organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(Ethene-1,2-diyl)dipyridinium bis­­[4-(2-carb­oxy­benzo­yl)benzoate]

aCollege of Mechanical & Material Engineering, Functional Materials Research Institute, China Three Gorges University, Yichang 443002, People's Republic of China, and bLanzhou Institute of Biological Products, Lanzhou 730046, People's Republic of China
*Correspondence e-mail: lidongsheng1@126.com

(Received 14 October 2009; accepted 14 November 2009; online 25 November 2009)

In the crystal structure of the title compound, C12H12N22+·2C15H9O5, the cation has site symmetry [\overline{1}] with the mid-point of C=C bond located on an inversion center. The two benzene rings of the anion are oriented at a dihedral angle 85.87 (6)°. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the cations and anions into supra­molecular double chains, which are further connected into a three-dimensional network through inter­molecular C—H⋯O and ππ stacking between parallel pyridine rings [centroid–centroid distance = 3.4413 (12)Å] and between parallel benzene rings [centroid–centroid distance = 3.6116 (14)Å].

Related literature

For hydrogen bonding and ππ stacking in supra­molecular systems, see: Desiraju (2000[Desiraju, G.-R. (2000). J. Chem. Soc. Dalton Trans. pp. 3745-3751.]); Ma et al. (2006[Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165-o1166.]); Dong et al. (2008[Dong, W.-W., Li, D.-S., Zhao, J., Tang, L. & Hou, X.-Y. (2008). Acta Cryst. E64, o2252.]); Huang & Qian (2005[Huang, W. & Qian, H.-F. (2005). Acta Cryst. E61, o2050-o2052.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N22+·2C15H9O5

  • Mr = 722.68

  • Triclinic, [P \overline 1]

  • a = 7.1335 (13) Å

  • b = 9.4558 (17) Å

  • c = 13.206 (2) Å

  • α = 81.641 (2)°

  • β = 79.986 (2)°

  • γ = 71.260 (2)°

  • V = 826.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.29 × 0.14 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.994

  • 6357 measured reflections

  • 3055 independent reflections

  • 2212 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.115

  • S = 1.01

  • 3055 reflections

  • 250 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.924 (17) 1.654 (17) 2.577 (2) 176 (2)
O5—H5⋯O2ii 0.91 (2) 1.72 (2) 2.629 (2) 175 (2)
C1—H1⋯O3iii 0.93 2.38 3.209 (3) 149
C5—H5A⋯O2i 0.93 2.46 3.144 (3) 130
C6—H6⋯O4iv 0.93 2.36 3.256 (2) 163
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+2; (iv) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Crystal structure formation depends on many factors such as temperature, solvent, nature of ligands and metals among many others, hydrogen bonding is one of the dominant factors due to the fact that they are relatively strong, directional, and able to act in concert with each other. Organic supramolecular systems have been well documented in the literature( Desiraju, 2000; Ma et al., 2006; Dong et al.., 2008; Huang et al., 2005). We attempted to synthesize a ZnIIcomplex with the mixed ligand in hydrothermal synthesis conditions. However the title organic salt was obtained, its structure is reported here.

The asymmetric unit comprises one 4-(2-carboxybenzoyl)benzoate anion and half of diprotonated 4,4'-ethylenebis(pyridinium) cation (Fig 1). The dihedral angle between the two benzene rings of the anion is 85.87 (6)°, while the COOH(O4—C21—O5) group is co-planar with the phenyl ring and the deprotonated carboxylate COO(O1—C7—O2) group is slightly twisted with an angle of 31.93 (11)°. Intermolecular O—H···O and N—H···O hydrogen bonding links the ions into the supra-molecular double chains (Fig. 2). Furthermore, the double chains are stabilized by several distinct weak interactions which result in a three-dimensional supramolecular network: (a) π-π aromatic stacking between parallel pyridine rings [centroids distance = 3.4413 (12) Å]; (b) π-π aromatic stacking between parallel C15-benzene rings [centroids distance 3.6116 (14) Å]; (c) weak C—H···O hydrogen bonding (Table 1).

Related literature top

For hydrogen bonding and ππ stacking in supramolecular systems, see: Desiraju (2000); Ma et al. (2006); Dong et al. (2008); Huang & Qian (2005).

Experimental top

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. Zn(NO3)2.6H2O (0.0297 g, 0.1 mmol), 4,4'-ethylene-bis(pyridine) (0.0091 g, 0.05 mmol), 4-(2-carboxybenzoyl)benzoic acid (0.0270 g, 0.1 mmol) and water (15 ml) were placed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for three days, and then cooled slowly to 298 K, at which time colourless crystals were obtained. The crystal used for data collection was obtained directly from the reaction mixture on cooling without further re-crystallization.

Refinement top

The H atoms bonded to C atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) value equal to 1.2Ueq(C). The H atoms bonded to O and N atoms were located in a difference Fourier map and refined with O—H distance restraint of 0.90±0.02 Å and N—H distance restraint of 0.93±0.02 Å, Uiso(H) = 1.5Ueq(O,N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with the atom-numbering scheme showing displacement ellipsoids at the 50% probability level [symmetry code: (i) -x, 1-y, 2-z].
[Figure 2] Fig. 2. One-dimensional double chain connected by hydrogen bonds in the title complex.
[Figure 3] Fig. 3. Supramolecular network formed by hydrogen-bonding and π-π stacking ineractions.
4,4'-(Ethene-1,2-diyl)dipyridinium bis[4-(2-carboxybenzoyl)benzoate]] top
Crystal data top
C12H12N22+·2C15H9O5Z = 1
Mr = 722.68F(000) = 376
Triclinic, P1Dx = 1.451 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1335 (13) ÅCell parameters from 6357 reflections
b = 9.4558 (17) Åθ = 2.7–25.5°
c = 13.206 (2) ŵ = 0.11 mm1
α = 81.641 (2)°T = 293 K
β = 79.986 (2)°Prism, colorless
γ = 71.260 (2)°0.29 × 0.14 × 0.06 mm
V = 826.9 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
3055 independent reflections
Radiation source: fine-focus sealed tube2212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.983, Tmax = 0.994k = 1111
6357 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1979P]
where P = (Fo2 + 2Fc2)/3
3055 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H12N22+·2C15H9O5γ = 71.260 (2)°
Mr = 722.68V = 826.9 (3) Å3
Triclinic, P1Z = 1
a = 7.1335 (13) ÅMo Kα radiation
b = 9.4558 (17) ŵ = 0.11 mm1
c = 13.206 (2) ÅT = 293 K
α = 81.641 (2)°0.29 × 0.14 × 0.06 mm
β = 79.986 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3055 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2212 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.994Rint = 0.025
6357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.20 e Å3
3055 reflectionsΔρmin = 0.22 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3708 (3)0.7481 (2)1.06116 (15)0.0344 (5)
H10.39410.79671.11180.041*
C20.2259 (3)0.6772 (2)1.08332 (15)0.0336 (5)
H20.15390.67651.14920.040*
C30.1860 (3)0.6061 (2)1.00748 (14)0.0304 (4)
C40.3013 (3)0.6087 (2)0.91086 (15)0.0340 (5)
H40.28030.56250.85810.041*
C50.4460 (3)0.6796 (2)0.89372 (15)0.0344 (5)
H5A0.52290.67990.82920.041*
C60.0296 (3)0.5327 (2)1.03236 (15)0.0349 (5)
H60.03400.53201.10010.042*
C70.1807 (3)0.1223 (2)0.82078 (16)0.0358 (5)
C80.0337 (3)0.0357 (2)0.78080 (15)0.0312 (4)
C90.0829 (3)0.0123 (2)0.84717 (15)0.0347 (5)
H90.07020.05050.91610.042*
C100.2171 (3)0.0670 (2)0.81169 (15)0.0346 (5)
H100.29760.07870.85620.042*
C110.2329 (3)0.1293 (2)0.70999 (15)0.0308 (4)
C120.1136 (3)0.1081 (2)0.64353 (15)0.0348 (5)
H120.12100.15080.57550.042*
C130.0158 (3)0.0235 (2)0.67888 (16)0.0372 (5)
H130.09100.00660.63360.045*
C140.3742 (3)0.2184 (2)0.67376 (15)0.0344 (5)
C150.3715 (3)0.3001 (2)0.56687 (14)0.0308 (4)
C160.4987 (3)0.2238 (2)0.48697 (16)0.0392 (5)
H160.57560.12470.50040.047*
C170.5124 (3)0.2935 (2)0.38745 (16)0.0407 (5)
H170.59660.24090.33430.049*
C180.4011 (3)0.4412 (2)0.36712 (15)0.0388 (5)
H180.41150.48850.30040.047*
C190.2744 (3)0.5186 (2)0.44582 (14)0.0333 (5)
H190.20000.61810.43180.040*
C200.2565 (3)0.4497 (2)0.54578 (14)0.0306 (4)
C210.1207 (3)0.5313 (2)0.63185 (16)0.0351 (5)
N10.4789 (2)0.74805 (18)0.96750 (13)0.0323 (4)
H1A0.575 (2)0.797 (2)0.9512 (16)0.048*
O10.2576 (2)0.11219 (16)0.91455 (11)0.0438 (4)
O20.2190 (2)0.19672 (18)0.76131 (12)0.0511 (4)
O30.5013 (2)0.21679 (19)0.72479 (12)0.0567 (5)
O40.1007 (3)0.47083 (18)0.71866 (11)0.0581 (5)
O50.0256 (2)0.67303 (16)0.60536 (11)0.0434 (4)
H50.053 (3)0.715 (3)0.6618 (13)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (11)0.0335 (11)0.0339 (11)0.0137 (9)0.0039 (9)0.0075 (9)
C20.0361 (11)0.0372 (11)0.0282 (11)0.0141 (9)0.0014 (8)0.0052 (9)
C30.0339 (11)0.0290 (10)0.0304 (11)0.0128 (8)0.0044 (8)0.0019 (8)
C40.0387 (11)0.0370 (11)0.0306 (11)0.0172 (9)0.0019 (9)0.0069 (9)
C50.0389 (11)0.0386 (11)0.0276 (11)0.0166 (9)0.0011 (9)0.0045 (9)
C60.0382 (11)0.0430 (12)0.0274 (11)0.0212 (9)0.0008 (8)0.0017 (9)
C70.0335 (11)0.0321 (11)0.0429 (13)0.0137 (9)0.0023 (9)0.0080 (9)
C80.0278 (10)0.0265 (10)0.0377 (11)0.0080 (8)0.0014 (8)0.0059 (8)
C90.0391 (11)0.0334 (11)0.0302 (11)0.0133 (9)0.0009 (9)0.0017 (9)
C100.0362 (11)0.0371 (11)0.0328 (11)0.0134 (9)0.0081 (9)0.0014 (9)
C110.0311 (10)0.0290 (10)0.0324 (11)0.0108 (8)0.0033 (8)0.0005 (8)
C120.0380 (11)0.0372 (11)0.0312 (11)0.0158 (9)0.0046 (9)0.0002 (9)
C130.0370 (11)0.0426 (12)0.0367 (12)0.0172 (10)0.0068 (9)0.0047 (9)
C140.0370 (11)0.0361 (11)0.0334 (11)0.0157 (9)0.0055 (9)0.0021 (9)
C150.0334 (10)0.0349 (11)0.0300 (11)0.0193 (9)0.0035 (8)0.0024 (8)
C160.0413 (12)0.0354 (11)0.0429 (13)0.0138 (10)0.0047 (10)0.0064 (10)
C170.0422 (12)0.0490 (13)0.0324 (12)0.0173 (10)0.0045 (9)0.0120 (10)
C180.0471 (12)0.0481 (13)0.0261 (11)0.0237 (11)0.0008 (9)0.0024 (9)
C190.0371 (11)0.0365 (11)0.0306 (11)0.0181 (9)0.0029 (9)0.0027 (9)
C200.0303 (10)0.0372 (11)0.0298 (10)0.0179 (9)0.0019 (8)0.0051 (8)
C210.0390 (11)0.0384 (12)0.0344 (12)0.0208 (10)0.0029 (9)0.0059 (9)
N10.0332 (9)0.0313 (9)0.0361 (9)0.0170 (7)0.0019 (7)0.0020 (7)
O10.0517 (9)0.0507 (9)0.0365 (8)0.0315 (8)0.0090 (7)0.0094 (7)
O20.0518 (10)0.0595 (10)0.0518 (10)0.0337 (8)0.0162 (7)0.0255 (8)
O30.0625 (11)0.0779 (12)0.0471 (10)0.0449 (10)0.0238 (8)0.0134 (8)
O40.0851 (13)0.0520 (10)0.0288 (9)0.0186 (9)0.0082 (8)0.0017 (7)
O50.0459 (9)0.0397 (9)0.0406 (9)0.0121 (7)0.0067 (7)0.0084 (7)
Geometric parameters (Å, º) top
C1—N11.339 (2)C11—C121.398 (3)
C1—C21.374 (3)C11—C141.488 (3)
C1—H10.9300C12—C131.388 (3)
C2—C31.398 (3)C12—H120.9300
C2—H20.9300C13—H130.9300
C3—C41.394 (3)C14—O31.215 (2)
C3—C61.462 (3)C14—C151.508 (3)
C4—C51.373 (3)C15—C161.387 (3)
C4—H40.9300C15—C201.404 (3)
C5—N11.336 (2)C16—C171.384 (3)
C5—H5A0.9300C16—H160.9300
C6—C6i1.318 (4)C17—C181.380 (3)
C6—H60.9300C17—H170.9300
C7—O21.244 (2)C18—C191.379 (3)
C7—O11.268 (2)C18—H180.9300
C7—C81.511 (3)C19—C201.388 (3)
C8—C131.381 (3)C19—H190.9300
C8—C91.392 (3)C20—C211.489 (3)
C9—C101.379 (3)C21—O41.211 (2)
C9—H90.9300C21—O51.320 (2)
C10—C111.387 (3)N1—H1A0.924 (17)
C10—H100.9300O5—H50.91 (2)
N1—C1—C2120.83 (18)C13—C12—H12119.9
N1—C1—H1119.6C11—C12—H12119.9
C2—C1—H1119.6C8—C13—C12120.46 (19)
C1—C2—C3120.38 (18)C8—C13—H13119.8
C1—C2—H2119.8C12—C13—H13119.8
C3—C2—H2119.8O3—C14—C11121.52 (18)
C4—C3—C2117.10 (17)O3—C14—C15119.46 (17)
C4—C3—C6123.40 (17)C11—C14—C15118.76 (17)
C2—C3—C6119.50 (17)C16—C15—C20119.20 (18)
C5—C4—C3119.87 (18)C16—C15—C14117.15 (18)
C5—C4—H4120.1C20—C15—C14123.56 (17)
C3—C4—H4120.1C17—C16—C15120.7 (2)
N1—C5—C4121.57 (18)C17—C16—H16119.7
N1—C5—H5A119.2C15—C16—H16119.7
C4—C5—H5A119.2C18—C17—C16120.02 (19)
C6i—C6—C3126.0 (2)C18—C17—H17120.0
C6i—C6—H6117.0C16—C17—H17120.0
C3—C6—H6117.0C19—C18—C17119.91 (19)
O2—C7—O1124.59 (18)C19—C18—H18120.0
O2—C7—C8119.16 (18)C17—C18—H18120.0
O1—C7—C8116.25 (18)C18—C19—C20120.85 (19)
C13—C8—C9119.21 (18)C18—C19—H19119.6
C13—C8—C7120.68 (18)C20—C19—H19119.6
C9—C8—C7120.10 (18)C19—C20—C15119.32 (18)
C10—C9—C8120.65 (18)C19—C20—C21121.69 (18)
C10—C9—H9119.7C15—C20—C21118.99 (17)
C8—C9—H9119.7O4—C21—O5123.48 (19)
C9—C10—C11120.41 (19)O4—C21—C20122.0 (2)
C9—C10—H10119.8O5—C21—C20114.51 (17)
C11—C10—H10119.8C5—N1—C1120.23 (17)
C10—C11—C12119.07 (17)C5—N1—H1A118.1 (14)
C10—C11—C14119.72 (17)C1—N1—H1A121.6 (14)
C12—C11—C14121.21 (17)C21—O5—H5109.1 (16)
C13—C12—C11120.14 (18)
N1—C1—C2—C31.3 (3)C10—C11—C14—C15172.89 (18)
C1—C2—C3—C41.1 (3)C12—C11—C14—C156.5 (3)
C1—C2—C3—C6179.33 (18)O3—C14—C15—C1683.1 (3)
C2—C3—C4—C50.2 (3)C11—C14—C15—C1691.1 (2)
C6—C3—C4—C5179.75 (19)O3—C14—C15—C2093.4 (2)
C3—C4—C5—N10.6 (3)C11—C14—C15—C2092.4 (2)
C4—C3—C6—C6i3.6 (4)C20—C15—C16—C170.1 (3)
C2—C3—C6—C6i176.9 (3)C14—C15—C16—C17176.80 (18)
O2—C7—C8—C1331.7 (3)C15—C16—C17—C181.0 (3)
O1—C7—C8—C13147.9 (2)C16—C17—C18—C190.8 (3)
O2—C7—C8—C9149.50 (19)C17—C18—C19—C200.2 (3)
O1—C7—C8—C930.9 (3)C18—C19—C20—C151.0 (3)
C13—C8—C9—C101.0 (3)C18—C19—C20—C21179.95 (18)
C7—C8—C9—C10179.80 (18)C16—C15—C20—C190.8 (3)
C8—C9—C10—C112.3 (3)C14—C15—C20—C19175.59 (17)
C9—C10—C11—C121.2 (3)C16—C15—C20—C21179.81 (17)
C9—C10—C11—C14178.19 (18)C14—C15—C20—C213.4 (3)
C10—C11—C12—C131.1 (3)C19—C20—C21—O4178.18 (19)
C14—C11—C12—C13179.44 (18)C15—C20—C21—O42.9 (3)
C9—C8—C13—C121.4 (3)C19—C20—C21—O51.8 (3)
C7—C8—C13—C12177.40 (18)C15—C20—C21—O5177.15 (16)
C11—C12—C13—C82.5 (3)C4—C5—N1—C10.4 (3)
C10—C11—C14—O313.1 (3)C2—C1—N1—C50.5 (3)
C12—C11—C14—O3167.5 (2)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.92 (2)1.65 (2)2.577 (2)176 (2)
O5—H5···O2iii0.91 (2)1.72 (2)2.629 (2)175 (2)
C1—H1···O3iv0.932.383.209 (3)149
C5—H5A···O2ii0.932.463.144 (3)130
C6—H6···O4i0.932.363.256 (2)163
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H12N22+·2C15H9O5
Mr722.68
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.1335 (13), 9.4558 (17), 13.206 (2)
α, β, γ (°)81.641 (2), 79.986 (2), 71.260 (2)
V3)826.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.29 × 0.14 × 0.06
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
6357, 3055, 2212
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.01
No. of reflections3055
No. of parameters250
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.924 (17)1.654 (17)2.577 (2)176 (2)
O5—H5···O2ii0.91 (2)1.72 (2)2.629 (2)175 (2)
C1—H1···O3iii0.932.383.209 (3)149
C5—H5A···O2i0.932.463.144 (3)130
C6—H6···O4iv0.932.363.256 (2)163
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+2; (iv) x, y+1, z+2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (20773104), the Program for New Century Excellent Talents in China's Universities (NCET-06-0891), the Key Project of the Ministry of Education of China (208143), the Important Project of Hubei Provincial Education Office (Z20091301) and the Natural Science Foundation of Hubei Province of China (2008CDB030).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G.-R. (2000). J. Chem. Soc. Dalton Trans. pp. 3745–3751.  Web of Science CrossRef Google Scholar
First citationDong, W.-W., Li, D.-S., Zhao, J., Tang, L. & Hou, X.-Y. (2008). Acta Cryst. E64, o2252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, W. & Qian, H.-F. (2005). Acta Cryst. E61, o2050–o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165–o1166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds