metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Formato-κ2O,O′)bis­­(1,10-phenanthroline-κ2N,N′)manganese(II) perchlorate

aCollege of Mechanical & Material Engineering, Functional Materials Research Institute, China Three Gorges University, Yichang 443002, People's Republic of China, and bLanzhou Institute of Biological Products, Lanzhou 730046, People's Republic of China
*Correspondence e-mail: junzhao08@gmail.com

(Received 15 October 2009; accepted 18 November 2009; online 21 November 2009)

In the title complex, [Mn(CHO2)(C12H8N2)2]ClO4, the MnII cation is chelated by two 1,10-phenanthroline (phen) ligands and one formate anion in a distorted MnN4O2 octa­hedral geometry. The two phen planes are oriented at a dihedral angle of 57.48 (11)°. The perchlorate anion links with the Mn complex cation via weak C—H⋯O hydrogen bonding.

Related literature

For general background to manganese(II)–phen complexes and related structures, see: Zhu et al. (2008[Zhu, L., Huang, J., Han, S.-Y. & An, Z. (2008). Acta Cryst. E64, m683.]); Hao et al. (2008[Hao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052.]); Zhang (2004[Zhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411-1445.]); Xu & Xu (2005[Xu, T.-G. & Xu, D.-J. (2005). J. Coord. Chem. 58, 437-442.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(CHO2)(C12H8N2)2]ClO4

  • Mr = 559.82

  • Monoclinic, P 21 /c

  • a = 13.0752 (10) Å

  • b = 10.9532 (9) Å

  • c = 17.4811 (14) Å

  • β = 111.4950 (10)°

  • V = 2329.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.16 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.803, Tmax = 0.889

  • 22324 measured reflections

  • 5752 independent reflections

  • 4237 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.176

  • S = 1.07

  • 5752 reflections

  • 334 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1 2.165 (4)
Mn1—N2 2.119 (4)
Mn1—N3 2.165 (4)
Mn1—N4 2.154 (4)
Mn1—O1 2.292 (4)
Mn1—O2 2.218 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.57 3.468 (7) 164
C5—H5⋯O4 0.93 2.43 3.355 (9) 174
C6—H6⋯O1ii 0.93 2.42 3.254 (7) 149
C18—H18⋯O2iii 0.93 2.54 3.250 (6) 134
Symmetry codes: (i) -x, -y+2, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,10-Phenanthroline (phen), which is the parent of an important class of chelating agents, has been widely used in the construction of supramolecular architectures. Some manganese(II)-phen complexes have been synthesized and reported (Zhu et al.,2008; Hao et al., 2008; Zhang et al., 2004; Xu et al., 2005). As a continuation of these studies, we herein report the crystal structure of the title complex (I).

As illustrated in Fig. 1, MnII ion is in a distorted octahedral geometry formed by two phen ligands and one HCOO- anion (Table 1). The dihedral angle of two phen ligands of the complex is 57.48 (11)°. In the crystal structure the weak C—H···O hydrogen bonding links the complex into a one-dimensional chains (Fig. 2). The C2—H2···O1i (symmetry code: i -x,-y + 2,-z) hydrogen bond provides additional attractive forces between adjacent chains (Table 2). Furthermore aromatic π-π stacking between N2-pyridine and C18ii-benzene rings [symmetry code: (ii) x, 3/2-y, 1/2+z; centroids distance = 3.656 (3) Å] helps to form the two-dimensional supramolecular motif (Fig. 3).

Related literature top

For general background to manganese(II)–phen complexes and related structures, see: Zhu et al. (2008); Hao et al. (2008); Zhang et al. (2004); Xu & Xu (2005).

Experimental top

Mn(ClO4)2.6H2O (0.0331 g, 0.1 mmol), phen (0.0198 g, 0.1 mmol), formic acid (2 ml) and water (10 ml) were placed in a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for three days, and then cooled slowly to room temperature. Single crystals were obtained from the reaction mixture.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with the atom-numbering scheme showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. One-dimensional chain connected by C—H···O hydrogen bonds.
[Figure 3] Fig. 3. Supramolecular network formed by hydrogen-bonding and π-π stacking.
(Formato-κ2O,O')bis(1,10-phenanthroline-κ2N,N')manganese(II) perchlorate top
Crystal data top
[Mn(CHO2)(C12H8N2)2]ClO4F(000) = 1140
Mr = 559.82Dx = 1.596 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5752 reflections
a = 13.0752 (10) Åθ = 2.2–28.3°
b = 10.9532 (9) ŵ = 0.73 mm1
c = 17.4811 (14) ÅT = 293 K
β = 111.495 (1)°Prism, pink
V = 2329.4 (3) Å30.30 × 0.25 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
5752 independent reflections
Radiation source: fine-focus sealed tube4237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1712
Tmin = 0.803, Tmax = 0.889k = 1414
22324 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0272P)2 + 7.2414P]
where P = (Fo2 + 2Fc2)/3
5752 reflections(Δ/σ)max = 0.002
334 parametersΔρmax = 0.88 e Å3
2 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Mn(CHO2)(C12H8N2)2]ClO4V = 2329.4 (3) Å3
Mr = 559.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0752 (10) ŵ = 0.73 mm1
b = 10.9532 (9) ÅT = 293 K
c = 17.4811 (14) Å0.30 × 0.25 × 0.16 mm
β = 111.495 (1)°
Data collection top
Bruker SMART CCD
diffractometer
5752 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4237 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.889Rint = 0.057
22324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0792 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.07Δρmax = 0.88 e Å3
5752 reflectionsΔρmin = 0.65 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.28574 (5)0.75685 (6)0.09973 (4)0.03794 (18)
C120.1291 (4)0.7365 (4)0.1859 (3)0.0485 (11)
N30.4324 (3)0.7221 (3)0.0732 (2)0.0513 (10)
N40.2276 (3)0.6351 (4)0.0041 (2)0.0529 (10)
C70.2343 (4)0.6349 (4)0.3166 (3)0.0496 (11)
C230.3015 (4)0.6173 (4)0.0406 (3)0.0493 (11)
C110.2290 (4)0.6786 (4)0.2398 (3)0.0442 (10)
N20.3142 (3)0.6696 (4)0.2139 (2)0.0507 (10)
N10.1283 (3)0.7782 (4)0.1127 (2)0.0530 (10)
C240.4105 (4)0.6658 (4)0.0005 (3)0.0486 (11)
C60.1396 (5)0.6481 (5)0.3396 (3)0.0595 (13)
H60.14200.61680.38970.071*
C160.4886 (5)0.6533 (5)0.0370 (3)0.0582 (13)
C100.4052 (4)0.6172 (5)0.2638 (3)0.0610 (14)
H100.46410.60980.24630.073*
C80.3318 (5)0.5804 (5)0.3676 (3)0.0632 (14)
H80.33830.55010.41890.076*
C40.0416 (4)0.7523 (5)0.2128 (3)0.0540 (12)
C30.0515 (4)0.8147 (6)0.1588 (4)0.0683 (15)
H30.11170.82820.17390.082*
C20.0533 (5)0.8549 (6)0.0853 (4)0.0741 (17)
H20.11450.89570.04950.089*
C50.0484 (5)0.7044 (5)0.2905 (3)0.0617 (14)
H50.01120.71240.30710.074*
C190.2753 (5)0.5548 (5)0.1155 (3)0.0603 (14)
C150.5929 (5)0.7011 (5)0.0048 (4)0.0753 (18)
H150.64670.69640.01820.090*
C130.5328 (5)0.7650 (5)0.1118 (4)0.0645 (14)
H130.54870.80340.16230.077*
C220.1285 (5)0.5872 (5)0.0392 (4)0.0679 (15)
H220.07780.59830.01390.082*
C90.4173 (5)0.5725 (5)0.3409 (3)0.0673 (15)
H90.48330.53740.37420.081*
C170.4584 (6)0.5935 (5)0.1153 (4)0.0717 (17)
H170.50930.58730.14090.086*
C10.0378 (5)0.8345 (6)0.0640 (3)0.0686 (16)
H10.03530.86160.01300.082*
C200.1692 (6)0.5062 (5)0.1501 (4)0.0750 (18)
H200.14850.46330.19940.090*
C180.3560 (6)0.5459 (5)0.1523 (3)0.0735 (18)
H180.33810.50670.20280.088*
C140.6158 (5)0.7550 (6)0.0797 (4)0.0763 (17)
H140.68600.78460.10900.092*
C210.0962 (6)0.5213 (6)0.1121 (4)0.0781 (18)
H210.02600.48810.13440.094*
Cl10.21638 (13)0.81668 (17)0.34147 (10)0.0761 (5)
O20.3515 (3)0.9326 (3)0.1610 (2)0.0695 (10)
O10.2508 (3)0.9390 (4)0.0303 (2)0.0709 (11)
C250.3023 (5)0.9903 (5)0.0963 (3)0.0607 (13)
H25A0.30471.07520.09770.073*
O60.3243 (5)0.8154 (9)0.3342 (5)0.193 (4)
O30.1958 (7)0.8782 (9)0.2849 (6)0.243 (6)
O40.1710 (10)0.7089 (8)0.3465 (11)0.341 (10)
O50.1664 (12)0.856 (2)0.4119 (7)0.436 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0414 (4)0.0420 (3)0.0373 (3)0.0022 (3)0.0225 (3)0.0034 (3)
C120.048 (3)0.048 (3)0.049 (2)0.006 (2)0.018 (2)0.008 (2)
N30.054 (3)0.044 (2)0.059 (2)0.0012 (18)0.023 (2)0.0032 (18)
N40.055 (3)0.053 (2)0.053 (2)0.003 (2)0.022 (2)0.0008 (19)
C70.058 (3)0.042 (2)0.048 (2)0.002 (2)0.020 (2)0.002 (2)
C230.066 (3)0.039 (2)0.048 (2)0.005 (2)0.027 (2)0.0051 (19)
C110.050 (3)0.040 (2)0.044 (2)0.004 (2)0.019 (2)0.0073 (18)
N20.046 (2)0.052 (2)0.055 (2)0.0070 (19)0.0199 (19)0.0019 (19)
N10.051 (2)0.060 (3)0.047 (2)0.0073 (19)0.0167 (19)0.0043 (18)
C240.064 (3)0.039 (2)0.051 (3)0.008 (2)0.030 (2)0.006 (2)
C60.070 (4)0.061 (3)0.053 (3)0.009 (3)0.029 (3)0.001 (2)
C160.071 (4)0.046 (3)0.072 (3)0.011 (3)0.043 (3)0.012 (2)
C100.051 (3)0.059 (3)0.072 (3)0.012 (3)0.022 (3)0.004 (3)
C80.075 (4)0.055 (3)0.054 (3)0.007 (3)0.017 (3)0.005 (2)
C40.045 (3)0.059 (3)0.060 (3)0.003 (2)0.021 (2)0.010 (2)
C30.045 (3)0.084 (4)0.074 (4)0.003 (3)0.019 (3)0.013 (3)
C20.051 (3)0.092 (5)0.068 (4)0.022 (3)0.010 (3)0.001 (3)
C50.057 (3)0.073 (4)0.065 (3)0.009 (3)0.034 (3)0.009 (3)
C190.086 (4)0.046 (3)0.049 (3)0.010 (3)0.024 (3)0.001 (2)
C150.074 (4)0.060 (3)0.113 (5)0.011 (3)0.060 (4)0.015 (4)
C130.056 (3)0.057 (3)0.078 (4)0.004 (3)0.023 (3)0.007 (3)
C220.062 (4)0.064 (3)0.076 (4)0.010 (3)0.023 (3)0.009 (3)
C90.061 (4)0.066 (3)0.063 (3)0.019 (3)0.009 (3)0.009 (3)
C170.102 (5)0.063 (3)0.072 (4)0.016 (3)0.058 (4)0.010 (3)
C10.065 (4)0.083 (4)0.054 (3)0.019 (3)0.017 (3)0.011 (3)
C200.098 (5)0.054 (3)0.058 (3)0.005 (3)0.012 (3)0.013 (3)
C180.120 (6)0.057 (3)0.054 (3)0.021 (4)0.045 (4)0.006 (3)
C140.054 (3)0.069 (4)0.109 (5)0.002 (3)0.035 (3)0.001 (4)
C210.079 (5)0.067 (4)0.078 (4)0.014 (3)0.017 (4)0.014 (3)
Cl10.0668 (10)0.0934 (11)0.0773 (10)0.0128 (9)0.0371 (8)0.0185 (9)
O20.080 (3)0.062 (2)0.062 (2)0.0046 (19)0.021 (2)0.0075 (17)
O10.088 (3)0.066 (2)0.058 (2)0.009 (2)0.026 (2)0.0048 (17)
C250.067 (4)0.062 (3)0.056 (3)0.005 (3)0.026 (3)0.001 (3)
O60.095 (5)0.290 (10)0.239 (8)0.044 (6)0.111 (6)0.058 (8)
O30.218 (9)0.309 (11)0.290 (10)0.137 (8)0.198 (9)0.221 (9)
O40.315 (13)0.132 (7)0.77 (3)0.072 (8)0.431 (18)0.115 (12)
O50.305 (17)0.73 (4)0.158 (9)0.032 (19)0.046 (10)0.180 (15)
Geometric parameters (Å, º) top
Mn1—N12.165 (4)C4—C51.428 (7)
Mn1—N22.119 (4)C3—C21.349 (8)
Mn1—N32.165 (4)C3—H30.9300
Mn1—N42.154 (4)C2—C11.390 (8)
Mn1—O12.292 (4)C2—H20.9300
Mn1—O22.218 (4)C5—H50.9300
C12—N11.354 (6)C19—C201.400 (8)
C12—C41.398 (6)C19—C181.426 (8)
C12—C111.447 (6)C15—C141.366 (9)
N3—C131.323 (7)C15—H150.9300
N3—C241.362 (6)C13—C141.397 (8)
N4—C221.323 (7)C13—H130.9300
N4—C231.354 (6)C22—C211.388 (8)
C7—C111.402 (6)C22—H220.9300
C7—C81.394 (7)C9—H90.9300
C7—C61.443 (7)C17—C181.360 (9)
C23—C191.404 (6)C17—H170.9300
C23—C241.439 (7)C1—H10.9300
C11—N21.352 (6)C20—C211.358 (9)
N2—C101.321 (6)C20—H200.9300
N1—C11.329 (6)C18—H180.9300
C24—C161.396 (7)C14—H140.9300
C6—C51.338 (7)C21—H210.9300
C6—H60.9300Cl1—O51.240 (10)
C16—C151.392 (8)Cl1—O31.304 (6)
C16—C171.436 (8)Cl1—O41.310 (8)
C10—C91.387 (7)Cl1—O61.369 (6)
C10—H100.9300O2—C251.249 (6)
C8—C91.363 (8)O1—C251.237 (6)
C8—H80.9300C25—H25A0.9300
C4—C31.414 (7)
N2—Mn1—N4113.60 (16)C12—C4—C5120.1 (5)
N2—Mn1—N178.20 (15)C3—C4—C5123.4 (5)
N4—Mn1—N195.73 (16)C2—C3—C4120.2 (5)
N2—Mn1—N3105.00 (15)C2—C3—H3119.9
N4—Mn1—N377.15 (15)C4—C3—H3119.9
N1—Mn1—N3172.86 (15)C3—C2—C1119.0 (5)
N2—Mn1—O291.90 (15)C3—C2—H2120.5
N4—Mn1—O2154.06 (15)C1—C2—H2120.5
N1—Mn1—O294.05 (16)C6—C5—C4120.7 (5)
N3—Mn1—O292.23 (15)C6—C5—H5119.7
N2—Mn1—O1145.38 (14)C4—C5—H5119.7
N4—Mn1—O198.79 (15)C23—C19—C20117.0 (5)
N1—Mn1—O187.04 (15)C23—C19—C18119.1 (6)
N3—Mn1—O193.45 (15)C20—C19—C18124.0 (5)
O2—Mn1—O157.78 (14)C16—C15—C14119.6 (6)
N1—C12—C4123.5 (5)C16—C15—H15120.2
N1—C12—C11117.1 (4)C14—C15—H15120.2
C4—C12—C11119.3 (4)N3—C13—C14122.6 (6)
C13—N3—C24118.0 (5)N3—C13—H13118.7
C13—N3—Mn1128.3 (4)C14—C13—H13118.7
C24—N3—Mn1112.8 (3)N4—C22—C21123.3 (6)
C22—N4—C23118.1 (5)N4—C22—H22118.3
C22—N4—Mn1128.3 (4)C21—C22—H22118.3
C23—N4—Mn1113.2 (3)C8—C9—C10119.7 (5)
C11—C7—C8118.2 (5)C8—C9—H9120.2
C11—C7—C6119.1 (5)C10—C9—H9120.2
C8—C7—C6122.7 (5)C18—C17—C16120.5 (5)
N4—C23—C19122.5 (5)C18—C17—H17119.7
N4—C23—C24117.9 (4)C16—C17—H17119.7
C19—C23—C24119.6 (5)N1—C1—C2123.5 (5)
N2—C11—C7122.6 (4)N1—C1—H1118.2
N2—C11—C12118.1 (4)C2—C1—H1118.2
C7—C11—C12119.3 (4)C21—C20—C19120.3 (5)
C10—N2—C11117.6 (4)C21—C20—H20119.8
C10—N2—Mn1128.5 (4)C19—C20—H20119.8
C11—N2—Mn1113.7 (3)C17—C18—C19121.4 (5)
C1—N1—C12117.3 (5)C17—C18—H18119.3
C1—N1—Mn1129.8 (4)C19—C18—H18119.3
C12—N1—Mn1112.6 (3)C15—C14—C13119.3 (6)
N3—C24—C16122.8 (5)C15—C14—H14120.3
N3—C24—C23117.1 (4)C13—C14—H14120.3
C16—C24—C23120.1 (5)C20—C21—C22118.8 (6)
C5—C6—C7121.4 (5)C20—C21—H21120.6
C5—C6—H6119.3C22—C21—H21120.6
C7—C6—H6119.3O5—Cl1—O3113.1 (12)
C15—C16—C24117.6 (5)O5—Cl1—O4100.6 (11)
C15—C16—C17123.1 (5)O3—Cl1—O4107.7 (6)
C24—C16—C17119.2 (6)O5—Cl1—O6104.3 (8)
N2—C10—C9123.3 (5)O3—Cl1—O6115.3 (5)
N2—C10—H10118.3O4—Cl1—O6115.0 (6)
C9—C10—H10118.3C25—O2—Mn191.2 (3)
C9—C8—C7118.7 (5)C25—O1—Mn188.2 (3)
C9—C8—H8120.7O1—C25—O2122.6 (5)
C7—C8—H8120.7O1—C25—H25A118.7
C12—C4—C3116.5 (5)O2—C25—H25A118.7
N2—Mn1—N3—C1368.4 (5)Mn1—N3—C24—C2311.8 (5)
N4—Mn1—N3—C13179.7 (5)N4—C23—C24—N32.5 (6)
N1—Mn1—N3—C13175.8 (11)C19—C23—C24—N3178.0 (4)
O2—Mn1—N3—C1324.2 (5)N4—C23—C24—C16177.9 (4)
O1—Mn1—N3—C1382.1 (5)C19—C23—C24—C161.6 (7)
N2—Mn1—N3—C24123.4 (3)C11—C7—C6—C52.1 (7)
N4—Mn1—N3—C2412.1 (3)C8—C7—C6—C5177.8 (5)
N1—Mn1—N3—C247.6 (14)N3—C24—C16—C150.0 (7)
O2—Mn1—N3—C24144.0 (3)C23—C24—C16—C15179.5 (4)
O1—Mn1—N3—C2486.1 (3)N3—C24—C16—C17179.5 (4)
N2—Mn1—N4—C2275.1 (5)C23—C24—C16—C171.0 (7)
N1—Mn1—N4—C224.5 (5)C11—N2—C10—C90.6 (8)
N3—Mn1—N4—C22176.0 (5)Mn1—N2—C10—C9173.9 (4)
O2—Mn1—N4—C22116.2 (5)C11—C7—C8—C90.2 (7)
O1—Mn1—N4—C2292.4 (5)C6—C7—C8—C9179.7 (5)
N2—Mn1—N4—C23111.8 (3)N1—C12—C4—C30.4 (7)
N1—Mn1—N4—C23168.6 (3)C11—C12—C4—C3177.0 (4)
N3—Mn1—N4—C2310.8 (3)N1—C12—C4—C5179.3 (5)
O2—Mn1—N4—C2357.0 (5)C11—C12—C4—C54.1 (7)
O1—Mn1—N4—C2380.7 (3)C12—C4—C3—C20.5 (8)
C22—N4—C23—C192.7 (7)C5—C4—C3—C2178.3 (6)
Mn1—N4—C23—C19171.2 (4)C4—C3—C2—C10.3 (9)
C22—N4—C23—C24177.8 (4)C7—C6—C5—C40.7 (8)
Mn1—N4—C23—C248.3 (5)C12—C4—C5—C62.5 (8)
C8—C7—C11—N20.1 (7)C3—C4—C5—C6178.7 (5)
C6—C7—C11—N2180.0 (4)N4—C23—C19—C202.6 (7)
C8—C7—C11—C12179.5 (4)C24—C23—C19—C20177.9 (5)
C6—C7—C11—C120.4 (7)N4—C23—C19—C18176.5 (4)
N1—C12—C11—N20.2 (6)C24—C23—C19—C183.0 (7)
C4—C12—C11—N2177.0 (4)C24—C16—C15—C141.6 (8)
N1—C12—C11—C7179.4 (4)C17—C16—C15—C14178.9 (5)
C4—C12—C11—C72.7 (7)C24—N3—C13—C140.2 (8)
C7—C11—N2—C100.1 (7)Mn1—N3—C13—C14167.4 (4)
C12—C11—N2—C10179.7 (4)C23—N4—C22—C210.9 (8)
C7—C11—N2—Mn1175.2 (3)Mn1—N4—C22—C21172.0 (4)
C12—C11—N2—Mn14.4 (5)C7—C8—C9—C100.7 (8)
N4—Mn1—N2—C1089.4 (5)N2—C10—C9—C80.9 (9)
N1—Mn1—N2—C10179.5 (5)C15—C16—C17—C18178.4 (5)
N3—Mn1—N2—C107.1 (5)C24—C16—C17—C182.1 (8)
O2—Mn1—N2—C1085.8 (4)C12—N1—C1—C21.7 (9)
O1—Mn1—N2—C10112.8 (5)Mn1—N1—C1—C2171.3 (5)
N4—Mn1—N2—C1196.0 (3)C3—C2—C1—N10.9 (10)
N1—Mn1—N2—C114.8 (3)C23—C19—C20—C210.7 (8)
N3—Mn1—N2—C11178.3 (3)C18—C19—C20—C21178.3 (6)
O2—Mn1—N2—C1188.9 (3)C16—C17—C18—C190.7 (9)
O1—Mn1—N2—C1161.9 (4)C23—C19—C18—C171.9 (8)
C4—C12—N1—C11.5 (7)C20—C19—C18—C17179.0 (6)
C11—C12—N1—C1178.2 (5)C16—C15—C14—C132.2 (9)
C4—C12—N1—Mn1172.7 (4)N3—C13—C14—C151.4 (9)
C11—C12—N1—Mn14.0 (5)C19—C20—C21—C220.9 (9)
N2—Mn1—N1—C1178.0 (5)N4—C22—C21—C200.9 (10)
N4—Mn1—N1—C169.1 (5)N2—Mn1—O2—C25159.4 (3)
N3—Mn1—N1—C164.7 (14)N4—Mn1—O2—C2530.9 (5)
O2—Mn1—N1—C186.9 (5)N1—Mn1—O2—C2581.1 (3)
O1—Mn1—N1—C129.5 (5)N3—Mn1—O2—C2595.5 (3)
N2—Mn1—N1—C124.7 (3)O1—Mn1—O2—C252.8 (3)
N4—Mn1—N1—C12117.7 (3)N2—Mn1—O1—C2529.6 (5)
N3—Mn1—N1—C12122.1 (12)N4—Mn1—O1—C25170.8 (3)
O2—Mn1—N1—C1286.4 (3)N1—Mn1—O1—C2593.8 (3)
O1—Mn1—N1—C12143.8 (3)N3—Mn1—O1—C2593.3 (3)
C13—N3—C24—C160.9 (7)O2—Mn1—O1—C252.9 (3)
Mn1—N3—C24—C16168.6 (4)Mn1—O1—C25—O25.1 (6)
C13—N3—C24—C23178.6 (4)Mn1—O2—C25—O15.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.573.468 (7)164
C5—H5···O40.932.433.355 (9)174
C6—H6···O1ii0.932.423.254 (7)149
C18—H18···O2iii0.932.543.250 (6)134
Symmetry codes: (i) x, y+2, z; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(CHO2)(C12H8N2)2]ClO4
Mr559.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.0752 (10), 10.9532 (9), 17.4811 (14)
β (°) 111.495 (1)
V3)2329.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.30 × 0.25 × 0.16
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.803, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
22324, 5752, 4237
Rint0.057
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.176, 1.07
No. of reflections5752
No. of parameters334
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.65

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—N12.165 (4)Mn1—N42.154 (4)
Mn1—N22.119 (4)Mn1—O12.292 (4)
Mn1—N32.165 (4)Mn1—O22.218 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.573.468 (7)163.8
C5—H5···O40.932.433.355 (9)173.5
C6—H6···O1ii0.932.423.254 (7)148.5
C18—H18···O2iii0.932.543.250 (6)133.5
Symmetry codes: (i) x, y+2, z; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (20773104), the Program for New Century Excellent Talents in China's Universities (NCET-06–0891), the Key Project of the Ministry of Education of China (208143), the Important Project of Hubei Provincial Education Office (Z20091301) and the Natural Science Foundation of Hubei Provinces of China (2008CDB030).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHao, X.-M., Gu, C.-S., Song, W.-D. & Liu, J.-W. (2008). Acta Cryst. E64, m1052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, T.-G. & Xu, D.-J. (2005). J. Coord. Chem. 58, 437–442.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, B.-S. (2004). Chin. J. Struct. Chem. 23, 1411–1445.  CAS Google Scholar
First citationZhu, L., Huang, J., Han, S.-Y. & An, Z. (2008). Acta Cryst. E64, m683.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds