organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-1,3-bis­­(3,4-methyl­ene­dioxy­benz­yl)-2-(3,4-methyl­ene­dioxy­phen­yl)imidazolidine

aSchool of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bSchool of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, cSchool of Pharmacy, Inner Mongolia Medical College, Hohhot 010059, People's Republic of China, and dCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: spyang69320@yahoo.cn

(Received 15 October 2009; accepted 5 November 2009; online 11 November 2009)

In the title compound, C27H26N2O6, the imidazolidine ring adopts an envelope conformation. The methyl group on the imidazolidine ring is disordered over two positions with occupancies of 0.517 (11) and 0.483 (11), and the 3,4-methyl­enedioxy­phenyl at the 3-position of imidazolidine ring is also disordered over two positions with occupancies of 0.60 (2) and 0.40 (2).

Related literature

For biological activity of imidazolidine derivatives, see: Sasho et al. (1994[Sasho, S., Obase, H., Ichikawa, S., Yoshizaki, R., Ishii, A. & Shuto, K. (1994). Bioorg. Med. Chem. Lett. 4, 615-618.]). For related compounds, see: Xia et al. (2007[Xia, H.-T., Liu, Y.-F., Wang, D.-Q. & Li, B. (2007). Acta Cryst. E63, o3666.]); Iskenderov et al. (2009[Iskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123-o2124.]).

[Scheme 1]

Experimental

Crystal data
  • C27H26N2O6

  • Mr = 474.50

  • Orthorhombic, P b c n

  • a = 11.586 (2) Å

  • b = 12.575 (3) Å

  • c = 32.749 (7) Å

  • V = 4771.3 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen,Germany.]) Tmin = 0.955, Tmax = 0.972

  • 19793 measured reflections

  • 4200 independent reflections

  • 2896 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.215

  • S = 1.07

  • 4200 reflections

  • 392 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some imidazolidine derivatives exhibit a broad spectrum of biological activities (Sasho et al., 1994). The crystal structures of some imidazolidine compounds have reported (Xia et al., 2007; Iskenderov et al., 2009). Here, we report the crystal structure of a new imidazolidine compound (I).

In the title compound (I) (Fig.1), the imidazolidine ring adopts an envelope conformation. The methyl on the imidazolidine ring is disordered over two positions, leading to positional disorder of the two methylene H atoms of the ring, with occupancies of 0.517 (11) and 0.483 (11).

The 3, 4-methylenedioxyphenyl at the 3-position on imidazolidine ring is disordered over two positions, with occupancies of 0.60 (2) and 0.40 (2). The dihedral angles between the planes of the two disordered benzyl rings C13—C18 and C13'-C16'/C17/C18 is 26 (7)°, and the planes of the two disordered methylenedioxy rings C17/O3/C19/O4/C16 and C17/O3'/C19'/O4'/C16' are 21 (1)°.

In the imidazolidine ring, the C—N bond lengths range from 1.435 (4) to 1.542 (4) Å, which are close the average single C—N bond lengths of 1.48 Å.

Related literature top

For biological activity of imidazolidine derivatives, see: Sasho et al. (1994). For related compounds, see: Xia et al. (2007); Iskenderov et al. (2009).

Experimental top

The reaction mixture containing 3,4-methylenedioxybenzaldehyde (3.0 g, 20 mmol) and propane-1,2-diamine (2.8 g, 20 mmol) was refluxed for about 4 h in ethanol (30 ml), then the borohydride sodium (1.52 g, 40 mmol) was added and stirred for 4 h (at 333–343 K), and the reaction mixture was cooled and the crude products were filtered off, washed with water and ethanol, then dried. Colourless crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from ethanol (m.p. 478–480 K).

Refinement top

Methyl group on imidazolidine ring is disorder, and the 3,4-methylenedioxyphenyl at the 3-position on imidazolidine ring is also disorder. The site occupancies of the methyl group were refined to 0.517 (11) and 0.483 (11), and the site occupancies of the 3,4-methylenedioxyphenyl were refined to 0.60 (2) and 0.40 (2).

H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 Å (methyl), and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the disorder components and the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
4-Methyl-1,3-bis(3,4-methylenedioxybenzyl)-2-(3,4- methylenedioxyphenyl)imidazolidine top
Crystal data top
C27H26N2O6Dx = 1.321 Mg m3
Mr = 474.50Melting point: 478 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4200 reflections
a = 11.586 (2) Åθ = 1.2–25.0°
b = 12.575 (3) ŵ = 0.09 mm1
c = 32.749 (7) ÅT = 298 K
V = 4771.3 (17) Å3Block, yellow
Z = 80.50 × 0.40 × 0.30 mm
F(000) = 2000
Data collection top
Bruker SMART CCD area-detector
diffractometer
4200 independent reflections
Radiation source: fine-focus sealed tube2896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1312
Tmin = 0.955, Tmax = 0.972k = 1014
19793 measured reflectionsl = 3538
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1256P)2 + 1.4629P]
where P = (Fo2 + 2Fc2)/3
4200 reflections(Δ/σ)max < 0.001
392 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C27H26N2O6V = 4771.3 (17) Å3
Mr = 474.50Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 11.586 (2) ŵ = 0.09 mm1
b = 12.575 (3) ÅT = 298 K
c = 32.749 (7) Å0.50 × 0.40 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4200 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2896 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.972Rint = 0.055
19793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.215H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
4200 reflectionsΔρmin = 0.43 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.54794 (18)0.07206 (19)0.38949 (7)0.0516 (6)
N20.65433 (19)0.1297 (2)0.33661 (7)0.0560 (6)
O10.57024 (18)0.60432 (18)0.42342 (7)0.0681 (6)
O20.48948 (18)0.53485 (17)0.36519 (6)0.0675 (6)
O30.6527 (14)0.3038 (15)0.1842 (4)0.103 (4)0.60 (2)
O40.7802 (7)0.1936 (14)0.1522 (2)0.111 (4)0.60 (2)
O3'0.671 (2)0.346 (2)0.1934 (7)0.108 (6)0.40 (2)
O4'0.8033 (11)0.2699 (19)0.1568 (3)0.105 (5)0.40 (2)
O50.18733 (17)0.21867 (19)0.47927 (7)0.0725 (7)
O60.15747 (17)0.03598 (19)0.45358 (8)0.0790 (7)
C10.6424 (2)0.1424 (2)0.38092 (8)0.0505 (7)
H10.71200.11460.39410.061*
C20.6315 (4)0.0114 (3)0.32760 (12)0.0877 (12)
H20.70180.03040.32320.105*0.517 (11)
H2A0.59120.00320.30180.105*0.483 (11)
H2B0.70350.02780.32630.105*0.483 (11)
C30.5571 (3)0.0288 (3)0.36290 (12)0.0814 (11)
H3A0.59460.08640.37750.098*0.517 (11)
H3B0.48190.05230.35350.098*0.517 (11)
H30.58010.09520.37630.098*0.483 (11)
C40.5461 (10)0.0063 (10)0.2920 (3)0.137 (5)0.517 (11)
H4A0.52920.06670.28580.206*0.517 (11)
H4B0.57930.04000.26850.206*0.517 (11)
H4C0.47610.04230.29940.206*0.517 (11)
C4'0.4468 (10)0.0296 (10)0.3372 (3)0.137 (5)0.483 (11)
H4'10.44190.03520.32180.206*0.483 (11)
H4'20.38090.03540.35480.206*0.483 (11)
H4'30.44850.08900.31880.206*0.483 (11)
C50.6280 (2)0.2673 (2)0.39295 (8)0.0452 (7)
C60.5621 (2)0.3386 (2)0.36982 (8)0.0485 (7)
H60.52680.31560.34590.058*
C70.5486 (2)0.4488 (2)0.38306 (8)0.0491 (7)
C80.5974 (2)0.4909 (2)0.41752 (8)0.0491 (7)
C90.6641 (2)0.4241 (3)0.44031 (9)0.0559 (8)
H90.70010.44890.46380.067*
C100.6793 (2)0.3109 (2)0.42730 (8)0.0504 (7)
H100.72580.26720.44320.060*
C110.4924 (3)0.6290 (3)0.39238 (10)0.0693 (9)
H11A0.51780.69150.37750.083*
H11B0.41640.64290.40360.083*
C120.7609 (3)0.1641 (3)0.32329 (10)0.0744 (10)
H12A0.81880.11320.33200.089*
H12B0.77830.23140.33640.089*
C130.771 (16)0.18 (2)0.276 (5)0.078 (13)0.60 (2)
C140.8314 (9)0.0937 (14)0.2552 (4)0.090 (3)0.60 (2)
H140.86190.03640.26950.108*0.60 (2)
C150.8420 (10)0.1013 (14)0.2130 (3)0.099 (4)0.60 (2)
H150.88950.05480.19870.119*0.60 (2)
C160.7852 (14)0.1733 (16)0.1943 (5)0.093 (4)0.60 (2)
C13'0.77 (2)0.17 (3)0.280 (8)0.08 (2)0.40 (2)
C14'0.8675 (17)0.150 (2)0.2597 (5)0.090 (5)0.40 (2)
H14'0.92770.12010.27460.108*0.40 (2)
C15'0.8866 (16)0.171 (2)0.2187 (4)0.101 (6)0.40 (2)
H15'0.95280.14660.20570.121*0.40 (2)
C16'0.804 (2)0.231 (2)0.1972 (7)0.093 (7)0.40 (2)
C170.7175 (3)0.2566 (4)0.21498 (12)0.0983 (14)
C180.7029 (3)0.2470 (4)0.25621 (10)0.0825 (11)
H180.64750.28670.27000.099*
C190.7006 (9)0.2752 (16)0.1463 (3)0.106 (4)0.60 (2)
H19A0.64000.25160.12790.128*0.60 (2)
H19B0.73840.33620.13410.128*0.60 (2)
C19'0.7263 (14)0.356 (2)0.1554 (5)0.106 (6)0.40 (2)
H19C0.76690.42360.15310.128*0.40 (2)
H19D0.67210.34970.13290.128*0.40 (2)
C200.5440 (2)0.0408 (3)0.43233 (9)0.0621 (8)
H20A0.53670.10450.44880.075*
H20B0.61720.00780.43930.075*
C210.4498 (2)0.0335 (2)0.44382 (8)0.0499 (7)
C220.3463 (2)0.0101 (2)0.44082 (9)0.0559 (7)
H220.33150.07870.43160.067*
C230.2654 (2)0.0602 (2)0.45320 (8)0.0513 (7)
C240.2828 (2)0.1680 (2)0.46835 (8)0.0487 (7)
C250.3817 (2)0.2133 (2)0.47131 (9)0.0574 (8)
H250.39480.28240.48040.069*
C260.4654 (2)0.1425 (2)0.45883 (9)0.0558 (8)
H260.54120.16670.46010.067*
C270.1083 (3)0.1372 (3)0.46922 (11)0.0717 (9)
H27A0.06320.12120.49340.086*
H27B0.05550.16480.44880.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0434 (12)0.0635 (15)0.0478 (13)0.0051 (11)0.0046 (10)0.0013 (11)
N20.0473 (12)0.0744 (17)0.0464 (13)0.0051 (11)0.0106 (10)0.0002 (11)
O10.0632 (12)0.0731 (15)0.0681 (14)0.0019 (11)0.0056 (10)0.0107 (11)
O20.0709 (13)0.0721 (15)0.0594 (13)0.0163 (11)0.0148 (10)0.0034 (11)
O30.082 (5)0.177 (12)0.051 (5)0.026 (6)0.014 (4)0.002 (5)
O40.086 (4)0.186 (10)0.061 (3)0.029 (5)0.013 (3)0.001 (4)
O3'0.087 (9)0.178 (19)0.059 (10)0.017 (10)0.007 (7)0.016 (9)
O4'0.089 (6)0.170 (14)0.056 (5)0.019 (8)0.022 (4)0.018 (7)
O50.0477 (11)0.0909 (17)0.0790 (16)0.0153 (11)0.0004 (10)0.0278 (12)
O60.0392 (11)0.0932 (18)0.1048 (19)0.0071 (11)0.0014 (11)0.0294 (14)
C10.0401 (13)0.0655 (19)0.0459 (15)0.0011 (12)0.0079 (11)0.0053 (13)
C20.106 (3)0.083 (3)0.074 (2)0.003 (2)0.025 (2)0.011 (2)
C30.078 (2)0.084 (3)0.082 (2)0.0179 (19)0.0173 (19)0.016 (2)
C40.142 (9)0.179 (11)0.092 (7)0.063 (8)0.002 (6)0.025 (7)
C4'0.142 (10)0.179 (12)0.092 (7)0.063 (8)0.002 (6)0.025 (7)
C50.0328 (12)0.0638 (18)0.0391 (14)0.0030 (12)0.0048 (10)0.0073 (12)
C60.0421 (13)0.0663 (18)0.0369 (13)0.0011 (13)0.0017 (11)0.0014 (13)
C70.0412 (13)0.0646 (19)0.0416 (14)0.0006 (13)0.0015 (11)0.0098 (13)
C80.0388 (13)0.0606 (18)0.0479 (15)0.0056 (12)0.0043 (12)0.0011 (13)
C90.0409 (13)0.081 (2)0.0454 (15)0.0108 (14)0.0040 (12)0.0026 (14)
C100.0322 (12)0.076 (2)0.0426 (15)0.0022 (12)0.0012 (11)0.0099 (14)
C110.072 (2)0.069 (2)0.067 (2)0.0129 (17)0.0043 (17)0.0012 (17)
C120.0470 (16)0.122 (3)0.055 (2)0.0127 (17)0.0109 (15)0.0133 (18)
C130.052 (9)0.13 (3)0.050 (15)0.020 (14)0.022 (9)0.018 (14)
C140.063 (5)0.137 (10)0.071 (5)0.021 (5)0.023 (4)0.012 (6)
C150.070 (5)0.160 (11)0.068 (5)0.030 (6)0.020 (4)0.000 (6)
C160.065 (6)0.159 (13)0.054 (5)0.015 (8)0.021 (4)0.007 (8)
C13'0.06 (4)0.13 (6)0.06 (6)0.02 (3)0.01 (4)0.01 (5)
C14'0.062 (9)0.144 (16)0.063 (7)0.033 (9)0.014 (6)0.011 (9)
C15'0.075 (9)0.162 (16)0.067 (7)0.026 (10)0.020 (6)0.012 (9)
C16'0.071 (10)0.16 (2)0.051 (8)0.022 (12)0.020 (7)0.019 (12)
C170.058 (2)0.173 (4)0.064 (2)0.023 (2)0.0014 (18)0.030 (3)
C180.0564 (19)0.136 (3)0.055 (2)0.022 (2)0.0081 (16)0.007 (2)
C190.084 (6)0.175 (13)0.060 (5)0.021 (7)0.007 (4)0.015 (6)
C19'0.084 (8)0.175 (18)0.060 (7)0.021 (10)0.007 (6)0.015 (9)
C200.0460 (15)0.087 (2)0.0538 (17)0.0097 (14)0.0003 (13)0.0143 (16)
C210.0422 (14)0.0650 (19)0.0426 (15)0.0049 (13)0.0007 (11)0.0061 (13)
C220.0508 (16)0.0562 (18)0.0608 (18)0.0002 (13)0.0001 (14)0.0141 (14)
C230.0396 (14)0.0665 (19)0.0479 (16)0.0013 (13)0.0008 (12)0.0061 (13)
C240.0442 (14)0.0637 (18)0.0381 (14)0.0058 (13)0.0001 (11)0.0066 (12)
C250.0535 (16)0.0630 (19)0.0558 (17)0.0047 (14)0.0033 (13)0.0163 (14)
C260.0448 (14)0.072 (2)0.0512 (16)0.0047 (13)0.0032 (12)0.0107 (14)
C270.0446 (16)0.101 (3)0.070 (2)0.0090 (17)0.0053 (15)0.0166 (19)
Geometric parameters (Å, º) top
N1—C11.435 (3)C8—C91.363 (4)
N1—C201.458 (4)C9—C101.497 (4)
N1—C31.542 (4)C9—H90.9300
N2—C121.379 (4)C10—H100.9300
N2—C11.467 (4)C11—H11A0.9700
N2—C21.541 (4)C11—H11B0.9700
O1—C111.395 (4)C12—C13'1.4 (3)
O1—C81.474 (4)C12—C131.57 (17)
O2—C71.408 (3)C12—H12A0.9700
O2—C111.482 (4)C12—H12B0.9700
O3—C171.389 (17)C13—C181.3 (2)
O3—C191.409 (17)C13—C141.4 (3)
O4—C191.394 (13)C14—C151.392 (14)
O4—C161.402 (18)C14—H140.9300
O3'—C19'1.40 (3)C15—C161.277 (19)
O3'—C171.43 (3)C15—H150.9300
O4'—C19'1.407 (19)C16—C171.474 (18)
O4'—C16'1.41 (3)C13'—C14'1.4 (3)
O5—C241.325 (3)C13'—C181.4 (4)
O5—C271.413 (4)C14'—C15'1.39 (2)
O6—C231.288 (3)C14'—H14'0.9300
O6—C271.486 (4)C15'—C16'1.41 (3)
C1—C51.628 (4)C15'—H15'0.9300
C1—H10.9800C16'—C171.20 (2)
C2—C31.528 (5)C17—C181.367 (5)
C2—C41.532 (11)C18—H180.9300
C2—H20.9800C19—H19A0.9700
C2—H2A0.9700C19—H19B0.9700
C2—H2B0.9700C19'—H19C0.9700
C3—C4'1.531 (12)C19'—H19D0.9700
C3—H3A0.9700C20—C211.485 (4)
C3—H3B0.9700C20—H20A0.9700
C3—H30.9800C20—H20B0.9700
C4—H4A0.9600C21—C221.322 (4)
C4—H4B0.9600C21—C261.467 (4)
C4—H4C0.9600C22—C231.351 (4)
C4'—H4'10.9600C22—H220.9300
C4'—H4'20.9600C23—C241.458 (4)
C4'—H4'30.9600C24—C251.284 (4)
C5—C101.385 (4)C25—C261.379 (4)
C5—C61.400 (4)C25—H250.9300
C6—C71.461 (4)C26—H260.9300
C6—H60.9300C27—H27A0.9700
C7—C81.369 (4)C27—H27B0.9700
C1—N1—C20112.2 (2)N2—C12—H12B108.6
C1—N1—C3110.1 (2)C13'—C12—H12B113.0
C20—N1—C3108.9 (3)C13—C12—H12B108.6
C12—N2—C1111.3 (2)H12A—C12—H12B107.6
C12—N2—C2113.3 (3)C18—C13—C14122 (10)
C1—N2—C2106.1 (2)C18—C13—C12121 (10)
C11—O1—C8105.0 (2)C14—C13—C12114 (10)
C7—O2—C11110.7 (2)C15—C14—C13117 (8)
C17—O3—C19108.5 (12)C15—C14—H14121.4
C19—O4—C16107.3 (9)C13—C14—H14121.4
C19'—O3'—C17110.1 (18)C16—C15—C14118.7 (11)
C19'—O4'—C16'107.5 (13)C16—C15—H15120.6
C24—O5—C2797.4 (2)C14—C15—H15120.6
C23—O6—C27100.0 (2)C15—C16—O4128.5 (13)
N1—C1—N2101.5 (2)C15—C16—C17123.9 (13)
N1—C1—C5118.0 (2)O4—C16—C17107.5 (12)
N2—C1—C5110.7 (2)C14'—C13'—C12123 (10)
N1—C1—H1108.8C14'—C13'—C18107 (10)
N2—C1—H1108.8C12—C13'—C18123 (10)
C5—C1—H1108.8C13'—C14'—C15'125 (10)
C3—C2—C4101.4 (5)C13'—C14'—H14'117.7
C3—C2—N2105.8 (3)C15'—C14'—H14'117.7
C4—C2—N2107.3 (6)C14'—C15'—C16'118.5 (14)
C3—C2—H2113.8C14'—C15'—H15'120.7
C4—C2—H2113.8C16'—C15'—H15'120.7
N2—C2—H2113.8C17—C16'—C15'118.0 (19)
C3—C2—H2A110.6C17—C16'—O4'111 (2)
N2—C2—H2A110.6C15'—C16'—O4'130.9 (19)
H2—C2—H2A102.5C16'—C17—C18124.0 (13)
C3—C2—H2B110.6C16'—C17—O3102.3 (14)
C4—C2—H2B120.0C18—C17—O3133.4 (7)
N2—C2—H2B110.6C16'—C17—O3'106.3 (16)
H2A—C2—H2B108.7C18—C17—O3'120.8 (10)
C2—C3—C4'93.2 (5)C18—C17—C16117.3 (8)
C2—C3—N1101.2 (3)O3—C17—C16104.9 (9)
C4'—C3—N1105.0 (6)O3'—C17—C16121.9 (12)
C2—C3—H3A111.5C13—C18—C17118 (8)
C4'—C3—H3A129.8C17—C18—C13'122 (10)
N1—C3—H3A111.5C13—C18—H18121.2
C2—C3—H3B111.5C17—C18—H18121.2
N1—C3—H3B111.5C13'—C18—H18118.0
H3A—C3—H3B109.3O4—C19—O3109.0 (10)
C2—C3—H3117.9O4—C19—H19A109.9
C4'—C3—H3117.9O3—C19—H19A109.9
N1—C3—H3117.9O4—C19—H19B109.9
C2—C4—H4A109.5O3—C19—H19B109.9
C2—C4—H4B109.5H19A—C19—H19B108.3
C2—C4—H4C109.5O3'—C19'—O4'100.6 (15)
C3—C4'—H4'1109.5O3'—C19'—H19C111.6
C3—C4'—H4'2109.5O4'—C19'—H19C111.6
H4'1—C4'—H4'2109.5O3'—C19'—H19D111.6
C3—C4'—H4'3109.5O4'—C19'—H19D111.6
H4'1—C4'—H4'3109.5H19C—C19'—H19D109.4
H4'2—C4'—H4'3109.5N1—C20—C21115.9 (2)
C10—C5—C6114.8 (3)N1—C20—H20A108.3
C10—C5—C1122.3 (2)C21—C20—H20A108.3
C6—C5—C1122.8 (2)N1—C20—H20B108.3
C5—C6—C7120.4 (2)C21—C20—H20B108.3
C5—C6—H6119.8H20A—C20—H20B107.4
C7—C6—H6119.8C22—C21—C26121.6 (3)
C8—C7—O2104.3 (2)C22—C21—C20112.8 (3)
C8—C7—C6124.5 (2)C26—C21—C20125.5 (2)
O2—C7—C6131.2 (2)C21—C22—C23109.6 (3)
C9—C8—C7116.6 (3)C21—C22—H22125.2
C9—C8—O1130.2 (3)C23—C22—H22125.2
C7—C8—O1113.2 (2)O6—C23—C22121.5 (3)
C8—C9—C10119.7 (2)O6—C23—C24110.5 (2)
C8—C9—H9120.1C22—C23—C24128.0 (2)
C10—C9—H9120.1C25—C24—O5120.8 (3)
C5—C10—C9123.9 (2)C25—C24—C23124.1 (3)
C5—C10—H10118.1O5—C24—C23115.1 (2)
C9—C10—H10118.1C24—C25—C26108.6 (3)
O1—C11—O2105.9 (2)C24—C25—H25125.7
O1—C11—H11A110.5C26—C25—H25125.7
O2—C11—H11A110.5C25—C26—C21128.0 (3)
O1—C11—H11B110.5C25—C26—H26116.0
O2—C11—H11B110.5C21—C26—H26116.0
H11A—C11—H11B108.7O5—C27—O6116.9 (2)
N2—C12—C13'111 (10)O5—C27—H27A108.1
N2—C12—C13115 (7)O6—C27—H27A108.1
N2—C12—H12A108.6O5—C27—H27B108.1
C13'—C12—H12A106.0O6—C27—H27B108.1
C13—C12—H12A108.6H27A—C27—H27B107.3

Experimental details

Crystal data
Chemical formulaC27H26N2O6
Mr474.50
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)11.586 (2), 12.575 (3), 32.749 (7)
V3)4771.3 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
19793, 4200, 2896
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.215, 1.07
No. of reflections4200
No. of parameters392
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.43

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

 

References

First citationIskenderov, T. S., Golenya, I. A., Gumienna-Kontecka, E., Fritsky, I. O. & Prisyazhnaya, E. V. (2009). Acta Cryst. E65, o2123–o2124.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSasho, S., Obase, H., Ichikawa, S., Yoshizaki, R., Ishii, A. & Shuto, K. (1994). Bioorg. Med. Chem. Lett. 4, 615–618.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen,Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXia, H.-T., Liu, Y.-F., Wang, D.-Q. & Li, B. (2007). Acta Cryst. E63, o3666.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds