000.300400.0730*
H7A1.424600.038300.390200.0680*
H8A1.311100.012200.372400.0560*
H3B0.454600.238000.643900.0460*
H4B0.357100.289100.677100.0480*
H5B0.105300.326100.754500.0560*
H6B0.181200.332500.842300.0630*
H7B0.355500.288900.904700.0600*
H8B0.245300.238800.879400.0500*
H11C0.165 (4)0.1267 (8)0.567 (5)0.070 (10)*
H12C0.046 (6)0.1036 (9)0.454 (5)0.066 (12)*
H21C0.376 (6)0.0750 (10)0.217 (6)0.079 (13)*
H22C0.173 (6)0.0684 (11)0.272 (6)0.084 (14)*
H31C0.448 (6)0.1394 (11)0.475 (6)0.089 (15)*
H32C0.540 (6)0.1136 (11)0.367 (6)0.081 (15)*
H11D0.611 (5)0.1156 (10)0.014 (5)0.068 (13)*
H12D0.514 (6)0.1421 (11)0.114 (7)0.091 (17)*
H21D1.022 (5)0.1409 (8)0.055 (5)0.064 (10)*
H22D0.908 (6)0.1206 (11)0.060 (6)0.083 (15)*
H31D0.882 (5)0.1819 (9)0.227 (5)0.060 (11)*
H32D0.670 (6)0.1793 (10)0.273 (6)0.074 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O21A0.087 (2)0.0395 (15)0.0588 (15)0.0029 (13)0.0028 (14)0.0009 (11)
O22A0.0422 (15)0.0608 (17)0.092 (2)0.0122 (12)0.0149 (14)0.0230 (14)
N1A0.0365 (15)0.0328 (14)0.0346 (13)0.0010 (11)0.0068 (11)0.0000 (10)
C2A0.0352 (17)0.0373 (17)0.0327 (15)0.0018 (13)0.0111 (13)0.0042 (12)
C3A0.0356 (18)0.051 (2)0.0428 (18)0.0015 (15)0.0006 (14)0.0001 (15)
C4A0.053 (2)0.043 (2)0.0449 (19)0.0100 (16)0.0020 (16)0.0061 (15)
C5A0.076 (3)0.038 (2)0.0444 (19)0.0035 (18)0.0089 (18)0.0019 (15)
C6A0.085 (3)0.048 (2)0.050 (2)0.021 (2)0.011 (2)0.0060 (17)
C7A0.055 (2)0.070 (3)0.047 (2)0.021 (2)0.0044 (17)0.0106 (18)
C8A0.044 (2)0.053 (2)0.0422 (18)0.0029 (16)0.0050 (15)0.0034 (15)
C9A0.0405 (18)0.0378 (18)0.0275 (15)0.0017 (14)0.0073 (13)0.0031 (12)
C10A0.052 (2)0.0339 (18)0.0306 (15)0.0008 (14)0.0090 (14)0.0004 (12)
C21A0.046 (2)0.044 (2)0.0421 (18)0.0062 (16)0.0173 (15)0.0097 (15)
O21B0.0687 (17)0.0414 (14)0.0712 (16)0.0055 (13)0.0246 (13)0.0069 (12)
O22B0.0368 (13)0.0508 (15)0.0783 (17)0.0036 (11)0.0159 (12)0.0133 (12)
N1B0.0309 (14)0.0378 (15)0.0322 (13)0.0010 (11)0.0002 (10)0.0030 (10)
C2B0.0286 (16)0.0401 (17)0.0304 (15)0.0018 (13)0.0002 (12)0.0051 (12)
C3B0.0292 (16)0.048 (2)0.0376 (16)0.0003 (14)0.0027 (13)0.0049 (14)
C4B0.0376 (18)0.0414 (19)0.0407 (17)0.0082 (14)0.0023 (14)0.0013 (13)
C5B0.055 (2)0.0376 (19)0.0469 (19)0.0029 (16)0.0004 (16)0.0021 (14)
C6B0.059 (2)0.044 (2)0.053 (2)0.0182 (18)0.0010 (17)0.0025 (16)
C7B0.043 (2)0.061 (2)0.0462 (19)0.0124 (17)0.0039 (15)0.0062 (16)
C8B0.0366 (18)0.048 (2)0.0406 (18)0.0015 (15)0.0027 (14)0.0039 (14)
C9B0.0301 (16)0.0402 (18)0.0268 (14)0.0026 (13)0.0032 (12)0.0033 (12)
C10B0.0382 (17)0.0405 (18)0.0286 (15)0.0010 (14)0.0028 (12)0.0013 (12)
C21B0.0332 (17)0.0404 (19)0.0425 (17)0.0017 (14)0.0007 (14)0.0025 (14)
N1C0.060 (2)0.054 (2)0.068 (2)0.0068 (18)0.0225 (18)0.0130 (17)
N2C0.055 (2)0.052 (2)0.098 (3)0.0159 (17)0.032 (2)0.0300 (18)
N3C0.055 (2)0.050 (2)0.084 (2)0.0109 (17)0.0209 (18)0.0184 (17)
C1C0.056 (2)0.0367 (19)0.061 (2)0.0033 (17)0.0166 (18)0.0032 (16)
N1D0.050 (2)0.0452 (19)0.071 (2)0.0032 (16)0.0071 (16)0.0158 (16)
N2D0.047 (2)0.0478 (19)0.0550 (19)0.0004 (16)0.0023 (15)0.0055 (15)
N3D0.047 (2)0.0462 (19)0.072 (2)0.0081 (16)0.0022 (16)0.0205 (15)
C1D0.046 (2)0.0344 (18)0.0445 (18)0.0033 (15)0.0051 (15)0.0031 (14)
Geometric parameters (Å, º) top
O21A—C21A1.245 (4)C4A—C10A1.400 (5)
O22A—C21A1.253 (4)C5A—C6A1.352 (6)
O21B—C21B1.248 (4)C5A—C10A1.413 (5)
O22B—C21B1.253 (4)C6A—C7A1.383 (6)
N1A—C2A1.320 (4)C7A—C8A1.371 (5)
N1A—C9A1.364 (4)C8A—C9A1.414 (4)
N1B—C2B1.316 (4)C9A—C10A1.416 (4)
N1B—C9B1.370 (4)C3A—H3A0.9300
N1C—C1C1.316 (5)C4A—H4A0.9300
N2C—C1C1.324 (5)C5A—H5A0.9300
N3C—C1C1.325 (5)C6A—H6A0.9300
N1C—H11C0.82 (4)C7A—H7A0.9300
N1C—H12C0.92 (4)C8A—H8A0.9300
N2C—H21C0.94 (4)C2B—C21B1.511 (4)
N2C—H22C0.91 (4)C2B—C3B1.410 (4)
N3C—H32C0.84 (4)C3B—C4B1.356 (4)
N3C—H31C0.93 (5)C4B—C10B1.406 (4)
N1D—C1D1.328 (5)C5B—C10B1.411 (5)
N2D—C1D1.318 (5)C5B—C6B1.358 (5)
N3D—C1D1.319 (4)C6B—C7B1.394 (5)
N1D—H11D0.87 (4)C7B—C8B1.358 (5)
N1D—H12D0.85 (5)C8B—C9B1.418 (4)
N2D—H21D0.84 (4)C9B—C10B1.412 (4)
N2D—H22D0.89 (4)C3B—H3B0.9300
N3D—H31D0.93 (4)C4B—H4B0.9300
N3D—H32D0.93 (4)C5B—H5B0.9300
C2A—C21A1.513 (5)C6B—H6B0.9300
C2A—C3A1.406 (4)C7B—H7B0.9300
C3A—C4A1.356 (5)C8B—H8B0.9300
O21A···N1A2.735 (4)C10B···C2Bv3.455 (4)
O21A···N1Ci2.852 (5)C10B···C3Bv3.541 (4)
O21A···N2Ci3.163 (5)C21B···C5Bxi3.535 (4)
O21A···N2D2.890 (4)C1D···H6Ax3.0900
O21A···C1Ci3.408 (5)C2A···H22Ci2.97 (5)
O21B···N1C2.937 (5)C2B···H31Dii2.99 (4)
O21B···N2Dii2.899 (5)C3A···H3Axiii2.9900
O21B···N1B2.748 (4)C4B···H7Bi3.0600
O21B···N3Dii3.268 (5)C9A···H22Ci3.00 (5)
O22A···N3C3.216 (5)C9B···H31Dii3.06 (4)
O22A···N1D2.902 (4)C21A···H21C2.83 (4)
O22A···N2C2.784 (4)C21A···H32C2.82 (5)
O22B···N1Diii3.250 (4)C21A···H11D2.66 (4)
O22B···N3C2.891 (4)C21A···H22D2.69 (5)
O22B···N3Diii2.826 (4)C21B···H11C2.72 (3)
O21A···H12Ci2.03 (4)C21B···H31C2.79 (5)
O21A···H11D2.80 (4)C21B···H32Diii2.81 (4)
O21A···H22Ci2.57 (4)C21B···H12Diii2.69 (5)
O21A···H32C2.67 (5)H3A···O22A2.4800
O21A···H22D2.01 (5)H3A···C3Axiii2.9900
O21B···H21Dii2.11 (4)H3A···H3Axiii2.3600
O21B···H31Dii2.60 (4)H3B···H7Biv2.5800
O21B···H11C2.12 (4)H3B···O22B2.5000
O21B···H12Diii2.47 (5)H4A···H5A2.5400
O22A···H3A2.4800H4B···H5B2.5300
O22A···H32C2.57 (5)H5A···H4A2.5400
O22A···H11D2.04 (4)H5B···H4B2.5300
O22A···H21C1.87 (4)H5B···N2Dxii2.9400
O22B···H12Diii2.60 (5)H6A···C1Dx3.0900
O22B···H7Biv2.6500H7B···H3Bxii2.5800
O22B···H31C1.96 (5)H7B···C4Bvi3.0600
O22B···H32Diii1.95 (4)H7B···O22Bxii2.6500
O22B···H3B2.5000H11C···C21B2.72 (3)
N1A···O21A2.735 (4)H11C···O21B2.12 (4)
N1A···N2Ci2.964 (4)H11C···H31C2.32 (5)
N1B···O21B2.748 (4)H11D···H22D2.25 (6)
N1B···N3Dii3.000 (4)H11D···C21A2.66 (4)
N1B···C4Bv3.403 (4)H11D···O21A2.80 (4)
N1C···O21B2.937 (5)H11D···O22A2.04 (4)
N1C···O21Avi2.852 (5)H12C···H22C2.25 (6)
N1D···O22A2.902 (4)H12C···O21Avi2.03 (4)
N1D···O22Bvii3.250 (4)H12D···O21Bvii2.47 (5)
N2C···N1Avi2.964 (4)H12D···C21Bvii2.69 (5)
N2C···O21Avi3.163 (5)H12D···H32D2.31 (6)
N2C···O22A2.784 (4)H12D···O22Bvii2.60 (5)
N2D···C5Biv3.384 (5)H21C···C21A2.83 (4)
N2D···O21Bviii2.899 (5)H21C···H32C2.27 (6)
N2D···O21A2.890 (4)H21C···O22A1.87 (4)
N3C···O22B2.891 (4)H21D···O21Bviii2.11 (4)
N3C···O22A3.216 (5)H21D···H31D2.34 (5)
N3D···O22Bvii2.826 (4)H22C···C2Avi2.97 (5)
N3D···O21Bviii3.268 (5)H22C···C9Avi3.00 (5)
N3D···N1Bviii3.000 (4)H22C···H12C2.25 (6)
N1A···H22Ci2.08 (5)H22C···N1Avi2.08 (5)
N1B···H31Dii2.12 (4)H22C···O21Avi2.57 (4)
N2D···H5Biv2.9400H22D···O21A2.01 (5)
C1C···O21Avi3.408 (5)H22D···C21A2.69 (5)
C2A···C7Aix3.466 (5)H22D···H11D2.25 (6)
C2A···C5Ax3.586 (5)H31C···C21B2.79 (5)
C2B···C10Bxi3.455 (4)H31C···H11C2.32 (5)
C2B···C4Bv3.519 (4)H31C···O22B1.96 (5)
C3B···C4Bxi3.563 (4)H31D···H21D2.34 (5)
C3B···C10Bxi3.541 (4)H31D···O21Bviii2.60 (4)
C4B···C2Bxi3.519 (4)H31D···N1Bviii2.12 (4)
C4B···C3Bv3.563 (4)H31D···C9Bviii3.06 (4)
C4B···N1Bxi3.403 (4)H31D···C2Bviii2.99 (4)
C5A···C2Ax3.586 (5)H32C···C21A2.82 (5)
C5B···C21Bv3.535 (4)H32C···H21C2.27 (6)
C5B···N2Dxii3.384 (5)H32C···O22A2.57 (5)
C7A···C2Aix3.466 (5)H32C···O21A2.67 (5)
C8B···C9Bv3.419 (4)H32D···O22Bvii1.95 (4)
C9A···C9Aix3.489 (4)H32D···C21Bvii2.81 (4)
C9B···C8Bxi3.419 (4)H32D···H12D2.31 (6)
C2A—N1A—C9A118.0 (3)C6A—C5A—H5A120.00
C2B—N1B—C9B117.5 (3)C7A—C6A—H6A120.00
C1C—N1C—H11C121 (2)C5A—C6A—H6A119.00
C1C—N1C—H12C117 (3)C8A—C7A—H7A120.00
H11C—N1C—H12C122 (3)C6A—C7A—H7A120.00
C1C—N2C—H21C116 (3)C7A—C8A—H8A120.00
C1C—N2C—H22C121 (3)C9A—C8A—H8A120.00
H21C—N2C—H22C122 (4)N1B—C2B—C21B117.4 (3)
C1C—N3C—H31C117 (3)C3B—C2B—C21B119.2 (3)
C1C—N3C—H32C122 (3)N1B—C2B—C3B123.5 (3)
H31C—N3C—H32C120 (4)C2B—C3B—C4B119.4 (3)
C1D—N1D—H11D119 (2)C3B—C4B—C10B119.5 (3)
C1D—N1D—H12D120 (3)C6B—C5B—C10B120.5 (3)
H11D—N1D—H12D121 (4)C5B—C6B—C7B120.4 (3)
C1D—N2D—H22D116 (3)C6B—C7B—C8B120.9 (3)
H21D—N2D—H22D121 (4)C7B—C8B—C9B120.4 (3)
C1D—N2D—H21D122 (2)C8B—C9B—C10B118.5 (3)
C1D—N3D—H31D120 (2)N1B—C9B—C8B118.9 (3)
C1D—N3D—H32D120 (3)N1B—C9B—C10B122.7 (3)
H31D—N3D—H32D119 (4)C4B—C10B—C9B117.5 (3)
N1A—C2A—C21A117.7 (3)C5B—C10B—C9B119.3 (3)
N1A—C2A—C3A122.9 (3)C4B—C10B—C5B123.2 (3)
C3A—C2A—C21A119.4 (3)O21B—C21B—C2B119.3 (3)
C2A—C3A—C4A119.6 (3)O21B—C21B—O22B123.8 (3)
C3A—C4A—C10A119.7 (3)O22B—C21B—C2B116.8 (3)
C6A—C5A—C10A120.6 (3)C2B—C3B—H3B120.00
C5A—C6A—C7A121.0 (4)C4B—C3B—H3B120.00
C6A—C7A—C8A120.6 (3)C10B—C4B—H4B120.00
C7A—C8A—C9A120.3 (3)C3B—C4B—H4B120.00
N1A—C9A—C10A122.5 (3)C6B—C5B—H5B120.00
N1A—C9A—C8A118.9 (3)C10B—C5B—H5B120.00
C8A—C9A—C10A118.6 (3)C7B—C6B—H6B120.00
C5A—C10A—C9A119.0 (3)C5B—C6B—H6B120.00
C4A—C10A—C9A117.3 (3)C8B—C7B—H7B120.00
C4A—C10A—C5A123.7 (3)C6B—C7B—H7B120.00
O21A—C21A—C2A119.0 (3)C9B—C8B—H8B120.00
O21A—C21A—O22A124.2 (3)C7B—C8B—H8B120.00
O22A—C21A—C2A116.8 (3)N2C—C1C—N3C120.3 (4)
C2A—C3A—H3A120.00N1C—C1C—N2C119.3 (4)
C4A—C3A—H3A120.00N1C—C1C—N3C120.4 (3)
C3A—C4A—H4A120.00N2D—C1D—N3D119.9 (3)
C10A—C4A—H4A120.00N1D—C1D—N2D119.6 (3)
C10A—C5A—H5A120.00N1D—C1D—N3D120.5 (3)
C9A—N1A—C2A—C3A0.0 (4)N1A—C9A—C10A—C5A179.2 (3)
C9A—N1A—C2A—C21A179.6 (2)C8A—C9A—C10A—C4A178.7 (3)
C2A—N1A—C9A—C8A178.8 (3)C8A—C9A—C10A—C5A1.5 (4)
C2A—N1A—C9A—C10A0.6 (4)N1A—C9A—C10A—C4A0.6 (4)
C2B—N1B—C9B—C8B179.1 (3)N1B—C2B—C3B—C4B0.2 (5)
C2B—N1B—C9B—C10B0.4 (4)C21B—C2B—C3B—C4B179.9 (3)
C9B—N1B—C2B—C3B0.4 (4)N1B—C2B—C21B—O21B16.7 (4)
C9B—N1B—C2B—C21B179.3 (2)N1B—C2B—C21B—O22B163.6 (3)
C3A—C2A—C21A—O21A171.5 (3)C3B—C2B—C21B—O21B163.6 (3)
N1A—C2A—C21A—O21A8.9 (4)C3B—C2B—C21B—O22B16.1 (4)
N1A—C2A—C21A—O22A170.3 (3)C2B—C3B—C4B—C10B0.9 (4)
N1A—C2A—C3A—C4A0.5 (5)C3B—C4B—C10B—C5B178.8 (3)
C21A—C2A—C3A—C4A179.1 (3)C3B—C4B—C10B—C9B0.9 (4)
C3A—C2A—C21A—O22A9.4 (4)C10B—C5B—C6B—C7B0.6 (5)
C2A—C3A—C4A—C10A0.4 (4)C6B—C5B—C10B—C4B179.1 (3)
C3A—C4A—C10A—C9A0.1 (4)C6B—C5B—C10B—C9B0.6 (5)
C3A—C4A—C10A—C5A179.7 (3)C5B—C6B—C7B—C8B0.1 (5)
C6A—C5A—C10A—C4A179.0 (3)C6B—C7B—C8B—C9B0.6 (5)
C6A—C5A—C10A—C9A1.2 (5)C7B—C8B—C9B—N1B178.9 (3)
C10A—C5A—C6A—C7A0.1 (6)C7B—C8B—C9B—C10B0.6 (4)
C5A—C6A—C7A—C8A0.6 (6)N1B—C9B—C10B—C4B0.2 (4)
C6A—C7A—C8A—C9A0.3 (5)N1B—C9B—C10B—C5B179.5 (3)
C7A—C8A—C9A—N1A179.9 (3)C8B—C9B—C10B—C4B179.7 (3)
C7A—C8A—C9A—C10A0.8 (4)C8B—C9B—C10B—C5B0.0 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z+1; (iii) x, y, z+1; (iv) x+1, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z; (vii) x, y, z1; (viii) x+1, y, z1; (ix) x+2, y, z+1; (x) x+2, y, z; (xi) x, y+1/2, z1/2; (xii) x1, y+1/2, z+1/2; (xiii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1C—H11C···O21B0.82 (4)2.12 (4)2.937 (5)176 (3)
N1C—H12C···O21Avi0.92 (4)2.03 (4)2.852 (5)149 (3)
N1D—H11D···O22A0.87 (4)2.04 (4)2.902 (4)177 (4)
N1D—H12D···O21Bvii0.85 (5)2.47 (5)3.312 (5)173 (4)
N2C—H21C···O22A0.94 (4)1.87 (4)2.784 (4)166 (4)
N2C—H22C···O21Avi0.91 (4)2.57 (4)3.163 (5)124 (4)
N2C—H22C···N1Avi0.91 (4)2.08 (5)2.964 (4)165 (4)
N2D—H21D···O21Bviii0.84 (4)2.11 (4)2.899 (5)155 (3)
N2D—H22D···O21A0.89 (4)2.01 (5)2.890 (4)173 (4)
N3C—H31C···O22B0.93 (5)1.96 (5)2.891 (4)173 (4)
N3C—H32C···O22A0.84 (4)2.57 (5)3.216 (5)135 (4)
N3D—H31D···O21Bviii0.93 (4)2.60 (4)3.268 (5)130 (3)
N3D—H31D···N1Bviii0.93 (4)2.12 (4)3.000 (4)159 (3)
N3D—H32D···O22Bvii0.93 (4)1.95 (4)2.826 (4)157 (4)
Symmetry codes: (vi) x1, y, z; (vii) x, y, z1; (viii) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaCH6N3+·C10H6NO2
Mr232.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)7.4318 (3), 42.2105 (18), 7.3035 (4)
β (°) 94.045 (4)
V3)2285.40 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.740, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
10626, 3981, 2931
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.162, 1.04
No. of reflections3981
No. of parameters355
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1C—H11C···O21B0.82 (4)2.12 (4)2.937 (5)176 (3)
N1C—H12C···O21Ai0.92 (4)2.03 (4)2.852 (5)149 (3)
N1D—H11D···O22A0.87 (4)2.04 (4)2.902 (4)177 (4)
N1D—H12D···O21Bii0.85 (5)2.47 (5)3.312 (5)173 (4)
N2C—H21C···O22A0.94 (4)1.87 (4)2.784 (4)166 (4)
N2C—H22C···O21Ai0.91 (4)2.57 (4)3.163 (5)124 (4)
N2C—H22C···N1Ai0.91 (4)2.08 (5)2.964 (4)165 (4)
N2D—H21D···O21Biii0.84 (4)2.11 (4)2.899 (5)155 (3)
N2D—H22D···O21A0.89 (4)2.01 (5)2.890 (4)173 (4)
N3C—H31C···O22B0.93 (5)1.96 (5)2.891 (4)173 (4)
N3C—H32C···O22A0.84 (4)2.57 (5)3.216 (5)135 (4)
N3D—H31D···O21Biii0.93 (4)2.60 (4)3.268 (5)130 (3)
N3D—H31D···N1Biii0.93 (4)2.12 (4)3.000 (4)159 (3)
N3D—H32D···O22Bii0.93 (4)1.95 (4)2.826 (4)157 (4)
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x+1, y, z1.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology,

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51–55.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNajafpour, M. M., Hołyńska, M. & Lis, T. (2007). Acta Cryst. E63, o3727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Kennard, C. H. L., Smith, G. & O'Reilly, E. J. (1982). Cryst. Struct. Commun. 11, 1519–1524.  CAS Google Scholar
First citationPereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007). Acta Cryst. E63, o2783.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchürmann, D.-C., Preut, H. & Bleckmann, P. (1998). Z. Kristallogr. New Cryst. Struct. 213, 581–582.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o687–o689.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o867–o868.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. E64, o132–o133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o180–o183.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds