organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Meth­­oxy-N′-(4-nitro­benzyl­­idene)benzohydrazide

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China, and bCollege of Science, Shenyang University, Shenyang 110044, People's Republic of China.
*Correspondence e-mail: hongyan_ban@163.com

(Received 23 November 2009; accepted 25 November 2009; online 28 November 2009)

In the title compound, C15H13N3O4, the mol­ecule exists in a trans configuration with respect to the methyl­idene unit. The dihedral angle between the two benzene rings is 6.8 (2)°. The C—N—NH—C torsion angle is 3.4 (3)°. The mol­ecule possesses an intra­molecular N—H⋯O hydrogen bond. In the crystal structure, adjacent mol­ecules are linked through inter­molecular C—H⋯O hydrogen bonds, forming dimers

Related literature

For the biological activity of hydrazones, see: Zhong et al. (2007[ Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]); Raj et al. (2007[ Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]); Jimenez-Pulido et al. (2008[ Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677-1683.]). For related structures, see: Ban & Li (2008a[ Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.],b[ Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.]); Li & Ban (2009a[ Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.],b[ Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.]); Yehye et al. (2008[ Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.]); Fun, Patil, Jebas et al. (2008[ Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Fun, Patil, Rao et al. (2008[ Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Yang et al. (2008[ Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Ejsmont et al. (2008[ Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3O4

  • Mr = 299.28

  • Monoclinic, P 21 /c

  • a = 11.1843 (2) Å

  • b = 11.3718 (3) Å

  • c = 13.0519 (2) Å

  • β = 121.792 (2)°

  • V = 1410.96 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[ Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.988

  • 8270 measured reflections

  • 3048 independent reflections

  • 1964 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.138

  • S = 1.02

  • 3048 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.91 (1) 1.94 (2) 2.644 (2) 133 (2)
C3—H3⋯O2i 0.93 2.50 3.260 (2) 140
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[ Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[ Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones derived from the condensation of aldehydes with hydrazides have been shown to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a great deal of hydrazones have been synthesized and structurally characterized (Yehye et al., 2008; Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have also reported the crystal structures of a few hydrazones (Ban & Li, 2008a,b; Li & Ban, 2009a,b). In this paper, we report the crystal structure of the title compound.

In the structure of the title compound (Fig. 1) the molecule exists in a trans configuration with respect to the methylidene unit. The dihedral angle between the two benzene rings is 6.8 (2)°. In the 2-methoxyphenyl unit, the methoxy group is nearly coplanar with the mean plane of the C9–C14 ring; the atom C15 deviates from this plane by 0.002 (2) Å. The torsion angle C7—N1—N2—C8 is 3.4 (3)°. The molecule possesses an intramolecular N—H···O hydrogen bond (Table 1, Fig. 1).

In the crystal structure, adjacent molecules are linked through intermolecular C—H···O hydrogen bonds (Table 1), forming dimers (Fig. 2).

Related literature top

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun, Patil, Jebas et al. (2008); Fun, Patil, Rao et al. (2008); Yang et al. (2008); Ejsmont et al. (2008).

Experimental top

The compound was prepared by refluxing 4-nitrobenzaldehyde (1.0 mol) with 2-methoxybenzohydrazide (1.0 mol) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. The colorless solid product was filtered, and washed three times with methanol. Colorless block crystals of the title compound were obtained from a methanol solution by slow evaporation in air.

Refinement top

H2A, attached to N2, was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in calculated positions (C—H = 0.93 - 0.96 Å) and refined as riding with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(other C). A rotating group model was used for the methyl group.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are shown as spheres of arbitrary radius. The intramolecular N—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in these hydrogen bonds have been omitted.
(E)-2-Methoxy-N'-(4-nitrobenzylidene)benzohydrazide top
Crystal data top
C15H13N3O4F(000) = 624
Mr = 299.28Dx = 1.409 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2137 reflections
a = 11.1843 (2) Åθ = 2.6–27.7°
b = 11.3718 (3) ŵ = 0.11 mm1
c = 13.0519 (2) ÅT = 298 K
β = 121.792 (2)°Block, colorless
V = 1410.96 (6) Å30.15 × 0.13 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3048 independent reflections
Radiation source: fine-focus sealed tube1964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.985, Tmax = 0.988k = 149
8270 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.1341P]
where P = (Fo2 + 2Fc2)/3
3048 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
C15H13N3O4V = 1410.96 (6) Å3
Mr = 299.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1843 (2) ŵ = 0.11 mm1
b = 11.3718 (3) ÅT = 298 K
c = 13.0519 (2) Å0.15 × 0.13 × 0.12 mm
β = 121.792 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3048 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1964 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.988Rint = 0.026
8270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.17 e Å3
3048 reflectionsΔρmin = 0.29 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.02468 (14)0.74628 (13)0.11097 (11)0.0533 (4)
N20.10276 (15)0.75892 (13)0.23349 (11)0.0542 (4)
N30.37828 (15)0.80034 (14)0.46112 (12)0.0584 (4)
O10.18128 (13)0.87506 (11)0.43486 (10)0.0632 (4)
O20.16350 (19)0.56837 (12)0.25823 (12)0.0989 (6)
O30.36814 (16)0.71210 (14)0.50895 (11)0.0841 (5)
O40.45977 (16)0.87945 (13)0.51687 (11)0.0874 (5)
C10.12755 (16)0.82699 (14)0.08248 (13)0.0477 (4)
C20.13227 (17)0.72335 (14)0.14102 (14)0.0513 (4)
H20.08040.65870.09580.062*
C30.21222 (17)0.71486 (15)0.26456 (14)0.0518 (4)
H30.21480.64540.30320.062*
C40.28832 (16)0.81139 (14)0.32966 (13)0.0477 (4)
C50.28638 (18)0.91571 (15)0.27587 (15)0.0572 (4)
H50.33890.97980.32190.069*
C60.20458 (18)0.92326 (15)0.15175 (15)0.0559 (4)
H60.20090.99360.11390.067*
C70.04485 (17)0.83471 (15)0.04892 (14)0.0523 (4)
H70.04320.90440.08700.063*
C80.17233 (18)0.66437 (16)0.30264 (14)0.0571 (4)
C90.26280 (16)0.68339 (15)0.43602 (13)0.0507 (4)
C100.26528 (17)0.78298 (15)0.49941 (13)0.0514 (4)
C110.35310 (19)0.78490 (18)0.62478 (15)0.0643 (5)
H110.35280.85000.66780.077*
C120.4398 (2)0.6917 (2)0.68511 (16)0.0730 (6)
H120.49820.69440.76860.088*
C130.4412 (2)0.5949 (2)0.62399 (16)0.0720 (6)
H130.50150.53260.66530.086*
C140.35239 (19)0.59045 (17)0.50043 (15)0.0621 (5)
H140.35230.52380.45910.075*
C150.1754 (2)0.97515 (17)0.49824 (18)0.0720 (6)
H15A0.14740.95070.55300.108*
H15B0.10831.03060.44170.108*
H15C0.26651.01140.54260.108*
H2A0.102 (2)0.8277 (12)0.2684 (17)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0562 (8)0.0618 (9)0.0314 (7)0.0037 (7)0.0159 (6)0.0002 (6)
N20.0613 (9)0.0581 (9)0.0295 (7)0.0065 (7)0.0145 (6)0.0012 (6)
N30.0601 (9)0.0703 (10)0.0373 (7)0.0068 (8)0.0204 (7)0.0109 (7)
O10.0706 (8)0.0654 (8)0.0440 (6)0.0069 (6)0.0237 (6)0.0082 (6)
O20.1488 (15)0.0625 (9)0.0423 (7)0.0271 (9)0.0207 (8)0.0018 (6)
O30.1009 (11)0.0921 (11)0.0426 (7)0.0188 (8)0.0264 (7)0.0010 (7)
O40.0927 (11)0.0905 (10)0.0455 (7)0.0317 (8)0.0135 (7)0.0184 (7)
C10.0465 (9)0.0548 (10)0.0384 (8)0.0013 (7)0.0200 (7)0.0037 (7)
C20.0539 (9)0.0515 (10)0.0405 (8)0.0102 (7)0.0195 (7)0.0098 (7)
C30.0561 (10)0.0537 (10)0.0395 (8)0.0074 (7)0.0209 (7)0.0023 (7)
C40.0454 (8)0.0590 (10)0.0342 (8)0.0042 (7)0.0178 (7)0.0091 (7)
C50.0594 (10)0.0542 (10)0.0471 (9)0.0126 (8)0.0204 (8)0.0150 (8)
C60.0601 (10)0.0521 (10)0.0456 (9)0.0072 (8)0.0210 (8)0.0021 (7)
C70.0546 (10)0.0542 (10)0.0400 (8)0.0029 (8)0.0194 (7)0.0003 (7)
C80.0660 (11)0.0585 (11)0.0359 (8)0.0066 (8)0.0193 (8)0.0009 (8)
C90.0494 (9)0.0630 (11)0.0341 (8)0.0003 (8)0.0183 (7)0.0033 (7)
C100.0471 (9)0.0657 (11)0.0367 (8)0.0049 (8)0.0189 (7)0.0020 (7)
C110.0622 (11)0.0859 (14)0.0389 (9)0.0129 (10)0.0225 (8)0.0119 (9)
C120.0604 (11)0.1071 (17)0.0325 (9)0.0109 (11)0.0115 (8)0.0056 (10)
C130.0623 (12)0.0882 (15)0.0474 (10)0.0045 (10)0.0165 (9)0.0172 (10)
C140.0630 (11)0.0681 (12)0.0453 (9)0.0049 (9)0.0217 (8)0.0073 (8)
C150.0915 (14)0.0618 (12)0.0640 (12)0.0047 (10)0.0418 (11)0.0136 (9)
Geometric parameters (Å, º) top
N1—C71.268 (2)C5—C61.381 (2)
N1—N21.3672 (17)C5—H50.9300
N2—C81.355 (2)C6—H60.9300
N2—H2A0.908 (9)C7—H70.9300
N3—O41.2127 (18)C8—C91.498 (2)
N3—O31.2183 (18)C9—C141.393 (2)
N3—C41.467 (2)C9—C101.394 (2)
O1—C101.3619 (19)C10—C111.396 (2)
O1—C151.429 (2)C11—C121.371 (3)
O2—C81.215 (2)C11—H110.9300
C1—C21.390 (2)C12—C131.364 (3)
C1—C61.392 (2)C12—H120.9300
C1—C71.460 (2)C13—C141.379 (2)
C2—C31.375 (2)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.375 (2)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.373 (2)C15—H15C0.9600
C7—N1—N2117.55 (14)C1—C7—H7120.1
C8—N2—N1118.97 (14)O2—C8—N2121.41 (15)
C8—N2—H2A120.2 (13)O2—C8—C9121.28 (15)
N1—N2—H2A120.6 (13)N2—C8—C9117.30 (15)
O4—N3—O3123.15 (15)C14—C9—C10118.37 (14)
O4—N3—C4118.28 (15)C14—C9—C8114.99 (15)
O3—N3—C4118.56 (14)C10—C9—C8126.64 (15)
C10—O1—C15118.79 (13)O1—C10—C9117.77 (13)
C2—C1—C6118.59 (14)O1—C10—C11122.89 (16)
C2—C1—C7120.89 (14)C9—C10—C11119.34 (16)
C6—C1—C7120.52 (15)C12—C11—C10120.60 (18)
C3—C2—C1121.13 (14)C12—C11—H11119.7
C3—C2—H2119.4C10—C11—H11119.7
C1—C2—H2119.4C13—C12—C11120.70 (16)
C4—C3—C2118.51 (15)C13—C12—H12119.7
C4—C3—H3120.7C11—C12—H12119.7
C2—C3—H3120.7C12—C13—C14119.37 (18)
C5—C4—C3122.42 (14)C12—C13—H13120.3
C5—C4—N3119.23 (14)C14—C13—H13120.3
C3—C4—N3118.31 (15)C13—C14—C9121.58 (18)
C4—C5—C6118.42 (15)C13—C14—H14119.2
C4—C5—H5120.8C9—C14—H14119.2
C6—C5—H5120.8O1—C15—H15A109.5
C5—C6—C1120.92 (16)O1—C15—H15B109.5
C5—C6—H6119.5H15A—C15—H15B109.5
C1—C6—H6119.5O1—C15—H15C109.5
N1—C7—C1119.88 (16)H15A—C15—H15C109.5
N1—C7—H7120.1H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.91 (1)1.94 (2)2.644 (2)133 (2)
C3—H3···O2i0.932.503.260 (2)140
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H13N3O4
Mr299.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.1843 (2), 11.3718 (3), 13.0519 (2)
β (°) 121.792 (2)
V3)1410.96 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
8270, 3048, 1964
Rint0.026
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.138, 1.02
No. of reflections3048
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.29

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.908 (9)1.940 (16)2.644 (2)133.0 (15)
C3—H3···O2i0.932.503.260 (2)140
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Financial support of this work was provided by the Research Foundation of Liaoning Province (grant No. 2008470).

References

First citation Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citation Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citation Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citation Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citation Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citation Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds