organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis{3-[4-(di­methyl­amino)benzyl­­idene­amino]prop­yl}piperazine

aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bHuaiyin Institute of Technology, Huaian 223003, People's Republic of China, cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and dMaterials Chemistry Laboratory, Nanjing University of Science & Technology, Nanjing 210094, People's Republic of China
*Correspondence e-mail: xuruibo9125@163.com

(Received 16 October 2009; accepted 30 October 2009; online 4 November 2009)

The mol­ecule of the title compound, C28H42N6, has site symmetry [\overline{1}] with the centroid of the piperazine ring located on an inversion center. The piperazine ring adopts a chair conformation. The benzene ring and propyl­piperazine are on opposite sides of the C=N bond, showing an E configuration.

Related literature

For applications of Schiff base compounds, see: Basak et al. (2008[Basak, S., Sen, S., Marscher, C., Baumgartner, J., Batten, S. R., Turner, D. R. & Mitra, S. (2008). Polyhedron, 27, 1193-1200.]); Jiang et al. (2008[Jiang, G.-Q., Cai, J., Zhang, Y.-Q. & Zhang, Q.-J. (2008). Acta Cryst. E64, o1455.]); Xu et al. (2008[Xu, R.-B., Xu, X.-Y., Wang, M.-Y., Wang, D.-Q., Yin, T., Xu, G.-X., Yang, X.-J., Lu, L.-D., Wang, X. & Lei, Y.-J. (2008). J. Coord. Chem. 61, 3306-3313.]). For N,N′-disubstituted piperazine derivatives, see: Yogavel et al. (2003[Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, o83-o85.]). For related structures, see: Paital et al. (2009[Paital, A. R., Mandal, D., Huang, X., Li, J., Aromic, G. & Ray, D. (2009). Dalton Trans. pp. 1352-1362.]); Thirumurugan et al. (1998[Thirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Marappan, M. & Kandaswamy, M. (1998). Acta Cryst. C54, 644-645.]).

[Scheme 1]

Experimental

Crystal data
  • C28H42N6

  • Mr = 462.68

  • Monoclinic, P 21 /c

  • a = 17.599 (2) Å

  • b = 6.4146 (12) Å

  • c = 12.6643 (18) Å

  • β = 105.921 (3)°

  • V = 1374.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.15 × 0.09 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 6788 measured reflections

  • 2416 independent reflections

  • 961 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.095

  • wR(F2) = 0.298

  • S = 1.34

  • 2416 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their metal complexes have been of great interest for many years due to their fascinating structural features, attactive properties and potential applications in many fields (Basak et al., 2008; Jiang et al., 2008; Xu et al., 2008). While N,N'- disubstituted piperazines derivatives are antifilarial, antiamoebic and spermicidal agents (Yogavel et al., 2003), therefore, studies on Schiff bases and their complexes derived from N,N'- disubstituted piperazines are of importance. As part of our work, the title compound,(I), a new tetradentate Schiff base ligand, are synthesized in our group and its crystal structure is reported here.

The molecular structure of (I) with atom-numbering scheme is shown in Fig.1. The bond length of C1—N2 (1.278 (7) Å) is equal to that of C1A—N2A, which is much shorter than the C—N single bond length (1.47 - 1.50 Å) and comparable with the reported values (Yogavel et al., 2003; Thirumurugan et al., 1998), indicating that the C—N bonds are double bonds. Two phenyl rings (C2—C7 and C2A—C7A) in (I) are perfectly parellel to each other. As for the piperazine moiety, the four atoms C13—C14—C13A—C14A are coplanar, and N3 atom or N3A atom lies above or below the mean plan by 0.6510 or -0.6510 Å. Furthermore, the plan makes dihedral angles of 129 ° with ring C13—N3—C14A or ring C13A—N3A—C14, indicating that the two rings are parallel and that the piperazine ring has a chair conformation just like other Schiff bases containing piperazine ring (Paital et al., 2009; Thirumurugan et al., 1998).

Related literature top

For applications of Schiff base compounds, see: Basak et al. (2008); Jiang et al. (2008); Xu et al. (2008). For N,N'-disubstituted piperazine derivatives, see: Yogavel et al. (2003). For related structures, see: Paital et al. (2009); Thirumurugan et al. (1998).

Experimental top

A solution of N,N'-bis(N-aminopropyl)-piperazine (1.5 mmol in 10 ml anhydrous methanol) was added dropwise with constant stirring to the solution of paradimethylaminobenzaldehyde (3 mmol in 15 ml anhydrous methanol) at 327 K for 3 h. The resulting mixture was filtrated. After cooling, the filtrate was evaporated at ambient environment. Several days later, the yellow crystals suitable for X-ray analysis were collected and washed with small amount of methanol and dried at room temperature (yield 77%).

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H)= 1.5 Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for the others.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
1,4-Bis{3-[4-(dimethylamino)benzylideneamino]propyl}piperazine top
Crystal data top
C28H42N6F(000) = 504
Mr = 462.68Dx = 1.118 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 683 reflections
a = 17.599 (2) Åθ = 2.4–49.5°
b = 6.4146 (12) ŵ = 0.07 mm1
c = 12.6643 (18) ÅT = 298 K
β = 105.921 (3)°Platelet, yellow
V = 1374.8 (4) Å30.15 × 0.09 × 0.07 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
961 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.088
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
ϕ and ω scansh = 2020
6788 measured reflectionsk = 75
2416 independent reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.298 w = 1/[σ2(Fo2) + (0.0892P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.34(Δ/σ)max = 0.004
2416 reflectionsΔρmax = 0.24 e Å3
155 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (5)
Crystal data top
C28H42N6V = 1374.8 (4) Å3
Mr = 462.68Z = 2
Monoclinic, P21/cMo Kα radiation
a = 17.599 (2) ŵ = 0.07 mm1
b = 6.4146 (12) ÅT = 298 K
c = 12.6643 (18) Å0.15 × 0.09 × 0.07 mm
β = 105.921 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
961 reflections with I > 2σ(I)
6788 measured reflectionsRint = 0.088
2416 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0950 restraints
wR(F2) = 0.298H-atom parameters constrained
S = 1.34Δρmax = 0.24 e Å3
2416 reflectionsΔρmin = 0.17 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9158 (3)0.7316 (8)1.1684 (4)0.0687 (16)
N20.7447 (3)0.0908 (8)0.9057 (5)0.0667 (15)
N30.5629 (3)0.4652 (7)0.5991 (4)0.0590 (14)
C10.7396 (3)0.0090 (10)0.9908 (6)0.0625 (17)
H10.70450.04081.02800.075*
C20.7852 (3)0.1960 (9)1.0339 (5)0.0541 (16)
C30.8387 (3)0.2867 (10)0.9837 (5)0.0598 (17)
H30.84550.22950.91940.072*
C40.8822 (3)0.4629 (9)1.0298 (5)0.0563 (16)
H40.91830.51940.99610.068*
C50.8728 (3)0.5567 (9)1.1258 (5)0.0539 (16)
C60.8190 (3)0.4665 (9)1.1741 (5)0.0580 (16)
H60.81130.52551.23750.070*
C70.7766 (3)0.2905 (10)1.1299 (5)0.0672 (18)
H70.74140.23331.16490.081*
C80.9031 (4)0.8320 (10)1.2662 (5)0.083 (2)
H8A0.93750.95051.28560.124*
H8B0.84920.87671.25100.124*
H8C0.91450.73461.32600.124*
C90.9638 (4)0.8399 (10)1.1115 (6)0.083 (2)
H9A0.98890.95631.15480.125*
H9B1.00330.74711.09930.125*
H9C0.93120.88901.04220.125*
C100.6968 (4)0.2755 (10)0.8724 (5)0.0704 (19)
H10A0.73090.39620.87840.084*
H10B0.66360.29620.92140.084*
C110.6451 (4)0.2571 (9)0.7554 (5)0.0665 (18)
H11A0.60950.13980.75000.080*
H11B0.67810.23110.70670.080*
C120.5971 (3)0.4555 (9)0.7193 (5)0.0637 (18)
H12A0.55480.46180.75470.076*
H12B0.63090.57580.74310.076*
C130.5345 (4)0.6762 (9)0.5644 (5)0.0710 (19)
H13A0.57780.77450.58730.085*
H13B0.49400.71520.59950.085*
C140.5005 (4)0.6860 (10)0.4399 (5)0.0678 (18)
H14A0.48030.82510.41890.081*
H14B0.54220.65860.40510.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.081 (4)0.071 (4)0.055 (4)0.017 (3)0.020 (3)0.013 (3)
N20.061 (3)0.074 (4)0.063 (4)0.015 (3)0.013 (3)0.011 (3)
N30.054 (3)0.060 (3)0.063 (4)0.007 (3)0.015 (3)0.012 (3)
C10.057 (4)0.069 (4)0.067 (5)0.005 (3)0.026 (3)0.007 (4)
C20.052 (3)0.062 (4)0.049 (4)0.004 (3)0.015 (3)0.004 (3)
C30.062 (4)0.067 (4)0.052 (4)0.007 (3)0.017 (3)0.003 (3)
C40.057 (4)0.062 (4)0.052 (4)0.003 (3)0.019 (3)0.001 (3)
C50.059 (4)0.057 (4)0.043 (4)0.007 (3)0.009 (3)0.003 (3)
C60.070 (4)0.065 (4)0.043 (4)0.005 (3)0.023 (3)0.000 (3)
C70.065 (4)0.073 (5)0.072 (5)0.002 (4)0.033 (4)0.003 (4)
C80.098 (5)0.079 (5)0.067 (5)0.003 (4)0.014 (4)0.017 (4)
C90.097 (5)0.069 (5)0.086 (6)0.013 (4)0.027 (4)0.004 (4)
C100.061 (4)0.070 (5)0.075 (5)0.006 (3)0.012 (4)0.010 (4)
C110.069 (4)0.067 (4)0.068 (5)0.012 (3)0.026 (4)0.015 (4)
C120.062 (4)0.068 (4)0.063 (5)0.006 (3)0.020 (3)0.008 (3)
C130.075 (4)0.063 (4)0.072 (5)0.013 (4)0.017 (4)0.013 (3)
C140.068 (4)0.063 (4)0.073 (5)0.003 (4)0.021 (4)0.021 (4)
Geometric parameters (Å, º) top
N1—C51.378 (7)C8—H8A0.9600
N1—C91.432 (7)C8—H8B0.9600
N1—C81.466 (7)C8—H8C0.9600
N2—C11.278 (7)C9—H9A0.9600
N2—C101.448 (7)C9—H9B0.9600
N3—C131.468 (7)C9—H9C0.9600
N3—C14i1.459 (7)C10—C111.516 (8)
N3—C121.477 (7)C10—H10A0.9700
C1—C21.462 (8)C10—H10B0.9700
C1—H10.9300C11—C121.527 (8)
C2—C71.404 (7)C11—H11A0.9700
C2—C31.400 (7)C11—H11B0.9700
C3—C41.399 (8)C12—H12A0.9700
C3—H30.9300C12—H12B0.9700
C4—C51.407 (7)C13—C141.527 (8)
C4—H40.9300C13—H13A0.9700
C5—C61.387 (8)C13—H13B0.9700
C6—C71.384 (8)C14—N3i1.459 (7)
C6—H60.9300C14—H14A0.9700
C7—H70.9300C14—H14B0.9700
C5—N1—C9122.3 (5)N1—C9—H9B109.5
C5—N1—C8119.7 (5)H9A—C9—H9B109.5
C9—N1—C8117.3 (5)N1—C9—H9C109.5
C1—N2—C10119.0 (5)H9A—C9—H9C109.5
C13—N3—C14i110.2 (5)H9B—C9—H9C109.5
C13—N3—C12110.9 (5)N2—C10—C11111.5 (5)
C14i—N3—C12112.2 (5)N2—C10—H10A109.3
N2—C1—C2124.6 (6)C11—C10—H10A109.3
N2—C1—H1117.7N2—C10—H10B109.3
C2—C1—H1117.7C11—C10—H10B109.3
C7—C2—C3117.4 (6)H10A—C10—H10B108.0
C7—C2—C1120.0 (6)C10—C11—C12111.2 (5)
C3—C2—C1122.7 (6)C10—C11—H11A109.4
C4—C3—C2120.4 (6)C12—C11—H11A109.4
C4—C3—H3119.8C10—C11—H11B109.4
C2—C3—H3119.8C12—C11—H11B109.4
C3—C4—C5121.7 (6)H11A—C11—H11B108.0
C3—C4—H4119.2N3—C12—C11112.3 (5)
C5—C4—H4119.2N3—C12—H12A109.1
N1—C5—C6122.3 (6)C11—C12—H12A109.1
N1—C5—C4120.3 (6)N3—C12—H12B109.1
C6—C5—C4117.4 (6)C11—C12—H12B109.1
C7—C6—C5121.3 (6)H12A—C12—H12B107.9
C7—C6—H6119.3N3—C13—C14110.6 (5)
C5—C6—H6119.3N3—C13—H13A109.5
C6—C7—C2121.9 (6)C14—C13—H13A109.5
C6—C7—H7119.1N3—C13—H13B109.5
C2—C7—H7119.1C14—C13—H13B109.5
N1—C8—H8A109.5H13A—C13—H13B108.1
N1—C8—H8B109.5N3i—C14—C13111.6 (5)
H8A—C8—H8B109.5N3i—C14—H14A109.3
N1—C8—H8C109.5C13—C14—H14A109.3
H8A—C8—H8C109.5N3i—C14—H14B109.3
H8B—C8—H8C109.5C13—C14—H14B109.3
N1—C9—H9A109.5H14A—C14—H14B108.0
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC28H42N6
Mr462.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.599 (2), 6.4146 (12), 12.6643 (18)
β (°) 105.921 (3)
V3)1374.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.15 × 0.09 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6788, 2416, 961
Rint0.088
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.298, 1.34
No. of reflections2416
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This project was supported by the Key Project for Fundamental Research of the Jiangsu Provincial Educational Committee (07 K J A 150011) and the Qinglan Project of Jiangsu Province, China (2008).

References

First citationBasak, S., Sen, S., Marscher, C., Baumgartner, J., Batten, S. R., Turner, D. R. & Mitra, S. (2008). Polyhedron, 27, 1193–1200.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiang, G.-Q., Cai, J., Zhang, Y.-Q. & Zhang, Q.-J. (2008). Acta Cryst. E64, o1455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaital, A. R., Mandal, D., Huang, X., Li, J., Aromic, G. & Ray, D. (2009). Dalton Trans. pp. 1352–1362.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationThirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Marappan, M. & Kandaswamy, M. (1998). Acta Cryst. C54, 644–645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationXu, R.-B., Xu, X.-Y., Wang, M.-Y., Wang, D.-Q., Yin, T., Xu, G.-X., Yang, X.-J., Lu, L.-D., Wang, X. & Lei, Y.-J. (2008). J. Coord. Chem. 61, 3306–3313.  Web of Science CSD CrossRef CAS Google Scholar
First citationYogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, o83–o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds