organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Ethyl-4-hydr­­oxy-9-aza­tri­cyclo­[7.4.1.02,7]tetra­deca-2,4,6-trien-8-one

aDepartment of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, People's Republic of China, and bNPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, People's Republic of China
*Correspondence e-mail: zbqiu@shmu.edu.cn

(Received 23 September 2009; accepted 26 September 2009; online 7 November 2009)

In the mol­ecule of the title compound, C15H19NO2, the six-membered dihydro­pyridinone ring assumes a screw-boat conformation. In the crystal structure, mol­ecules are linked via O—H⋯O hydrogen bonding between hydr­oxy and carbonyl groups, forming supra­molecular chains along the a axis.

Related literature

For the synthesis and bioactivity of novel bis-(−)-nor-meptazinols, see Xie et al. (2008[Xie, Q., Wang, H., Xia, Z., Lu, M., Zhang, W., Wang, X., Fu, W., Tang, Y., Sheng, W., Li, W., Zhou, W., Zhu, X., Qiu, Z. & Chen, H. (2008). J. Med. Chem. 51, 2027-2036.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19NO2

  • Mr = 245.31

  • Orthorhombic, P 21 21 21

  • a = 8.298 (1) Å

  • b = 9.9817 (12) Å

  • c = 14.7324 (18) Å

  • V = 1220.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.37 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 6713 measured reflections

  • 1397 independent reflections

  • 1280 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.091

  • S = 1.06

  • 1397 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.92 2.710 (2) 162
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconisin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconisin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In previous study, our group has reported the synthesis and characterization of novel bis-(-)-nor-meptazinols that inhibit both acetylcholinesterase and butyrylcholinesterase as well as retarding Aβ aggregation (Xie et al., 2008). The title compound (I), was produced serendipitously whilst preparating of (-)-Nor-meptazinol (II), which is the intermediate of bis-(-)-nor-meptazinols. The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The six-membered dihydropyridinone ring assumes a screw-boat conformation. The crystal structure is stabilized by intermolecular O—H···O hydrogen bonding (Table 1 and Fig. 2).

Related literature top

For the synthesis and bioactivity of novel bis-(-)-nor-meptazinols, see Xie et al. (2008).

Experimental top

A white powder (I) was obtained as a by-product of the reaction between (-)-N-carboethoxy-nor-meptazinol and 50% H2SO4 (Fig. 3). Single crystals suitable for crystallographic analysis were obtained by slow evaporation of an methanol solution. [α]D = -60.8° (c 0.332, MeOH).

Refinement top

All H atoms were positioned geometrically and refined as riding (C—H = 0.93–0.97 Å, O—H = 0.82 Å), with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). In the absence of significant anomalous scattering, Friedel opposites were merged and the absolute structure is not determined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular hydrogen bond is shown as a dashed line.
[Figure 3] Fig. 3. The formation of the title compound.
1-Ethyl-4-hydroxy-9-azatricyclo[7.4.1.02,7]tetradeca-2,4,6-trien-8-one top
Crystal data top
C15H19NO2F(000) = 528
Mr = 245.31Dx = 1.335 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2536 reflections
a = 8.298 (1) Åθ = 2.5–26.4°
b = 9.9817 (12) ŵ = 0.09 mm1
c = 14.7324 (18) ÅT = 293 K
V = 1220.3 (3) Å3Prismatic, colourless
Z = 40.37 × 0.23 × 0.22 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1280 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
ϕ and ω scansh = 1010
6713 measured reflectionsk = 1212
1397 independent reflectionsl = 1118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0557P)2]
where P = (Fo2 + 2Fc2)/3
1397 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C15H19NO2V = 1220.3 (3) Å3
Mr = 245.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.298 (1) ŵ = 0.09 mm1
b = 9.9817 (12) ÅT = 293 K
c = 14.7324 (18) Å0.37 × 0.23 × 0.22 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1280 reflections with I > 2σ(I)
6713 measured reflectionsRint = 0.054
1397 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
1397 reflectionsΔρmin = 0.20 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.0502 (2)0.76044 (17)0.90237 (11)0.0315 (4)
O11.16080 (18)0.96697 (17)0.91934 (11)0.0429 (4)
O20.4251 (2)1.11984 (16)0.94981 (13)0.0507 (5)
H20.35571.06860.93070.076*
C11.0402 (2)0.8931 (2)0.91820 (13)0.0301 (5)
C20.8763 (2)0.9473 (2)0.93043 (13)0.0285 (5)
C30.8531 (3)1.0689 (2)0.97449 (13)0.0328 (5)
H30.94101.11261.00010.039*
C40.7027 (3)1.1258 (2)0.98083 (14)0.0357 (5)
H40.68831.20611.01180.043*
C50.5729 (3)1.0620 (2)0.94053 (15)0.0336 (5)
C60.5946 (3)0.9430 (2)0.89339 (14)0.0310 (5)
H60.50720.90310.86460.037*
C70.7454 (2)0.8827 (2)0.88863 (12)0.0262 (4)
C80.7732 (2)0.7468 (2)0.84288 (13)0.0279 (4)
C90.9025 (3)0.67983 (19)0.90089 (14)0.0312 (5)
H9A0.86270.66870.96230.037*
H9B0.92630.59170.87660.037*
C101.1831 (3)0.7095 (2)0.84858 (15)0.0416 (6)
H10A1.21520.62220.87110.050*
H10B1.27470.76940.85370.050*
C111.1318 (3)0.6983 (2)0.74892 (15)0.0431 (6)
H11A1.22610.71010.71080.052*
H11B1.09050.60870.73820.052*
C121.0037 (3)0.7998 (2)0.72030 (14)0.0386 (6)
H12A1.01210.81330.65530.046*
H12B1.02770.88470.74940.046*
C130.8296 (3)0.7620 (2)0.74266 (13)0.0336 (5)
H13A0.80740.67770.71240.040*
H13B0.76090.82880.71460.040*
C140.6173 (3)0.6630 (2)0.84401 (15)0.0351 (5)
H14A0.56640.67410.90280.042*
H14B0.54440.69930.79880.042*
C150.6367 (3)0.5130 (2)0.82599 (18)0.0477 (6)
H15A0.69320.50000.76980.072*
H15B0.53230.47190.82230.072*
H15C0.69680.47290.87460.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0219 (9)0.0378 (9)0.0348 (9)0.0014 (8)0.0012 (7)0.0003 (8)
O10.0258 (8)0.0495 (9)0.0534 (9)0.0093 (7)0.0018 (7)0.0064 (8)
O20.0298 (9)0.0380 (9)0.0842 (13)0.0030 (8)0.0012 (9)0.0190 (9)
C10.0256 (11)0.0373 (11)0.0273 (10)0.0054 (9)0.0036 (9)0.0018 (9)
C20.0254 (11)0.0343 (11)0.0259 (9)0.0029 (9)0.0007 (8)0.0007 (8)
C30.0286 (11)0.0367 (11)0.0330 (10)0.0075 (10)0.0013 (9)0.0048 (9)
C40.0375 (13)0.0308 (11)0.0387 (11)0.0019 (10)0.0035 (10)0.0071 (9)
C50.0287 (11)0.0301 (10)0.0421 (12)0.0003 (10)0.0040 (9)0.0020 (9)
C60.0243 (11)0.0315 (10)0.0371 (11)0.0044 (9)0.0026 (9)0.0034 (9)
C70.0247 (11)0.0311 (10)0.0229 (9)0.0037 (9)0.0012 (8)0.0012 (8)
C80.0239 (11)0.0322 (10)0.0276 (9)0.0013 (9)0.0003 (8)0.0035 (8)
C90.0294 (11)0.0303 (10)0.0338 (11)0.0018 (9)0.0003 (9)0.0007 (9)
C100.0241 (12)0.0475 (13)0.0532 (14)0.0042 (10)0.0015 (10)0.0066 (11)
C110.0361 (14)0.0462 (12)0.0470 (13)0.0007 (11)0.0124 (11)0.0097 (11)
C120.0425 (14)0.0433 (12)0.0302 (10)0.0039 (12)0.0068 (10)0.0011 (9)
C130.0328 (12)0.0406 (11)0.0274 (10)0.0005 (10)0.0011 (9)0.0042 (9)
C140.0271 (12)0.0391 (11)0.0390 (11)0.0039 (10)0.0015 (10)0.0078 (9)
C150.0402 (15)0.0392 (12)0.0637 (15)0.0090 (11)0.0056 (12)0.0131 (11)
Geometric parameters (Å, º) top
N1—C11.347 (3)C9—H9A0.9700
N1—C101.451 (3)C9—H9B0.9700
N1—C91.466 (3)C10—C111.533 (3)
O1—C11.243 (2)C10—H10A0.9700
O2—C51.362 (3)C10—H10B0.9700
O2—H20.8200C11—C121.528 (3)
C1—C21.475 (3)C11—H11A0.9700
C2—C31.390 (3)C11—H11B0.9700
C2—C71.406 (3)C12—C131.529 (3)
C3—C41.375 (3)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.385 (3)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.387 (3)C14—C151.529 (3)
C6—C71.391 (3)C14—H14A0.9700
C6—H60.9300C14—H14B0.9700
C7—C81.532 (3)C15—H15A0.9600
C8—C91.526 (3)C15—H15B0.9600
C8—C141.541 (3)C15—H15C0.9600
C8—C131.556 (3)
C1—N1—C10119.04 (19)N1—C10—C11109.72 (18)
C1—N1—C9119.42 (17)N1—C10—H10A109.7
C10—N1—C9115.80 (16)C11—C10—H10A109.7
C5—O2—H2109.5N1—C10—H10B109.7
O1—C1—N1122.43 (19)C11—C10—H10B109.7
O1—C1—C2121.54 (18)H10A—C10—H10B108.2
N1—C1—C2115.98 (18)C12—C11—C10114.14 (17)
C3—C2—C7119.91 (19)C12—C11—H11A108.7
C3—C2—C1120.34 (18)C10—C11—H11A108.7
C7—C2—C1119.38 (17)C12—C11—H11B108.7
C4—C3—C2121.2 (2)C10—C11—H11B108.7
C4—C3—H3119.4H11A—C11—H11B107.6
C2—C3—H3119.4C11—C12—C13115.73 (18)
C3—C4—C5119.17 (18)C11—C12—H12A108.3
C3—C4—H4120.4C13—C12—H12A108.3
C5—C4—H4120.4C11—C12—H12B108.3
O2—C5—C4117.53 (18)C13—C12—H12B108.3
O2—C5—C6122.03 (19)H12A—C12—H12B107.4
C4—C5—C6120.4 (2)C12—C13—C8120.83 (17)
C5—C6—C7120.88 (19)C12—C13—H13A107.1
C5—C6—H6119.6C8—C13—H13A107.1
C7—C6—H6119.6C12—C13—H13B107.1
C6—C7—C2118.32 (17)C8—C13—H13B107.1
C6—C7—C8122.77 (18)H13A—C13—H13B106.8
C2—C7—C8118.88 (18)C15—C14—C8116.17 (18)
C9—C8—C7104.31 (15)C15—C14—H14A108.2
C9—C8—C14110.29 (16)C8—C14—H14A108.2
C7—C8—C14110.45 (16)C15—C14—H14B108.2
C9—C8—C13111.28 (17)C8—C14—H14B108.2
C7—C8—C13112.08 (17)H14A—C14—H14B107.4
C14—C8—C13108.41 (16)C14—C15—H15A109.5
N1—C9—C8110.83 (15)C14—C15—H15B109.5
N1—C9—H9A109.5H15A—C15—H15B109.5
C8—C9—H9A109.5C14—C15—H15C109.5
N1—C9—H9B109.5H15A—C15—H15C109.5
C8—C9—H9B109.5H15B—C15—H15C109.5
H9A—C9—H9B108.1
C10—N1—C1—O127.0 (3)C2—C7—C8—C933.5 (2)
C9—N1—C1—O1179.22 (17)C6—C7—C8—C1425.7 (2)
C10—N1—C1—C2150.53 (17)C2—C7—C8—C14152.04 (18)
C9—N1—C1—C21.7 (3)C6—C7—C8—C1395.3 (2)
O1—C1—C2—C323.0 (3)C2—C7—C8—C1387.0 (2)
N1—C1—C2—C3159.45 (18)C1—N1—C9—C847.4 (2)
O1—C1—C2—C7150.1 (2)C10—N1—C9—C8105.69 (19)
N1—C1—C2—C727.5 (3)C7—C8—C9—N159.9 (2)
C7—C2—C3—C42.2 (3)C14—C8—C9—N1178.47 (15)
C1—C2—C3—C4175.27 (19)C13—C8—C9—N161.2 (2)
C2—C3—C4—C51.6 (3)C1—N1—C10—C1194.0 (2)
C3—C4—C5—O2178.7 (2)C9—N1—C10—C1159.2 (2)
C3—C4—C5—C60.8 (3)N1—C10—C11—C1229.3 (3)
O2—C5—C6—C7176.9 (2)C10—C11—C12—C1382.8 (2)
C4—C5—C6—C72.6 (3)C11—C12—C13—C863.9 (3)
C5—C6—C7—C21.9 (3)C9—C8—C13—C1239.0 (3)
C5—C6—C7—C8175.79 (18)C7—C8—C13—C1277.3 (2)
C3—C2—C7—C60.5 (3)C14—C8—C13—C12160.48 (18)
C1—C2—C7—C6173.55 (19)C9—C8—C14—C1548.4 (3)
C3—C2—C7—C8178.25 (17)C7—C8—C14—C15163.21 (19)
C1—C2—C7—C88.6 (3)C13—C8—C14—C1573.6 (2)
C6—C7—C8—C9144.15 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.922.710 (2)162
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H19NO2
Mr245.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.298 (1), 9.9817 (12), 14.7324 (18)
V3)1220.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6713, 1397, 1280
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.091, 1.06
No. of reflections1397
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.922.710 (2)162.3
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work is funded in part by the National Natural Science Foundation of China (grant 30801435).

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconisin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Q., Wang, H., Xia, Z., Lu, M., Zhang, W., Wang, X., Fu, W., Tang, Y., Sheng, W., Li, W., Zhou, W., Zhu, X., Qiu, Z. & Chen, H. (2008). J. Med. Chem. 51, 2027–2036.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds