metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1640-m1641

Di­aqua­bis­(2,4-di­chloro-6-formyl­phenolato)zinc(II)–bis­­(μ-2,4-di­chloro-6-formyl­phenolato)bis­­[aqua­(2,4-di­chloro-6-formyl­phenolato)zinc(II)] (2/1)

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp

(Received 17 October 2009; accepted 17 November 2009; online 21 November 2009)

The crystal of the title compound, [Zn(C7H3Cl2O2)2(H2O)2]2·[Zn2(C7H3Cl2O2)4(H2O)2], consists of monomeric and dimeric ZnII complexes. Both complexes afford a six-coordinated coordination environment about the Zn atoms with cis-configuration ligands. The deprotonated hydr­oxy groups of the 3,5-dichloro­salicylaldehyde ligands bridge two metal cations, forming a centrosymmetric dimeric complex. Inter­molecular O—H⋯O hydrogen bonding occurs between the coordinated water mol­ecules and deprotonated hydr­oxy groups in the crystal structure.

Related literature

For applications of the 3,5-dichlorosalicylaldehydate ligand in the preparation of Schiff base–metal complexes, see: Akitsu et al. (2009[Akitsu, T., Yamaguchi, J., Uchida, N. & Aritake, Y. (2009). Res. Lett. Mater. Sci. 484172.]); Akitsu & Einaga (2005a[Akitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869-1877.],b[Akitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933-2943.]); Akitsu (2007[Akitsu, T. (2007). Polyhedron, 26, 2527-2535.]). For trans and cis forms of complexes, see: Akitsu & Einaga (2004a[Akitsu, T. & Einaga, Y. (2004a). Acta Cryst. C60, m640-m642.],b[Akitsu, T. & Einaga, Y. (2004b). Acta Cryst. E60, m1605-m1607.]); Akitsu et al. (2005[Akitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. E61, m772-m774.]). For related complexes, see: Chen (2006[Chen, Q. (2006). Acta Cryst. E62, m56-m57.]); Chen et al. (2007[Chen, X.-M., Zhang, S.-H., Jin, L.-X., Liu, Z. & Yan, Y. (2007). Acta Cryst. E63, m1321.]); Xiong & Liu (2005[Xiong, Z.-Y. & Liu, L.-J. (2005). Acta Cryst. E61, m863-m864.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H3Cl2O2)2(H2O)2]2·[Zn2(C7H3Cl2O2)4(H2O)2]

  • Mr = 1889.61

  • Triclinic, [P \overline 1]

  • a = 8.7532 (9) Å

  • b = 13.6973 (15) Å

  • c = 14.2833 (15) Å

  • α = 96.244 (2)°

  • β = 91.700 (1)°

  • γ = 106.096 (1)°

  • V = 1632.4 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.19 mm−1

  • T = 100 K

  • 0.15 × 0.15 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.735, Tmax = 0.845

  • 9504 measured reflections

  • 7275 independent reflections

  • 5671 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.118

  • S = 0.75

  • 7275 reflections

  • 445 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.040 (2)
Zn1—O2 2.096 (2)
Zn1—O3 2.049 (2)
Zn1—O4 2.084 (2)
Zn1—O9 2.112 (2)
Zn1—O10 2.130 (2)
Zn2—O5 2.011 (2)
Zn2—O6 2.114 (2)
Zn2—O7 2.081 (2)
Zn2—O7i 2.176 (2)
Zn2—O8 2.069 (2)
Zn2—O11 2.134 (2)
Symmetry code: (i) -x+2, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O3ii 0.84 2.02 2.790 (3) 153
O9—H9B⋯O1ii 0.74 2.45 3.015 (3) 134
O10—H10A⋯O7i 0.84 2.24 2.998 (3) 150
O10—H10B⋯O5i 0.82 1.95 2.741 (3) 161
O11—H11A⋯O3i 0.84 2.17 2.931 (3) 151
O11—H11B⋯O1i 0.84 1.93 2.751 (3) 169
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) -x+2, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

3,5-Dichlorosalcylaldehydato plays an important role in preparation of Schiff base metal complexes because of electronic properties due to Cl-groups for example supramolecular interactions between metallodendrimers (Akitsu et al., 2009) or photochromic compounds (Akitsu & Einaga, 2005a & 2005b; Akitsu, 2007). Depending on amine reagents and their steric requirement, trans (Akitsu & Einaga, 2004a & 2004b) or cis (Akitsu et al., 2005) forms of complexes can be formed. However, we focused on only 3,5-dichloroaldehyde moiety to elucidate structural features without amine moiety.

The title compound (I) is composed of a co-crystal of monomeric [Zn(C7H3Cl2O2)2(H2O)2] and dimeric [Zn(C7H3Cl2O2)2(H2O)]. Both complexes afford a six-coordinated coordination environment exhibiting significant distortion. In contrast to known zinc(II) complexes incorporating saldehyde-derivertive ligands (Chen, 2006; Chen et al., 2007; Xiong & Liu, 2005), both ligands bind to Zn(II) ions in a cis-configuration for (I).

Related literature top

For applications of the 3,5-dichlorosalcylaldehydate ligand in the preparation of Schiff base–metal complexes, see: Akitsu et al. (2009); Akitsu & Einaga (2005a,b); Akitsu (2007). For trans and cis forms of complexes, see: Akitsu & Einaga (2004a,b); Akitsu et al. (2005). For related complexes, see: Chen (2006); Chen et al. (2007); Xiong & Liu (2005).

Experimental top

Crystals were obtained accidentally as a byproduct of the treatment of 3,5-dichlorosalcylaldehyde (0.95 g, 5.00 mmol) in methanol (30 ml), L-alanine (0.44 g, 5.00 mmol) in water (5 ml), zinc(II) acetate dihydrate (0.55 g, 2.50 mmol) and several drops of triethylamine at c.a. 350 K for 2 hr.

Refinement top

Water-H atoms were located based on D-map and refined in riding mode. Other H atoms were placed at the calculated positions with C—H = 0.95 Å and refined in riding mode. Uiso(H) = 1.2Ueq(O,C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom labeling scheme [symmetry code: (i) 2 - x, 1 - y, 2 - z]. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Diaquabis(2,4-dichloro-6-formylphenolato)zinc(II)–bis(µ-2,4-dichloro- 6-formylphenolato)bis[aqua(2,4-dichloro-6-formylphenolato)zinc(II)] (2/1) top
Crystal data top
[Zn(C7H3Cl2O2)2(H2O)2]2·[Zn2(C7H3Cl2O2)4(H2O)2]Z = 1
Mr = 1889.61F(000) = 940.0
Triclinic, P1Dx = 1.922 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7532 (9) ÅCell parameters from 2792 reflections
b = 13.6973 (15) Åθ = 2.4–27.8°
c = 14.2833 (15) ŵ = 2.19 mm1
α = 96.244 (2)°T = 100 K
β = 91.700 (1)°Prismatic, yellow
γ = 106.096 (1)°0.15 × 0.15 × 0.08 mm
V = 1632.4 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7275 independent reflections
Radiation source: fine-focus sealed tube5671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.333 pixels mm-1θmax = 27.9°, θmin = 1.4°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1617
Tmin = 0.735, Tmax = 0.845l = 1218
9504 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 0.75 w = 1/[σ2(Fo2) + (0.1P)2 + 1.2111P]
where P = (Fo2 + 2Fc2)/3
7275 reflections(Δ/σ)max = 0.001
445 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Zn(C7H3Cl2O2)2(H2O)2]2·[Zn2(C7H3Cl2O2)4(H2O)2]γ = 106.096 (1)°
Mr = 1889.61V = 1632.4 (3) Å3
Triclinic, P1Z = 1
a = 8.7532 (9) ÅMo Kα radiation
b = 13.6973 (15) ŵ = 2.19 mm1
c = 14.2833 (15) ÅT = 100 K
α = 96.244 (2)°0.15 × 0.15 × 0.08 mm
β = 91.700 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7275 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5671 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.845Rint = 0.021
9504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 0.75Δρmax = 0.59 e Å3
7275 reflectionsΔρmin = 0.46 e Å3
445 parameters
Special details top

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. The water-H atoms wre located in a D-map and refined in riding mode with Uiso(H) = 1.2Ueq(O)."

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.80461 (4)0.83299 (3)0.96067 (3)0.00981 (11)
Zn20.92258 (4)0.39423 (3)0.93218 (3)0.00861 (10)
C11.0506 (4)0.8558 (2)0.8153 (2)0.0115 (7)
C21.2112 (4)0.8851 (2)0.7897 (2)0.0106 (7)
C31.2547 (4)0.8968 (2)0.6987 (2)0.0114 (7)
H31.36400.91650.68550.014*
C41.1363 (4)0.8794 (3)0.6263 (2)0.0123 (7)
C50.9784 (4)0.8516 (3)0.6459 (2)0.0144 (7)
H50.89840.84000.59630.017*
C60.9340 (4)0.8400 (2)0.7388 (2)0.0109 (7)
C70.7636 (4)0.8084 (2)0.7507 (2)0.0122 (7)
H70.69660.79720.69460.015*
C80.8264 (4)0.8649 (2)1.1745 (2)0.0089 (6)
C90.9119 (4)0.8798 (2)1.2634 (2)0.0111 (7)
C100.8403 (4)0.8716 (3)1.3478 (2)0.0152 (7)
H10C0.90290.88151.40530.018*
C110.6749 (4)0.8485 (3)1.3479 (2)0.0140 (7)
C120.5844 (4)0.8358 (3)1.2644 (2)0.0134 (7)
H120.47190.82151.26530.016*
C130.6573 (4)0.8437 (2)1.1784 (2)0.0105 (6)
C140.5495 (4)0.8274 (2)1.0955 (2)0.0130 (7)
H140.44030.81781.10700.016*
C151.1453 (4)0.3785 (2)0.7795 (2)0.0105 (6)
C161.3048 (4)0.3981 (2)0.7511 (2)0.0107 (7)
C171.3436 (4)0.4026 (2)0.6585 (2)0.0119 (7)
H171.45170.41710.64290.014*
C181.2213 (4)0.3855 (3)0.5875 (2)0.0127 (7)
C191.0649 (4)0.3623 (3)0.6098 (2)0.0133 (7)
H190.98270.34780.56110.016*
C201.0254 (4)0.3598 (2)0.7050 (2)0.0109 (6)
C210.8572 (4)0.3365 (3)0.7224 (2)0.0130 (7)
H210.78470.31670.66830.016*
C220.9237 (4)0.4081 (2)1.1431 (2)0.0089 (6)
C230.9985 (4)0.4002 (2)1.2300 (2)0.0103 (6)
C240.9167 (4)0.3743 (2)1.3089 (2)0.0125 (7)
H240.97240.37101.36600.015*
C250.7501 (4)0.3529 (3)1.3036 (2)0.0120 (7)
C260.6708 (4)0.3553 (2)1.2201 (2)0.0125 (7)
H260.55780.33891.21660.015*
C270.7539 (4)0.3816 (2)1.1396 (2)0.0097 (6)
C280.6570 (4)0.3854 (2)1.0564 (2)0.0100 (6)
H280.54610.37421.06360.012*
O11.0177 (3)0.84419 (18)0.90218 (16)0.0114 (5)
O20.6955 (3)0.79453 (18)0.82386 (17)0.0129 (5)
O30.9021 (3)0.87169 (18)1.09647 (16)0.0120 (5)
O40.5816 (3)0.82436 (18)1.01226 (16)0.0128 (5)
O51.1173 (3)0.37770 (17)0.86854 (16)0.0107 (5)
O60.7986 (3)0.33961 (18)0.79914 (16)0.0118 (5)
O71.0093 (3)0.44105 (17)1.07188 (16)0.0090 (5)
O80.7034 (3)0.40163 (17)0.97769 (16)0.0116 (5)
Cl11.36080 (9)0.90539 (6)0.87857 (6)0.01455 (18)
Cl21.19192 (11)0.89319 (7)0.51136 (6)0.0199 (2)
Cl31.11849 (9)0.90686 (6)1.26347 (6)0.01406 (18)
Cl40.58270 (11)0.83281 (7)1.45386 (6)0.0221 (2)
Cl51.45564 (9)0.41888 (6)0.83825 (6)0.01241 (17)
Cl61.27119 (11)0.39485 (7)0.47120 (6)0.0197 (2)
Cl71.20508 (9)0.43012 (6)1.23861 (6)0.01256 (17)
Cl80.64683 (11)0.32313 (7)1.40347 (6)0.0193 (2)
O90.8187 (3)0.98658 (18)0.94441 (17)0.0133 (5)
H9A0.90281.01280.91860.016*
H9B0.81601.03630.96960.016*
O100.7513 (3)0.67389 (17)0.97417 (17)0.0118 (5)
H10A0.81090.64790.94100.014*
H10B0.77300.66191.02750.014*
O110.8612 (3)0.23683 (17)0.95443 (17)0.0120 (5)
H11A0.91470.20650.92050.014*
H11B0.89210.21701.00310.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.00838 (19)0.0114 (2)0.0092 (2)0.00159 (15)0.00065 (14)0.00263 (14)
Zn20.00720 (19)0.0103 (2)0.00819 (19)0.00178 (14)0.00008 (14)0.00230 (14)
C10.0112 (16)0.0069 (15)0.0166 (17)0.0020 (12)0.0003 (13)0.0044 (12)
C20.0133 (16)0.0074 (15)0.0109 (16)0.0028 (12)0.0022 (13)0.0019 (12)
C30.0106 (15)0.0103 (16)0.0142 (17)0.0030 (13)0.0036 (13)0.0046 (12)
C40.0169 (17)0.0127 (16)0.0072 (15)0.0031 (13)0.0053 (13)0.0025 (12)
C50.0153 (17)0.0101 (16)0.0164 (18)0.0016 (13)0.0022 (14)0.0021 (13)
C60.0109 (16)0.0094 (16)0.0104 (16)0.0005 (13)0.0010 (12)0.0019 (12)
C70.0117 (16)0.0118 (16)0.0123 (16)0.0022 (13)0.0021 (13)0.0021 (12)
C80.0136 (16)0.0064 (15)0.0076 (15)0.0044 (12)0.0010 (12)0.0007 (11)
C90.0113 (16)0.0074 (15)0.0152 (17)0.0033 (12)0.0016 (13)0.0029 (12)
C100.0176 (18)0.0165 (18)0.0106 (17)0.0037 (14)0.0013 (13)0.0011 (13)
C110.0158 (17)0.0128 (17)0.0137 (17)0.0034 (14)0.0057 (13)0.0027 (13)
C120.0098 (16)0.0130 (17)0.0156 (17)0.0006 (13)0.0025 (13)0.0039 (13)
C130.0110 (16)0.0089 (15)0.0120 (16)0.0029 (12)0.0001 (13)0.0024 (12)
C140.0080 (15)0.0112 (16)0.0184 (18)0.0001 (13)0.0010 (13)0.0029 (13)
C150.0124 (16)0.0087 (15)0.0097 (16)0.0018 (13)0.0003 (13)0.0012 (12)
C160.0103 (15)0.0084 (15)0.0108 (16)0.0012 (12)0.0027 (12)0.0009 (12)
C170.0084 (15)0.0118 (16)0.0134 (17)0.0006 (13)0.0002 (13)0.0007 (12)
C180.0176 (17)0.0127 (16)0.0075 (15)0.0033 (13)0.0047 (13)0.0013 (12)
C190.0111 (16)0.0173 (18)0.0113 (16)0.0044 (14)0.0025 (13)0.0017 (13)
C200.0104 (15)0.0113 (16)0.0128 (16)0.0051 (13)0.0028 (13)0.0025 (12)
C210.0097 (16)0.0137 (17)0.0138 (17)0.0009 (13)0.0028 (13)0.0015 (13)
C220.0107 (15)0.0043 (14)0.0090 (15)0.0026 (12)0.0003 (12)0.0017 (11)
C230.0091 (15)0.0090 (15)0.0111 (16)0.0005 (12)0.0031 (12)0.0023 (12)
C240.0157 (17)0.0088 (16)0.0130 (17)0.0030 (13)0.0010 (13)0.0031 (12)
C250.0136 (16)0.0101 (16)0.0118 (16)0.0007 (13)0.0044 (13)0.0052 (12)
C260.0092 (15)0.0098 (16)0.0174 (17)0.0014 (13)0.0033 (13)0.0003 (13)
C270.0103 (15)0.0061 (15)0.0103 (16)0.0009 (12)0.0013 (12)0.0006 (12)
C280.0057 (14)0.0124 (16)0.0100 (16)0.0006 (12)0.0007 (12)0.0014 (12)
O10.0089 (11)0.0191 (13)0.0080 (11)0.0054 (9)0.0018 (9)0.0048 (9)
O20.0097 (11)0.0143 (12)0.0140 (12)0.0018 (9)0.0000 (9)0.0032 (9)
O30.0105 (11)0.0133 (12)0.0108 (12)0.0006 (9)0.0001 (9)0.0030 (9)
O40.0106 (11)0.0154 (12)0.0124 (12)0.0039 (10)0.0012 (9)0.0015 (9)
O50.0103 (11)0.0127 (12)0.0103 (11)0.0039 (9)0.0001 (9)0.0045 (9)
O60.0068 (11)0.0156 (12)0.0123 (12)0.0012 (9)0.0003 (9)0.0036 (9)
O70.0069 (10)0.0107 (11)0.0083 (11)0.0006 (9)0.0000 (9)0.0023 (9)
O80.0091 (11)0.0133 (12)0.0129 (12)0.0038 (9)0.0004 (9)0.0018 (9)
Cl10.0096 (4)0.0199 (4)0.0140 (4)0.0040 (3)0.0021 (3)0.0026 (3)
Cl20.0194 (4)0.0286 (5)0.0104 (4)0.0033 (4)0.0041 (3)0.0053 (3)
Cl30.0105 (4)0.0191 (4)0.0124 (4)0.0037 (3)0.0011 (3)0.0028 (3)
Cl40.0225 (5)0.0287 (5)0.0146 (4)0.0045 (4)0.0097 (3)0.0060 (4)
Cl50.0082 (4)0.0159 (4)0.0121 (4)0.0018 (3)0.0015 (3)0.0022 (3)
Cl60.0197 (4)0.0279 (5)0.0089 (4)0.0024 (4)0.0032 (3)0.0020 (3)
Cl70.0089 (4)0.0177 (4)0.0105 (4)0.0020 (3)0.0008 (3)0.0043 (3)
Cl80.0196 (4)0.0249 (5)0.0147 (4)0.0052 (4)0.0092 (3)0.0084 (3)
O90.0118 (11)0.0118 (12)0.0164 (13)0.0028 (10)0.0007 (9)0.0038 (9)
O100.0104 (11)0.0145 (12)0.0112 (12)0.0046 (9)0.0006 (9)0.0026 (9)
O110.0118 (11)0.0128 (12)0.0133 (12)0.0057 (9)0.0012 (9)0.0042 (9)
Geometric parameters (Å, º) top
Zn1—O12.040 (2)C14—O41.229 (4)
Zn1—O22.096 (2)C14—H140.9500
Zn1—O32.049 (2)C15—O51.303 (4)
Zn1—O42.084 (2)C15—C201.422 (4)
Zn1—O92.112 (2)C15—C161.426 (5)
Zn1—O102.130 (2)C16—C171.379 (5)
Zn2—O52.011 (2)C16—Cl51.730 (3)
Zn2—O62.114 (2)C17—C181.405 (4)
Zn2—O72.081 (2)C17—H170.9500
Zn2—O7i2.176 (2)C18—C191.373 (5)
Zn2—O82.069 (2)C18—Cl61.739 (3)
Zn2—O112.134 (2)C19—C201.415 (5)
C1—O11.298 (4)C19—H190.9500
C1—C21.422 (5)C20—C211.452 (5)
C1—C61.429 (4)C21—O61.226 (4)
C2—C31.378 (5)C21—H210.9500
C2—Cl11.739 (3)C22—O71.327 (4)
C3—C41.395 (5)C22—C231.415 (4)
C3—H30.9500C22—C271.427 (4)
C4—C51.374 (5)C23—C241.378 (5)
C4—Cl21.741 (3)C23—Cl71.737 (3)
C5—C61.407 (5)C24—C251.404 (5)
C5—H50.9500C24—H240.9500
C6—C71.454 (5)C25—C261.370 (5)
C7—O21.225 (4)C25—Cl81.736 (3)
C7—H70.9500C26—C271.406 (5)
C8—O31.313 (4)C26—H260.9500
C8—C91.419 (4)C27—C281.453 (4)
C8—C131.431 (4)C28—O81.228 (4)
C9—C101.376 (5)C28—H280.9500
C9—Cl31.743 (3)O7—Zn2i2.176 (2)
C10—C111.393 (5)O9—H9A0.8400
C10—H10C0.9500O9—H9B0.7416
C11—C121.379 (5)O10—H10A0.8400
C11—Cl41.743 (4)O10—H10B0.8234
C12—C131.403 (5)O11—H11A0.8400
C12—H120.9500O11—H11B0.8371
C13—C141.449 (4)
O1—Zn1—O394.50 (9)C12—C13—C14115.3 (3)
O1—Zn1—O4176.22 (8)C8—C13—C14123.4 (3)
O3—Zn1—O488.77 (9)O4—C14—C13128.2 (3)
O1—Zn1—O287.95 (9)O4—C14—H14115.9
O3—Zn1—O2177.47 (10)C13—C14—H14115.9
O4—Zn1—O288.76 (9)O5—C15—C20124.4 (3)
O1—Zn1—O991.79 (10)O5—C15—C16120.1 (3)
O3—Zn1—O992.35 (9)C20—C15—C16115.5 (3)
O4—Zn1—O986.17 (9)C17—C16—C15123.2 (3)
O2—Zn1—O986.93 (9)C17—C16—Cl5119.1 (3)
O1—Zn1—O1095.85 (9)C15—C16—Cl5117.7 (2)
O3—Zn1—O1091.64 (9)C16—C17—C18119.2 (3)
O4—Zn1—O1085.94 (9)C16—C17—H17120.4
O2—Zn1—O1088.74 (9)C18—C17—H17120.4
O9—Zn1—O10171.08 (9)C19—C18—C17120.4 (3)
O5—Zn2—O8171.11 (9)C19—C18—Cl6120.6 (3)
O5—Zn2—O7102.25 (9)C17—C18—Cl6119.0 (3)
O8—Zn2—O786.59 (9)C18—C19—C20120.3 (3)
O5—Zn2—O686.25 (9)C18—C19—H19119.8
O8—Zn2—O684.87 (9)C20—C19—H19119.8
O7—Zn2—O6170.91 (9)C19—C20—C15121.2 (3)
O5—Zn2—O1189.56 (9)C19—C20—C21116.7 (3)
O8—Zn2—O1189.17 (9)C15—C20—C21122.1 (3)
O7—Zn2—O1191.76 (9)O6—C21—C20127.1 (3)
O6—Zn2—O1185.01 (9)O6—C21—H21116.4
O5—Zn2—O7i93.02 (9)C20—C21—H21116.4
O8—Zn2—O7i89.27 (9)O7—C22—C23120.8 (3)
O7—Zn2—O7i81.32 (9)O7—C22—C27123.6 (3)
O6—Zn2—O7i101.65 (8)C23—C22—C27115.6 (3)
O11—Zn2—O7i172.99 (9)C24—C23—C22123.5 (3)
O1—C1—C2120.8 (3)C24—C23—Cl7118.6 (2)
O1—C1—C6124.5 (3)C22—C23—Cl7117.9 (3)
C2—C1—C6114.7 (3)C23—C24—C25119.2 (3)
C3—C2—C1123.8 (3)C23—C24—H24120.4
C3—C2—Cl1118.4 (3)C25—C24—H24120.4
C1—C2—Cl1117.7 (2)C26—C25—C24119.9 (3)
C2—C3—C4119.3 (3)C26—C25—Cl8120.8 (3)
C2—C3—H3120.4C24—C25—Cl8119.4 (3)
C4—C3—H3120.4C25—C26—C27121.1 (3)
C5—C4—C3120.1 (3)C25—C26—H26119.4
C5—C4—Cl2120.9 (3)C27—C26—H26119.4
C3—C4—Cl2119.0 (3)C26—C27—C22120.7 (3)
C4—C5—C6120.7 (3)C26—C27—C28115.9 (3)
C4—C5—H5119.7C22—C27—C28123.3 (3)
C6—C5—H5119.7O8—C28—C27126.8 (3)
C5—C6—C1121.4 (3)O8—C28—H28116.6
C5—C6—C7115.7 (3)C27—C28—H28116.6
C1—C6—C7122.9 (3)C1—O1—Zn1127.5 (2)
O2—C7—C6128.1 (3)C7—O2—Zn1125.6 (2)
O2—C7—H7116.0C8—O3—Zn1127.4 (2)
C6—C7—H7116.0C14—O4—Zn1126.4 (2)
O3—C8—C9120.5 (3)C15—O5—Zn2128.2 (2)
O3—C8—C13124.5 (3)C21—O6—Zn2126.7 (2)
C9—C8—C13115.0 (3)C22—O7—Zn2121.66 (19)
C10—C9—C8123.7 (3)C22—O7—Zn2i115.7 (2)
C10—C9—Cl3119.1 (3)Zn2—O7—Zn2i98.68 (9)
C8—C9—Cl3117.2 (3)C28—O8—Zn2124.9 (2)
C9—C10—C11119.2 (3)Zn1—O9—H9A109.5
C9—C10—H10C120.4Zn1—O9—H9B144.2
C11—C10—H10C120.4H9A—O9—H9B93.4
C12—C11—C10120.3 (3)Zn1—O10—H10A109.5
C12—C11—Cl4120.1 (3)Zn1—O10—H10B113.6
C10—C11—Cl4119.6 (3)H10A—O10—H10B102.5
C11—C12—C13120.4 (3)Zn2—O11—H11A109.5
C11—C12—H12119.8Zn2—O11—H11B122.7
C13—C12—H12119.8H11A—O11—H11B91.6
C12—C13—C8121.3 (3)
O1—C1—C2—C3178.7 (3)C23—C24—C25—Cl8178.5 (3)
C6—C1—C2—C30.8 (5)C24—C25—C26—C271.7 (5)
O1—C1—C2—Cl10.3 (4)Cl8—C25—C26—C27178.5 (3)
C6—C1—C2—Cl1179.8 (2)C25—C26—C27—C221.0 (5)
C1—C2—C3—C40.1 (5)C25—C26—C27—C28177.6 (3)
Cl1—C2—C3—C4179.0 (3)O7—C22—C27—C26174.7 (3)
C2—C3—C4—C50.4 (5)C23—C22—C27—C263.4 (5)
C2—C3—C4—Cl2179.4 (3)O7—C22—C27—C281.7 (5)
C3—C4—C5—C60.2 (5)C23—C22—C27—C28179.8 (3)
Cl2—C4—C5—C6179.7 (3)C26—C27—C28—O8176.2 (3)
C4—C5—C6—C10.6 (5)C22—C27—C28—O87.3 (5)
C4—C5—C6—C7178.9 (3)C2—C1—O1—Zn1165.8 (2)
O1—C1—C6—C5178.4 (3)C6—C1—O1—Zn114.8 (5)
C2—C1—C6—C51.0 (5)O3—Zn1—O1—C1160.0 (3)
O1—C1—C6—C70.3 (5)O2—Zn1—O1—C119.3 (3)
C2—C1—C6—C7179.2 (3)O9—Zn1—O1—C167.5 (3)
C5—C6—C7—O2179.0 (3)O10—Zn1—O1—C1107.9 (3)
C1—C6—C7—O22.7 (6)C6—C7—O2—Zn19.7 (5)
O3—C8—C9—C10178.5 (3)O1—Zn1—O2—C716.7 (3)
C13—C8—C9—C102.1 (5)O4—Zn1—O2—C7161.5 (3)
O3—C8—C9—Cl30.1 (4)O9—Zn1—O2—C775.2 (3)
C13—C8—C9—Cl3179.5 (2)O10—Zn1—O2—C7112.6 (3)
C8—C9—C10—C110.7 (5)C9—C8—O3—Zn1170.2 (2)
Cl3—C9—C10—C11179.1 (3)C13—C8—O3—Zn110.4 (4)
C9—C10—C11—C121.1 (5)O1—Zn1—O3—C8169.0 (3)
C9—C10—C11—Cl4177.4 (3)O4—Zn1—O3—C812.9 (3)
C10—C11—C12—C131.4 (5)O9—Zn1—O3—C899.0 (3)
Cl4—C11—C12—C13177.1 (3)O10—Zn1—O3—C873.0 (3)
C11—C12—C13—C80.2 (5)C13—C14—O4—Zn14.1 (5)
C11—C12—C13—C14179.1 (3)O3—Zn1—O4—C149.8 (3)
O3—C8—C13—C12178.8 (3)O2—Zn1—O4—C14170.7 (3)
C9—C8—C13—C121.8 (4)O9—Zn1—O4—C14102.2 (3)
O3—C8—C13—C140.1 (5)O10—Zn1—O4—C1481.9 (3)
C9—C8—C13—C14179.3 (3)C20—C15—O5—Zn220.6 (5)
C12—C13—C14—O4175.5 (3)C16—C15—O5—Zn2160.1 (2)
C8—C13—C14—O43.4 (5)O7—Zn2—O5—C15158.3 (3)
O5—C15—C16—C17178.4 (3)O6—Zn2—O5—C1524.9 (3)
C20—C15—C16—C172.2 (5)O11—Zn2—O5—C15110.0 (3)
O5—C15—C16—Cl50.7 (4)O7i—Zn2—O5—C1576.5 (3)
C20—C15—C16—Cl5178.7 (2)C20—C21—O6—Zn26.7 (5)
C15—C16—C17—C181.1 (5)O5—Zn2—O6—C2118.1 (3)
Cl5—C16—C17—C18179.8 (3)O8—Zn2—O6—C21162.4 (3)
C16—C17—C18—C191.5 (5)O11—Zn2—O6—C21108.0 (3)
C16—C17—C18—Cl6178.2 (3)O7i—Zn2—O6—C2174.2 (3)
C17—C18—C19—C202.8 (5)C23—C22—O7—Zn2151.4 (2)
Cl6—C18—C19—C20176.8 (3)C27—C22—O7—Zn230.6 (4)
C18—C19—C20—C151.6 (5)C23—C22—O7—Zn2i89.0 (3)
C18—C19—C20—C21178.8 (3)C27—C22—O7—Zn2i89.0 (3)
O5—C15—C20—C19179.8 (3)O5—Zn2—O7—C22141.2 (2)
C16—C15—C20—C190.8 (5)O8—Zn2—O7—C2237.8 (2)
O5—C15—C20—C210.7 (5)O11—Zn2—O7—C2251.2 (2)
C16—C15—C20—C21178.7 (3)O7i—Zn2—O7—C22127.6 (3)
C19—C20—C21—O6172.9 (3)O5—Zn2—O7—Zn2i91.22 (10)
C15—C20—C21—O67.6 (5)O8—Zn2—O7—Zn2i89.78 (9)
O7—C22—C23—C24174.7 (3)O11—Zn2—O7—Zn2i178.85 (9)
C27—C22—C23—C243.4 (5)O7i—Zn2—O7—Zn2i0.0
O7—C22—C23—Cl72.5 (4)C27—C28—O8—Zn215.4 (5)
C27—C22—C23—Cl7179.4 (2)O7—Zn2—O8—C2831.0 (3)
C22—C23—C24—C251.0 (5)O6—Zn2—O8—C28145.8 (3)
Cl7—C23—C24—C25178.1 (3)O11—Zn2—O8—C2860.8 (3)
C23—C24—C25—C261.7 (5)O7i—Zn2—O8—C28112.4 (3)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O3ii0.842.022.790 (3)153
O9—H9B···O1ii0.742.453.015 (3)134
O10—H10A···O7i0.842.242.998 (3)150
O10—H10B···O5i0.821.952.741 (3)161
O11—H11A···O3i0.842.172.931 (3)151
O11—H11B···O1i0.841.932.751 (3)169
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C7H3Cl2O2)2(H2O)2]2·[Zn2(C7H3Cl2O2)4(H2O)2]
Mr1889.61
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.7532 (9), 13.6973 (15), 14.2833 (15)
α, β, γ (°)96.244 (2), 91.700 (1), 106.096 (1)
V3)1632.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.15 × 0.15 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.735, 0.845
No. of measured, independent and
observed [I > 2σ(I)] reflections
9504, 7275, 5671
Rint0.021
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.118, 0.75
No. of reflections7275
No. of parameters445
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008.

Selected bond lengths (Å) top
Zn1—O12.040 (2)Zn2—O52.011 (2)
Zn1—O22.096 (2)Zn2—O62.114 (2)
Zn1—O32.049 (2)Zn2—O72.081 (2)
Zn1—O42.084 (2)Zn2—O7i2.176 (2)
Zn1—O92.112 (2)Zn2—O82.069 (2)
Zn1—O102.130 (2)Zn2—O112.134 (2)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O3ii0.842.022.790 (3)153
O9—H9B···O1ii0.742.453.015 (3)134
O10—H10A···O7i0.842.242.998 (3)150
O10—H10B···O5i0.821.952.741 (3)161
O11—H11A···O3i0.842.172.931 (3)151
O11—H11B···O1i0.841.932.751 (3)169
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+2, y+2, z+2.
 

Acknowledgements

This work was supported by the Kato Foundation for the Promotion of Science.

References

First citationAkitsu, T. (2007). Polyhedron, 26, 2527–2535.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2004a). Acta Cryst. C60, m640–m642.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkitsu, T. & Einaga, Y. (2004b). Acta Cryst. E60, m1605–m1607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869–1877.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933–2943.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T., Takeuchi, Y. & Einaga, Y. (2005). Acta Cryst. E61, m772–m774.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAkitsu, T., Yamaguchi, J., Uchida, N. & Aritake, Y. (2009). Res. Lett. Mater. Sci. 484172.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q. (2006). Acta Cryst. E62, m56–m57.  CrossRef IUCr Journals Google Scholar
First citationChen, X.-M., Zhang, S.-H., Jin, L.-X., Liu, Z. & Yan, Y. (2007). Acta Cryst. E63, m1321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, Z.-Y. & Liu, L.-J. (2005). Acta Cryst. E61, m863–m864.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1640-m1641
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds