organic compounds
Guanidinium quinoline-2-carboxylate
aSchool of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia.
*Correspondence e-mail: g.smith@qut.edu.au
In the structure of the guanidinium salt of quinaldic acid, CH6N3+·C10H6NO2−, the contains two independent cations and anions having similar inter-species hydrogen-bonding environments, which include cyclic R22(8), R21(6) and R12(5) associations. These and additional weak aromatic ring π–π interactions [minimum ring-centroid separation = 3.662 (2) Å] give a two-dimensional layered structure.
Related literature
For guanidinium salts of aromatic acids, see: Parthasarathi et al. (1982); Schürmann et al. (1998); Najafpour et al. (2007); Pereira Silva et al. (2007). For quinaldic acid structures, see: Dobrzyńska & Jerzykiewicz (2004); Smith et al. (2004, 2007, 2008a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S1600536809049733/wn2367sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809049733/wn2367Isup2.hkl
The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of quinoline-2-carboxylic acid and guanidine carbonate in 50 ml of 50% aqueous propan-2-ol. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless prisms [m.p. 543–544 K].
Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic H atoms were included in the
in calculated positions (C—H = 0.93 Å) using a riding model approximation, with Uiso(H) = 1.2Ueq(C).Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. Molecular configuration and atom naming scheme for the two guanidinium cations (C and D) and the two quinoline-2-carboxylate anions (A and B) in the asymmetric unit. Inter-species hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 40% probability level. | |
Fig. 2. The hydrogen-bonding extensions of the asymmetric unit, showing hydrogen-bonds as dashed lines. For symmetry codes, see Table 1. | |
Fig. 3. The two-dimensional hydrogen-bonded layered structure, viewed down the c axial direction, showing also quinoline ring overlap. Non-interactive hydrogen atoms are omitted. For symmetry codes, see Table 1. |
CH6N3+·C10H6NO2− | F(000) = 976 |
Mr = 232.25 | Dx = 1.350 Mg m−3 |
Monoclinic, P21/c | Melting point = 543–544 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4318 (3) Å | Cell parameters from 4234 reflections |
b = 42.2105 (18) Å | θ = 2.9–28.8° |
c = 7.3035 (4) Å | µ = 0.10 mm−1 |
β = 94.045 (4)° | T = 297 K |
V = 2285.40 (18) Å3 | Prism, colourless |
Z = 8 | 0.35 × 0.20 × 0.18 mm |
Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer | 3981 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 2931 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 25.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.740, Tmax = 0.870 | k = −50→49 |
10626 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.069 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0614P)2 + 2.2259P] where P = (Fo2 + 2Fc2)/3 |
3981 reflections | (Δ/σ)max = 0.003 |
355 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
CH6N3+·C10H6NO2− | V = 2285.40 (18) Å3 |
Mr = 232.25 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.4318 (3) Å | µ = 0.10 mm−1 |
b = 42.2105 (18) Å | T = 297 K |
c = 7.3035 (4) Å | 0.35 × 0.20 × 0.18 mm |
β = 94.045 (4)° |
Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer | 3981 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2931 reflections with I > 2σ(I) |
Tmin = 0.740, Tmax = 0.870 | Rint = 0.035 |
10626 measured reflections |
R[F2 > 2σ(F2)] = 0.069 | 0 restraints |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.15 e Å−3 |
3981 reflections | Δρmin = −0.18 e Å−3 |
355 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O21A | 0.8508 (4) | 0.09058 (6) | 0.2611 (3) | 0.0621 (10) | |
O22A | 0.5996 (3) | 0.07308 (6) | 0.1162 (4) | 0.0645 (10) | |
N1A | 0.9927 (3) | 0.03079 (6) | 0.2631 (3) | 0.0344 (8) | |
C2A | 0.8222 (4) | 0.03520 (7) | 0.2056 (4) | 0.0347 (9) | |
C3A | 0.7048 (4) | 0.01015 (8) | 0.1538 (4) | 0.0432 (11) | |
C4A | 0.7670 (5) | −0.02006 (8) | 0.1610 (4) | 0.0470 (11) | |
C5A | 1.0237 (5) | −0.05662 (8) | 0.2320 (5) | 0.0526 (14) | |
C6A | 1.1980 (6) | −0.06067 (9) | 0.2937 (5) | 0.0607 (14) | |
C7A | 1.3053 (5) | −0.03505 (10) | 0.3470 (5) | 0.0573 (14) | |
C8A | 1.2375 (4) | −0.00486 (8) | 0.3367 (4) | 0.0463 (11) | |
C9A | 1.0562 (4) | 0.00047 (7) | 0.2721 (4) | 0.0350 (10) | |
C10A | 0.9469 (4) | −0.02599 (7) | 0.2209 (4) | 0.0386 (10) | |
C21A | 0.7531 (5) | 0.06891 (8) | 0.1948 (4) | 0.0434 (11) | |
O21B | 0.2113 (4) | 0.16103 (6) | 0.7760 (4) | 0.0595 (9) | |
O22B | 0.4256 (3) | 0.17922 (6) | 0.6099 (3) | 0.0547 (9) | |
N1B | 0.0628 (3) | 0.22063 (6) | 0.7787 (3) | 0.0337 (8) | |
C2B | 0.2260 (4) | 0.21671 (7) | 0.7234 (4) | 0.0331 (9) | |
C3B | 0.3404 (4) | 0.24202 (7) | 0.6830 (4) | 0.0383 (10) | |
C4B | 0.2823 (4) | 0.27223 (7) | 0.7016 (4) | 0.0399 (10) | |
C5B | 0.0359 (5) | 0.30838 (8) | 0.7780 (4) | 0.0467 (11) | |
C6B | −0.1343 (5) | 0.31222 (9) | 0.8310 (5) | 0.0521 (12) | |
C7B | −0.2392 (5) | 0.28594 (9) | 0.8685 (5) | 0.0500 (11) | |
C8B | −0.1739 (4) | 0.25609 (8) | 0.8528 (4) | 0.0417 (11) | |
C9B | 0.0024 (4) | 0.25108 (7) | 0.7961 (4) | 0.0326 (9) | |
C10B | 0.1082 (4) | 0.27776 (7) | 0.7584 (4) | 0.0360 (10) | |
C21B | 0.2913 (4) | 0.18309 (8) | 0.7021 (4) | 0.0389 (10) | |
N1C | 0.1537 (5) | 0.11364 (9) | 0.4833 (5) | 0.0598 (12) | |
N2C | 0.2735 (5) | 0.08075 (8) | 0.2766 (5) | 0.0671 (14) | |
N3C | 0.4496 (5) | 0.11943 (9) | 0.4200 (5) | 0.0622 (12) | |
C1C | 0.2924 (5) | 0.10473 (8) | 0.3933 (5) | 0.0506 (11) | |
N1D | 0.6118 (5) | 0.13337 (8) | −0.0734 (5) | 0.0553 (11) | |
N2D | 0.9196 (5) | 0.13416 (8) | −0.0311 (5) | 0.0500 (11) | |
N3D | 0.7754 (5) | 0.17077 (7) | −0.2190 (4) | 0.0554 (11) | |
C1D | 0.7690 (5) | 0.14616 (7) | −0.1083 (4) | 0.0415 (11) | |
H3A | 0.58520 | 0.01430 | 0.11490 | 0.0520* | |
H4A | 0.69050 | −0.03680 | 0.12620 | 0.0560* | |
H5A | 0.95370 | −0.07410 | 0.19660 | 0.0630* | |
H6A | 1.24640 | −0.08100 | 0.30040 | 0.0730* | |
H7A | 1.42460 | −0.03830 | 0.39020 | 0.0680* | |
H8A | 1.31110 | 0.01220 | 0.37240 | 0.0560* | |
H3B | 0.45460 | 0.23800 | 0.64390 | 0.0460* | |
H4B | 0.35710 | 0.28910 | 0.67710 | 0.0480* | |
H5B | 0.10530 | 0.32610 | 0.75450 | 0.0560* | |
H6B | −0.18120 | 0.33250 | 0.84230 | 0.0630* | |
H7B | −0.35550 | 0.28890 | 0.90470 | 0.0600* | |
H8B | −0.24530 | 0.23880 | 0.87940 | 0.0500* | |
H11C | 0.165 (4) | 0.1267 (8) | 0.567 (5) | 0.070 (10)* | |
H12C | 0.046 (6) | 0.1036 (9) | 0.454 (5) | 0.066 (12)* | |
H21C | 0.376 (6) | 0.0750 (10) | 0.217 (6) | 0.079 (13)* | |
H22C | 0.173 (6) | 0.0684 (11) | 0.272 (6) | 0.084 (14)* | |
H31C | 0.448 (6) | 0.1394 (11) | 0.475 (6) | 0.089 (15)* | |
H32C | 0.540 (6) | 0.1136 (11) | 0.367 (6) | 0.081 (15)* | |
H11D | 0.611 (5) | 0.1156 (10) | −0.014 (5) | 0.068 (13)* | |
H12D | 0.514 (6) | 0.1421 (11) | −0.114 (7) | 0.091 (17)* | |
H21D | 1.022 (5) | 0.1409 (8) | −0.055 (5) | 0.064 (10)* | |
H22D | 0.908 (6) | 0.1206 (11) | 0.060 (6) | 0.083 (15)* | |
H31D | 0.882 (5) | 0.1819 (9) | −0.227 (5) | 0.060 (11)* | |
H32D | 0.670 (6) | 0.1793 (10) | −0.273 (6) | 0.074 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O21A | 0.087 (2) | 0.0395 (15) | 0.0588 (15) | 0.0029 (13) | −0.0028 (14) | 0.0009 (11) |
O22A | 0.0422 (15) | 0.0608 (17) | 0.092 (2) | 0.0122 (12) | 0.0149 (14) | 0.0230 (14) |
N1A | 0.0365 (15) | 0.0328 (14) | 0.0346 (13) | −0.0010 (11) | 0.0068 (11) | 0.0000 (10) |
C2A | 0.0352 (17) | 0.0373 (17) | 0.0327 (15) | −0.0018 (13) | 0.0111 (13) | 0.0042 (12) |
C3A | 0.0356 (18) | 0.051 (2) | 0.0428 (18) | −0.0015 (15) | 0.0006 (14) | 0.0001 (15) |
C4A | 0.053 (2) | 0.043 (2) | 0.0449 (19) | −0.0100 (16) | 0.0020 (16) | −0.0061 (15) |
C5A | 0.076 (3) | 0.038 (2) | 0.0444 (19) | 0.0035 (18) | 0.0089 (18) | −0.0019 (15) |
C6A | 0.085 (3) | 0.048 (2) | 0.050 (2) | 0.021 (2) | 0.011 (2) | 0.0060 (17) |
C7A | 0.055 (2) | 0.070 (3) | 0.047 (2) | 0.021 (2) | 0.0044 (17) | 0.0106 (18) |
C8A | 0.044 (2) | 0.053 (2) | 0.0422 (18) | 0.0029 (16) | 0.0050 (15) | 0.0034 (15) |
C9A | 0.0405 (18) | 0.0378 (18) | 0.0275 (15) | 0.0017 (14) | 0.0073 (13) | 0.0031 (12) |
C10A | 0.052 (2) | 0.0339 (18) | 0.0306 (15) | −0.0008 (14) | 0.0090 (14) | −0.0004 (12) |
C21A | 0.046 (2) | 0.044 (2) | 0.0421 (18) | 0.0062 (16) | 0.0173 (15) | 0.0097 (15) |
O21B | 0.0687 (17) | 0.0414 (14) | 0.0712 (16) | 0.0055 (13) | 0.0246 (13) | 0.0069 (12) |
O22B | 0.0368 (13) | 0.0508 (15) | 0.0783 (17) | 0.0036 (11) | 0.0159 (12) | −0.0133 (12) |
N1B | 0.0309 (14) | 0.0378 (15) | 0.0322 (13) | 0.0010 (11) | 0.0002 (10) | −0.0030 (10) |
C2B | 0.0286 (16) | 0.0401 (17) | 0.0304 (15) | 0.0018 (13) | −0.0002 (12) | −0.0051 (12) |
C3B | 0.0292 (16) | 0.048 (2) | 0.0376 (16) | −0.0003 (14) | 0.0027 (13) | −0.0049 (14) |
C4B | 0.0376 (18) | 0.0414 (19) | 0.0407 (17) | −0.0082 (14) | 0.0023 (14) | −0.0013 (13) |
C5B | 0.055 (2) | 0.0376 (19) | 0.0469 (19) | 0.0029 (16) | 0.0004 (16) | 0.0021 (14) |
C6B | 0.059 (2) | 0.044 (2) | 0.053 (2) | 0.0182 (18) | 0.0010 (17) | −0.0025 (16) |
C7B | 0.043 (2) | 0.061 (2) | 0.0462 (19) | 0.0124 (17) | 0.0039 (15) | −0.0062 (16) |
C8B | 0.0366 (18) | 0.048 (2) | 0.0406 (18) | 0.0015 (15) | 0.0027 (14) | −0.0039 (14) |
C9B | 0.0301 (16) | 0.0402 (18) | 0.0268 (14) | 0.0026 (13) | −0.0032 (12) | −0.0033 (12) |
C10B | 0.0382 (17) | 0.0405 (18) | 0.0286 (15) | 0.0010 (14) | −0.0028 (12) | −0.0013 (12) |
C21B | 0.0332 (17) | 0.0404 (19) | 0.0425 (17) | 0.0017 (14) | −0.0007 (14) | −0.0025 (14) |
N1C | 0.060 (2) | 0.054 (2) | 0.068 (2) | −0.0068 (18) | 0.0225 (18) | −0.0130 (17) |
N2C | 0.055 (2) | 0.052 (2) | 0.098 (3) | −0.0159 (17) | 0.032 (2) | −0.0300 (18) |
N3C | 0.055 (2) | 0.050 (2) | 0.084 (2) | −0.0109 (17) | 0.0209 (18) | −0.0184 (17) |
C1C | 0.056 (2) | 0.0367 (19) | 0.061 (2) | −0.0033 (17) | 0.0166 (18) | 0.0032 (16) |
N1D | 0.050 (2) | 0.0452 (19) | 0.071 (2) | −0.0032 (16) | 0.0071 (16) | 0.0158 (16) |
N2D | 0.047 (2) | 0.0478 (19) | 0.0550 (19) | −0.0004 (16) | 0.0023 (15) | 0.0055 (15) |
N3D | 0.047 (2) | 0.0462 (19) | 0.072 (2) | −0.0081 (16) | −0.0022 (16) | 0.0205 (15) |
C1D | 0.046 (2) | 0.0344 (18) | 0.0445 (18) | −0.0033 (15) | 0.0051 (15) | −0.0031 (14) |
O21A—C21A | 1.245 (4) | C4A—C10A | 1.400 (5) |
O22A—C21A | 1.253 (4) | C5A—C6A | 1.352 (6) |
O21B—C21B | 1.248 (4) | C5A—C10A | 1.413 (5) |
O22B—C21B | 1.253 (4) | C6A—C7A | 1.383 (6) |
N1A—C2A | 1.320 (4) | C7A—C8A | 1.371 (5) |
N1A—C9A | 1.364 (4) | C8A—C9A | 1.414 (4) |
N1B—C2B | 1.316 (4) | C9A—C10A | 1.416 (4) |
N1B—C9B | 1.370 (4) | C3A—H3A | 0.9300 |
N1C—C1C | 1.316 (5) | C4A—H4A | 0.9300 |
N2C—C1C | 1.324 (5) | C5A—H5A | 0.9300 |
N3C—C1C | 1.325 (5) | C6A—H6A | 0.9300 |
N1C—H11C | 0.82 (4) | C7A—H7A | 0.9300 |
N1C—H12C | 0.92 (4) | C8A—H8A | 0.9300 |
N2C—H21C | 0.94 (4) | C2B—C21B | 1.511 (4) |
N2C—H22C | 0.91 (4) | C2B—C3B | 1.410 (4) |
N3C—H32C | 0.84 (4) | C3B—C4B | 1.356 (4) |
N3C—H31C | 0.93 (5) | C4B—C10B | 1.406 (4) |
N1D—C1D | 1.328 (5) | C5B—C10B | 1.411 (5) |
N2D—C1D | 1.318 (5) | C5B—C6B | 1.358 (5) |
N3D—C1D | 1.319 (4) | C6B—C7B | 1.394 (5) |
N1D—H11D | 0.87 (4) | C7B—C8B | 1.358 (5) |
N1D—H12D | 0.85 (5) | C8B—C9B | 1.418 (4) |
N2D—H21D | 0.84 (4) | C9B—C10B | 1.412 (4) |
N2D—H22D | 0.89 (4) | C3B—H3B | 0.9300 |
N3D—H31D | 0.93 (4) | C4B—H4B | 0.9300 |
N3D—H32D | 0.93 (4) | C5B—H5B | 0.9300 |
C2A—C21A | 1.513 (5) | C6B—H6B | 0.9300 |
C2A—C3A | 1.406 (4) | C7B—H7B | 0.9300 |
C3A—C4A | 1.356 (5) | C8B—H8B | 0.9300 |
O21A···N1A | 2.735 (4) | C10B···C2Bv | 3.455 (4) |
O21A···N1Ci | 2.852 (5) | C10B···C3Bv | 3.541 (4) |
O21A···N2Ci | 3.163 (5) | C21B···C5Bxi | 3.535 (4) |
O21A···N2D | 2.890 (4) | C1D···H6Ax | 3.0900 |
O21A···C1Ci | 3.408 (5) | C2A···H22Ci | 2.97 (5) |
O21B···N1C | 2.937 (5) | C2B···H31Dii | 2.99 (4) |
O21B···N2Dii | 2.899 (5) | C3A···H3Axiii | 2.9900 |
O21B···N1B | 2.748 (4) | C4B···H7Bi | 3.0600 |
O21B···N3Dii | 3.268 (5) | C9A···H22Ci | 3.00 (5) |
O22A···N3C | 3.216 (5) | C9B···H31Dii | 3.06 (4) |
O22A···N1D | 2.902 (4) | C21A···H21C | 2.83 (4) |
O22A···N2C | 2.784 (4) | C21A···H32C | 2.82 (5) |
O22B···N1Diii | 3.250 (4) | C21A···H11D | 2.66 (4) |
O22B···N3C | 2.891 (4) | C21A···H22D | 2.69 (5) |
O22B···N3Diii | 2.826 (4) | C21B···H11C | 2.72 (3) |
O21A···H12Ci | 2.03 (4) | C21B···H31C | 2.79 (5) |
O21A···H11D | 2.80 (4) | C21B···H32Diii | 2.81 (4) |
O21A···H22Ci | 2.57 (4) | C21B···H12Diii | 2.69 (5) |
O21A···H32C | 2.67 (5) | H3A···O22A | 2.4800 |
O21A···H22D | 2.01 (5) | H3A···C3Axiii | 2.9900 |
O21B···H21Dii | 2.11 (4) | H3A···H3Axiii | 2.3600 |
O21B···H31Dii | 2.60 (4) | H3B···H7Biv | 2.5800 |
O21B···H11C | 2.12 (4) | H3B···O22B | 2.5000 |
O21B···H12Diii | 2.47 (5) | H4A···H5A | 2.5400 |
O22A···H3A | 2.4800 | H4B···H5B | 2.5300 |
O22A···H32C | 2.57 (5) | H5A···H4A | 2.5400 |
O22A···H11D | 2.04 (4) | H5B···H4B | 2.5300 |
O22A···H21C | 1.87 (4) | H5B···N2Dxii | 2.9400 |
O22B···H12Diii | 2.60 (5) | H6A···C1Dx | 3.0900 |
O22B···H7Biv | 2.6500 | H7B···H3Bxii | 2.5800 |
O22B···H31C | 1.96 (5) | H7B···C4Bvi | 3.0600 |
O22B···H32Diii | 1.95 (4) | H7B···O22Bxii | 2.6500 |
O22B···H3B | 2.5000 | H11C···C21B | 2.72 (3) |
N1A···O21A | 2.735 (4) | H11C···O21B | 2.12 (4) |
N1A···N2Ci | 2.964 (4) | H11C···H31C | 2.32 (5) |
N1B···O21B | 2.748 (4) | H11D···H22D | 2.25 (6) |
N1B···N3Dii | 3.000 (4) | H11D···C21A | 2.66 (4) |
N1B···C4Bv | 3.403 (4) | H11D···O21A | 2.80 (4) |
N1C···O21B | 2.937 (5) | H11D···O22A | 2.04 (4) |
N1C···O21Avi | 2.852 (5) | H12C···H22C | 2.25 (6) |
N1D···O22A | 2.902 (4) | H12C···O21Avi | 2.03 (4) |
N1D···O22Bvii | 3.250 (4) | H12D···O21Bvii | 2.47 (5) |
N2C···N1Avi | 2.964 (4) | H12D···C21Bvii | 2.69 (5) |
N2C···O21Avi | 3.163 (5) | H12D···H32D | 2.31 (6) |
N2C···O22A | 2.784 (4) | H12D···O22Bvii | 2.60 (5) |
N2D···C5Biv | 3.384 (5) | H21C···C21A | 2.83 (4) |
N2D···O21Bviii | 2.899 (5) | H21C···H32C | 2.27 (6) |
N2D···O21A | 2.890 (4) | H21C···O22A | 1.87 (4) |
N3C···O22B | 2.891 (4) | H21D···O21Bviii | 2.11 (4) |
N3C···O22A | 3.216 (5) | H21D···H31D | 2.34 (5) |
N3D···O22Bvii | 2.826 (4) | H22C···C2Avi | 2.97 (5) |
N3D···O21Bviii | 3.268 (5) | H22C···C9Avi | 3.00 (5) |
N3D···N1Bviii | 3.000 (4) | H22C···H12C | 2.25 (6) |
N1A···H22Ci | 2.08 (5) | H22C···N1Avi | 2.08 (5) |
N1B···H31Dii | 2.12 (4) | H22C···O21Avi | 2.57 (4) |
N2D···H5Biv | 2.9400 | H22D···O21A | 2.01 (5) |
C1C···O21Avi | 3.408 (5) | H22D···C21A | 2.69 (5) |
C2A···C7Aix | 3.466 (5) | H22D···H11D | 2.25 (6) |
C2A···C5Ax | 3.586 (5) | H31C···C21B | 2.79 (5) |
C2B···C10Bxi | 3.455 (4) | H31C···H11C | 2.32 (5) |
C2B···C4Bv | 3.519 (4) | H31C···O22B | 1.96 (5) |
C3B···C4Bxi | 3.563 (4) | H31D···H21D | 2.34 (5) |
C3B···C10Bxi | 3.541 (4) | H31D···O21Bviii | 2.60 (4) |
C4B···C2Bxi | 3.519 (4) | H31D···N1Bviii | 2.12 (4) |
C4B···C3Bv | 3.563 (4) | H31D···C9Bviii | 3.06 (4) |
C4B···N1Bxi | 3.403 (4) | H31D···C2Bviii | 2.99 (4) |
C5A···C2Ax | 3.586 (5) | H32C···C21A | 2.82 (5) |
C5B···C21Bv | 3.535 (4) | H32C···H21C | 2.27 (6) |
C5B···N2Dxii | 3.384 (5) | H32C···O22A | 2.57 (5) |
C7A···C2Aix | 3.466 (5) | H32C···O21A | 2.67 (5) |
C8B···C9Bv | 3.419 (4) | H32D···O22Bvii | 1.95 (4) |
C9A···C9Aix | 3.489 (4) | H32D···C21Bvii | 2.81 (4) |
C9B···C8Bxi | 3.419 (4) | H32D···H12D | 2.31 (6) |
C2A—N1A—C9A | 118.0 (3) | C6A—C5A—H5A | 120.00 |
C2B—N1B—C9B | 117.5 (3) | C7A—C6A—H6A | 120.00 |
C1C—N1C—H11C | 121 (2) | C5A—C6A—H6A | 119.00 |
C1C—N1C—H12C | 117 (3) | C8A—C7A—H7A | 120.00 |
H11C—N1C—H12C | 122 (3) | C6A—C7A—H7A | 120.00 |
C1C—N2C—H21C | 116 (3) | C7A—C8A—H8A | 120.00 |
C1C—N2C—H22C | 121 (3) | C9A—C8A—H8A | 120.00 |
H21C—N2C—H22C | 122 (4) | N1B—C2B—C21B | 117.4 (3) |
C1C—N3C—H31C | 117 (3) | C3B—C2B—C21B | 119.2 (3) |
C1C—N3C—H32C | 122 (3) | N1B—C2B—C3B | 123.5 (3) |
H31C—N3C—H32C | 120 (4) | C2B—C3B—C4B | 119.4 (3) |
C1D—N1D—H11D | 119 (2) | C3B—C4B—C10B | 119.5 (3) |
C1D—N1D—H12D | 120 (3) | C6B—C5B—C10B | 120.5 (3) |
H11D—N1D—H12D | 121 (4) | C5B—C6B—C7B | 120.4 (3) |
C1D—N2D—H22D | 116 (3) | C6B—C7B—C8B | 120.9 (3) |
H21D—N2D—H22D | 121 (4) | C7B—C8B—C9B | 120.4 (3) |
C1D—N2D—H21D | 122 (2) | C8B—C9B—C10B | 118.5 (3) |
C1D—N3D—H31D | 120 (2) | N1B—C9B—C8B | 118.9 (3) |
C1D—N3D—H32D | 120 (3) | N1B—C9B—C10B | 122.7 (3) |
H31D—N3D—H32D | 119 (4) | C4B—C10B—C9B | 117.5 (3) |
N1A—C2A—C21A | 117.7 (3) | C5B—C10B—C9B | 119.3 (3) |
N1A—C2A—C3A | 122.9 (3) | C4B—C10B—C5B | 123.2 (3) |
C3A—C2A—C21A | 119.4 (3) | O21B—C21B—C2B | 119.3 (3) |
C2A—C3A—C4A | 119.6 (3) | O21B—C21B—O22B | 123.8 (3) |
C3A—C4A—C10A | 119.7 (3) | O22B—C21B—C2B | 116.8 (3) |
C6A—C5A—C10A | 120.6 (3) | C2B—C3B—H3B | 120.00 |
C5A—C6A—C7A | 121.0 (4) | C4B—C3B—H3B | 120.00 |
C6A—C7A—C8A | 120.6 (3) | C10B—C4B—H4B | 120.00 |
C7A—C8A—C9A | 120.3 (3) | C3B—C4B—H4B | 120.00 |
N1A—C9A—C10A | 122.5 (3) | C6B—C5B—H5B | 120.00 |
N1A—C9A—C8A | 118.9 (3) | C10B—C5B—H5B | 120.00 |
C8A—C9A—C10A | 118.6 (3) | C7B—C6B—H6B | 120.00 |
C5A—C10A—C9A | 119.0 (3) | C5B—C6B—H6B | 120.00 |
C4A—C10A—C9A | 117.3 (3) | C8B—C7B—H7B | 120.00 |
C4A—C10A—C5A | 123.7 (3) | C6B—C7B—H7B | 120.00 |
O21A—C21A—C2A | 119.0 (3) | C9B—C8B—H8B | 120.00 |
O21A—C21A—O22A | 124.2 (3) | C7B—C8B—H8B | 120.00 |
O22A—C21A—C2A | 116.8 (3) | N2C—C1C—N3C | 120.3 (4) |
C2A—C3A—H3A | 120.00 | N1C—C1C—N2C | 119.3 (4) |
C4A—C3A—H3A | 120.00 | N1C—C1C—N3C | 120.4 (3) |
C3A—C4A—H4A | 120.00 | N2D—C1D—N3D | 119.9 (3) |
C10A—C4A—H4A | 120.00 | N1D—C1D—N2D | 119.6 (3) |
C10A—C5A—H5A | 120.00 | N1D—C1D—N3D | 120.5 (3) |
C9A—N1A—C2A—C3A | 0.0 (4) | N1A—C9A—C10A—C5A | 179.2 (3) |
C9A—N1A—C2A—C21A | −179.6 (2) | C8A—C9A—C10A—C4A | 178.7 (3) |
C2A—N1A—C9A—C8A | −178.8 (3) | C8A—C9A—C10A—C5A | −1.5 (4) |
C2A—N1A—C9A—C10A | 0.6 (4) | N1A—C9A—C10A—C4A | −0.6 (4) |
C2B—N1B—C9B—C8B | 179.1 (3) | N1B—C2B—C3B—C4B | 0.2 (5) |
C2B—N1B—C9B—C10B | −0.4 (4) | C21B—C2B—C3B—C4B | 179.9 (3) |
C9B—N1B—C2B—C3B | 0.4 (4) | N1B—C2B—C21B—O21B | −16.7 (4) |
C9B—N1B—C2B—C21B | −179.3 (2) | N1B—C2B—C21B—O22B | 163.6 (3) |
C3A—C2A—C21A—O21A | 171.5 (3) | C3B—C2B—C21B—O21B | 163.6 (3) |
N1A—C2A—C21A—O21A | −8.9 (4) | C3B—C2B—C21B—O22B | −16.1 (4) |
N1A—C2A—C21A—O22A | 170.3 (3) | C2B—C3B—C4B—C10B | −0.9 (4) |
N1A—C2A—C3A—C4A | −0.5 (5) | C3B—C4B—C10B—C5B | −178.8 (3) |
C21A—C2A—C3A—C4A | 179.1 (3) | C3B—C4B—C10B—C9B | 0.9 (4) |
C3A—C2A—C21A—O22A | −9.4 (4) | C10B—C5B—C6B—C7B | 0.6 (5) |
C2A—C3A—C4A—C10A | 0.4 (4) | C6B—C5B—C10B—C4B | 179.1 (3) |
C3A—C4A—C10A—C9A | 0.1 (4) | C6B—C5B—C10B—C9B | −0.6 (5) |
C3A—C4A—C10A—C5A | −179.7 (3) | C5B—C6B—C7B—C8B | −0.1 (5) |
C6A—C5A—C10A—C4A | −179.0 (3) | C6B—C7B—C8B—C9B | −0.6 (5) |
C6A—C5A—C10A—C9A | 1.2 (5) | C7B—C8B—C9B—N1B | −178.9 (3) |
C10A—C5A—C6A—C7A | −0.1 (6) | C7B—C8B—C9B—C10B | 0.6 (4) |
C5A—C6A—C7A—C8A | −0.6 (6) | N1B—C9B—C10B—C4B | −0.2 (4) |
C6A—C7A—C8A—C9A | 0.3 (5) | N1B—C9B—C10B—C5B | 179.5 (3) |
C7A—C8A—C9A—N1A | −179.9 (3) | C8B—C9B—C10B—C4B | −179.7 (3) |
C7A—C8A—C9A—C10A | 0.8 (4) | C8B—C9B—C10B—C5B | 0.0 (4) |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z+1; (iii) x, y, z+1; (iv) x+1, −y+1/2, z−1/2; (v) x, −y+1/2, z+1/2; (vi) x−1, y, z; (vii) x, y, z−1; (viii) x+1, y, z−1; (ix) −x+2, −y, −z+1; (x) −x+2, −y, −z; (xi) x, −y+1/2, z−1/2; (xii) x−1, −y+1/2, z+1/2; (xiii) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1C—H11C···O21B | 0.82 (4) | 2.12 (4) | 2.937 (5) | 176 (3) |
N1C—H12C···O21Avi | 0.92 (4) | 2.03 (4) | 2.852 (5) | 149 (3) |
N1D—H11D···O22A | 0.87 (4) | 2.04 (4) | 2.902 (4) | 177 (4) |
N1D—H12D···O21Bvii | 0.85 (5) | 2.47 (5) | 3.312 (5) | 173 (4) |
N2C—H21C···O22A | 0.94 (4) | 1.87 (4) | 2.784 (4) | 166 (4) |
N2C—H22C···O21Avi | 0.91 (4) | 2.57 (4) | 3.163 (5) | 124 (4) |
N2C—H22C···N1Avi | 0.91 (4) | 2.08 (5) | 2.964 (4) | 165 (4) |
N2D—H21D···O21Bviii | 0.84 (4) | 2.11 (4) | 2.899 (5) | 155 (3) |
N2D—H22D···O21A | 0.89 (4) | 2.01 (5) | 2.890 (4) | 173 (4) |
N3C—H31C···O22B | 0.93 (5) | 1.96 (5) | 2.891 (4) | 173 (4) |
N3C—H32C···O22A | 0.84 (4) | 2.57 (5) | 3.216 (5) | 135 (4) |
N3D—H31D···O21Bviii | 0.93 (4) | 2.60 (4) | 3.268 (5) | 130 (3) |
N3D—H31D···N1Bviii | 0.93 (4) | 2.12 (4) | 3.000 (4) | 159 (3) |
N3D—H32D···O22Bvii | 0.93 (4) | 1.95 (4) | 2.826 (4) | 157 (4) |
Symmetry codes: (vi) x−1, y, z; (vii) x, y, z−1; (viii) x+1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | CH6N3+·C10H6NO2− |
Mr | 232.25 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 297 |
a, b, c (Å) | 7.4318 (3), 42.2105 (18), 7.3035 (4) |
β (°) | 94.045 (4) |
V (Å3) | 2285.40 (18) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.35 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.740, 0.870 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10626, 3981, 2931 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.069, 0.162, 1.04 |
No. of reflections | 3981 |
No. of parameters | 355 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.15, −0.18 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1C—H11C···O21B | 0.82 (4) | 2.12 (4) | 2.937 (5) | 176 (3) |
N1C—H12C···O21Ai | 0.92 (4) | 2.03 (4) | 2.852 (5) | 149 (3) |
N1D—H11D···O22A | 0.87 (4) | 2.04 (4) | 2.902 (4) | 177 (4) |
N1D—H12D···O21Bii | 0.85 (5) | 2.47 (5) | 3.312 (5) | 173 (4) |
N2C—H21C···O22A | 0.94 (4) | 1.87 (4) | 2.784 (4) | 166 (4) |
N2C—H22C···O21Ai | 0.91 (4) | 2.57 (4) | 3.163 (5) | 124 (4) |
N2C—H22C···N1Ai | 0.91 (4) | 2.08 (5) | 2.964 (4) | 165 (4) |
N2D—H21D···O21Biii | 0.84 (4) | 2.11 (4) | 2.899 (5) | 155 (3) |
N2D—H22D···O21A | 0.89 (4) | 2.01 (5) | 2.890 (4) | 173 (4) |
N3C—H31C···O22B | 0.93 (5) | 1.96 (5) | 2.891 (4) | 173 (4) |
N3C—H32C···O22A | 0.84 (4) | 2.57 (5) | 3.216 (5) | 135 (4) |
N3D—H31D···O21Biii | 0.93 (4) | 2.60 (4) | 3.268 (5) | 130 (3) |
N3D—H31D···N1Biii | 0.93 (4) | 2.12 (4) | 3.000 (4) | 159 (3) |
N3D—H32D···O22Bii | 0.93 (4) | 1.95 (4) | 2.826 (4) | 157 (4) |
Symmetry codes: (i) x−1, y, z; (ii) x, y, z−1; (iii) x+1, y, z−1. |
Acknowledgements
The authors acknowledge financial support from the Australian Research Council and the School of Physical and Chemical Sciences, Queensland University of Technology,
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, 51–55. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Najafpour, M. M., Hołyńska, M. & Lis, T. (2007). Acta Cryst. E63, o3727. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Parthasarathi, V., Wolfrum, S., Noordik, J. H., Beurskens, P. T., Kennard, C. H. L., Smith, G. & O'Reilly, E. J. (1982). Cryst. Struct. Commun. 11, 1519–1524. CAS Google Scholar
Pereira Silva, P. S., Ramos Silva, M., Paixão, J. A. & Matos Beja, A. (2007). Acta Cryst. E63, o2783. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schürmann, D.-C., Preut, H. & Bleckmann, P. (1998). Z. Kristallogr. New Cryst. Struct. 213, 581–582. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & Healy, P. C. (2004). Acta Cryst. E60, o687–o689. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o867–o868. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2008a). Acta Cryst. E64, o132–o133. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2008b). Acta Cryst. C64, o180–o183. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The guanidinium salts of aromatic and heteroaromatic carboxylic acids have proved to be a particularly useful means of generating stable hydrogen-bonded supramolecular framework structures. Three-dimensional structures are most common, largely the result of the interactive efficiency of the symmetrical guanidinium cation in commonly forming cyclic R22(8) hydrogen-bonding associations with carboxylate-O acceptors. Among the known structures are the guanidinium salts with the aromatic monocarboxylic acids, 4-chloro-3-nitrobenzoic acid (a monohydrate) (Najafpour et al., 2007), and the anhydrous salts with benzoic acid (Pereira Silva et al., 2007), 4-nitrobenzoic acid (Schürmann et al., 1998), 3,5-dinitrobenzoic acid (Smith et al., 2007) and 4-amino-3,5,6-trichloropicolinic acid (Parthasarathi et al., 1982).
Our 1:1 stoichiometric reaction of quinoline-2-carboxylic acid (quinaldic acid) in 50% 2-propanol-water gave large chemically stable crystals of the title compound, anhydrous guanidinium quinoline-2-carboxylate, CH6N3+ C10H6NO2- and the structure is reported here. Quinaldic acid in the solid state exists as a zwitterionic hydrogen-bonded dimer (Dobrzyńska & Jerzykiewicz, 2004) and is commonly found in that form as an adduct species in some proton-transfer compounds where it acts as a Lewis base rather than an acid. Examples are the 1/1/1 quinolinium salt adducts with 5-sulfosalicylic acid (Smith et al., 2004), picrylsulfonic acid (Smith et al., 2008a) and 4,5-dichlorophthalic acid (Smith et al., 2008b).
In the structure of the title compound the asymmetric unit contains two guanidinium cations (C and D) and two quinoline-2-carboxylate anions (A and B) (Fig. 1). The H atom donors of the two cations form similar cyclic hydrogen-bonding interactions with carboxylate O and quinoline N acceptors (Table 1) (Fig. 2), both pairs having two guanidinium-N–H, N'–H'···O associations [graph set R21(6)] and one N–H, N'–H'···O,O' association [R22(8)]. In addition, each has an R12(5) guanidinium N–H···N,Oquinoline-carboxyl association. A two-dimensional layered structure is generated (Fig. 3), in which some aromatic ring overlap down the c cell direction gives weak π–π interactions [minimum ring centroid separation,for the six-membered ring N1B–C5B, 3.662 (2) Å]. The quinoline-2-carboxylate cations are conformationally similar with only minor differences in the N1–C2–C21–O22 torsion angles [170.3 (3)° (A), 163.6 (3)° (B)].