metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1604-m1605

Aqua­(2,2′-bi­pyridine-κ2N,N′)[2-(3-thien­yl)malonato-κ2O,O′]zinc(II) dihydrate

aDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, People's Republic of China, and bLanzhou Institute of Biological Products, Lanzhou 730046, People's Republic of China
*Correspondence e-mail: chemfufeng@126.com

(Received 23 October 2009; accepted 10 November 2009; online 18 November 2009)

In the crystal structure of the title compound, [Zn(C7H4O4S)(C10H8N2)(H2O)]·2H2O, the ZnII ion assumes a trigonal–bipyramidal coordination geometry completed by two N atoms from a 2,2′-bipyridine ligand, two O atoms from a 2-(3-thien­yl)malonate anion and a water mol­ecule. The S atom of the 2-(3-thien­yl)malonate ligand is disordered over two sites with an occupancy ratio of 0.701 (5):0.299 (5). Inter­molecular O—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background to organic heterocycles, see: Lin et al. (2008[Lin, J.-M., Guan, Y.-F., Wang, D.-Y., Dong, W., Wang, X.-T. & Ga, S. (2008). J. Chem. Soc. Dalton Trans. pp. 6165-6169.]); Jin et al. (2001[Jin, Z.-M., Xu, D.-J., Pan, Y.-J., Xu, Y.-Z. & Chiang, M. Y. N. (2001). J. Mol. Struct. 559, 1-5.]). For related thio­phene­malonate complexes, see: He et al. (2009[He, Q.-F., Li, D.-S., Zhao, J., Ke, X.-J. & Li, C. (2009). Acta Cryst. E65, m666.]); Murray et al. (2008[Murray, A. H., Zhang, Y., Wallbank, A. I., Cameron, T. S., Vadavi, R., MacLean, B. J. & Aquino, A. S. (2008). Polyhedron, 27, 1270-1279.]); Huang et al. (2009[Huang, W., Wu, D.-Y., Zhou, P., Yan, W.-B., Guo, D., Duan, C.-Y. & Meng, Q.-J. (2009). Cryst. Growth Des. 9, 1361-1369.]); Lim et al. (2006[Lim, J.-M., Do, Y. & Kim, J. (2006). Eur. J. Inorg. Chem. pp. 711-717.]). For hydrogen-bonded rings in polymeric complexes, see: Eppel & Bernstein (2009[Eppel, S. & Bernstein, J. (2009). Cryst. Growth Des. 9, 1683-1691.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Nichol & Clegg (2009[Nichol, G. S. & Clegg, W. (2009). Cryst. Growth Des. 9, 1844-1850.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4O4S)(C10H8N2)(H2O)]·2H2O

  • Mr = 459.76

  • Orthorhombic, P b c a

  • a = 15.9978 (10) Å

  • b = 14.5647 (9) Å

  • c = 16.5889 (10) Å

  • V = 3865.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.843, Tmax = 0.918

  • 23919 measured reflections

  • 4752 independent reflections

  • 3107 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.01

  • 4752 reflections

  • 273 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.0001 (15)
Zn1—O3 2.0224 (15)
Zn1—O5 1.9596 (15)
Zn1—N1 2.1123 (18)
Zn1—N2 2.100 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H18⋯O7i 0.85 1.74 2.568 (2) 165
O5—H19⋯O4ii 0.85 1.83 2.618 (2) 155
O6—H20⋯O2 0.85 1.94 2.784 (2) 172
O6—H21⋯O4iii 0.85 2.22 2.943 (2) 144
O6—H21⋯O3iii 0.85 2.45 3.238 (2) 154
O7—H22⋯O2 0.85 2.04 2.847 (3) 158
O7—H22⋯O1 0.85 2.47 3.165 (2) 139
O7—H23⋯O6iv 0.85 1.88 2.700 (3) 162
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The nature of organic heterocycles are special enough to attract a lot of scientific researches (Lin et al., 2008; Jin et al., 2001). Because of the big radius of the S atom, its lone pair of electrons can be more easily delocalized with in the heterocycle, and the ligand exhibits good charge-transfer ability (He et al., 2009). However, its reaction mechanism is rather complicated to study, a small quantity of literatures about thiophenemalonic are reported, with thiophenemalonic acid researched even less (Murray et al., 2008; Huang et al., 2009; Lim et al., 2006). In this paper, we report the hydrothermal synthesis and structure of a new compound incorporating the thiophene-containing ligand3-thiophenecarboxylate with two kinds of hydrogen bond rings (Nichol et al., 2009; Etter, 1990; Eppel et al., 2009).

The molecular structure of the title complex is shown in Fig.1. The coordination geometry around Zn2+ ion is five-coordinated, with two N atoms from 2,2'-bipyridine ligand (N1, N2), two O atom from 3-thiophenecarboxylate ligand (O1,O3), and a coordinated water(O5). The equatorial positions are occupied by N2, O1 and O5, while N1, O3 are in axial positions, so the local coordination environment of Zn(II) can be described as a distorted trigonal bipyramidal environment (Table 1). The S1 and C6 atoms of the 3-thiophenemalonate ligand are disordered over two sites with refined occupancies of 0.701 (5) and 0.299 (5). The units are interconnected by two kinds of O–H···O hydrogen bonds rings (R33 (12), R43(12)) to form a two-dimensional supramolecular network, in which the lattice water molecule acts as both hydrogen-bond donor and acceptor (Table 2). These hydrogen bonds rings contributes to the additional stability of the structure.

Related literature top

For ganeral background to organic heterocycles, see: Lin et al. (2008); Jin et al. (2001). For related thiophenemalonate complexes, see: He et al. (2009); Murray et al. (2008); Huang et al. (2009); Lim et al. (2006). For hydrogen-bonded rings in polymeric complexes, see: Eppel & Bernstein (2009); Etter (1990); Nichol & Clegg (2009).

For related literature, see:

Experimental top

A mixture of Zn(NO3)2.6H2O (0.030 g, 0.1 mmol), 2,2'-bipyridine (0.008 g, 0.05 mmol), 3-thiophenemalonic acid (0.018 g, 0.1 mmol), NaOH (0.008 g, 0.2 mmol) and distilled water(10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave and heated at 413 K for 72 h under autogenous pressure. After cooled at room temperature over 48 h, colorless crystals of the title compound suitable for X-ray analysis were obtained from the reaction mixture by filtration.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 and O—H = 0.85 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). The S1 and C6 atoms of the 3-thiophenemalonate ligand are disordered over two sites, occupancies were refined to 0.701 (5):0.299 (5).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of title complex,with the atom-numbering scheme for the asymmetric unit, showing displacementellipsoids at the 50% probability level.
Aqua(2,2'-bipyridine-κ2N,N')[2-(3-thienyl)malonato- κ2O,O']zinc(II) dihydrate top
Crystal data top
[Zn(C7H4O4S)(C10H8N2)(H2O)]·2H2OF(000) = 1888
Mr = 459.76Dx = 1.580 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4757 reflections
a = 15.9978 (10) Åθ = 2.3–28.3°
b = 14.5647 (9) ŵ = 1.42 mm1
c = 16.5889 (10) ÅT = 293 K
V = 3865.3 (4) Å3Prism, colorless
Z = 80.15 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD
diffractometer
4752 independent reflections
Radiation source: fine-focus sealed tube3107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2021
Tmin = 0.843, Tmax = 0.918k = 1919
23919 measured reflectionsl = 1321
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.5447P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.013
4752 reflectionsΔρmax = 0.29 e Å3
273 parametersΔρmin = 0.39 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0056 (3)
Crystal data top
[Zn(C7H4O4S)(C10H8N2)(H2O)]·2H2OV = 3865.3 (4) Å3
Mr = 459.76Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.9978 (10) ŵ = 1.42 mm1
b = 14.5647 (9) ÅT = 293 K
c = 16.5889 (10) Å0.15 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD
diffractometer
4752 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3107 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.918Rint = 0.045
23919 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.094H-atom parameters constrained
S = 1.01Δρmax = 0.29 e Å3
4752 reflectionsΔρmin = 0.39 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.006504 (15)0.702960 (16)0.153476 (15)0.03795 (11)
S1A0.1680 (2)0.8323 (2)0.04031 (12)0.0838 (10)0.701 (5)
C6A0.1110 (9)0.9380 (17)0.0371 (9)0.086 (5)0.701 (5)
H6AA0.09750.97810.07880.103*0.701 (5)
S1B0.1113 (9)0.9171 (14)0.0430 (7)0.104 (4)0.299 (5)
C6B0.1633 (18)0.8181 (18)0.0295 (10)0.100 (11)0.299 (5)
H6BA0.18520.77790.06760.120*0.299 (5)
O10.11079 (10)0.71831 (9)0.21860 (10)0.0469 (4)
O20.21138 (11)0.80238 (11)0.27006 (12)0.0647 (5)
O30.03265 (9)0.82628 (10)0.19487 (10)0.0453 (4)
O40.00902 (9)0.96587 (11)0.23639 (12)0.0595 (5)
O50.06263 (9)0.61837 (11)0.21667 (11)0.0582 (5)
H180.11470.62950.21890.087*
H190.05470.56460.23510.087*
N10.06793 (11)0.61120 (12)0.07465 (11)0.0416 (4)
N20.05051 (12)0.73028 (13)0.04201 (13)0.0491 (5)
C10.01571 (12)0.89209 (14)0.20888 (13)0.0376 (5)
C20.14652 (14)0.79424 (14)0.23075 (14)0.0406 (5)
C30.10954 (12)0.88032 (14)0.19092 (13)0.0375 (5)
H30.13900.93400.21230.045*
C40.12234 (12)0.87804 (15)0.10066 (14)0.0426 (5)
C50.09144 (18)0.9444 (2)0.04875 (19)0.0722 (8)
H50.06951.00000.06700.087*
C70.16463 (17)0.81237 (18)0.05892 (17)0.0561 (7)
H70.19290.76080.08300.067*
C80.12881 (14)0.55364 (16)0.09565 (16)0.0515 (6)
H80.14280.54890.14990.062*
C90.17174 (16)0.50113 (19)0.04116 (19)0.0639 (7)
H90.21450.46230.05780.077*
C100.14997 (19)0.5074 (2)0.0387 (2)0.0747 (9)
H100.17780.47230.07710.090*
C110.08674 (18)0.5659 (2)0.06165 (17)0.0659 (7)
H110.07130.57060.11560.079*
C120.04632 (14)0.61766 (16)0.00342 (14)0.0455 (6)
C130.02145 (15)0.68297 (17)0.02135 (15)0.0478 (6)
C140.05387 (19)0.6973 (2)0.09774 (17)0.0738 (9)
H140.03360.66380.14130.089*
C150.1155 (2)0.7605 (3)0.1090 (2)0.0865 (10)
H150.13780.76990.16010.104*
C160.1442 (2)0.8096 (2)0.0452 (2)0.0820 (10)
H160.18550.85390.05200.098*
C170.11076 (18)0.79227 (18)0.0303 (2)0.0716 (9)
H170.13100.82490.07440.086*
O60.30803 (11)0.96079 (13)0.28178 (15)0.0902 (7)
H200.27900.91200.28350.135*
H210.35740.94240.29190.135*
O70.27699 (11)0.62083 (13)0.27671 (16)0.0973 (8)
H220.24510.66750.27740.146*
H230.24330.57670.28510.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03884 (16)0.03100 (15)0.04402 (17)0.00086 (10)0.00143 (11)0.00347 (11)
S1A0.0931 (16)0.102 (2)0.0563 (9)0.0365 (14)0.0254 (9)0.0082 (10)
C6A0.053 (5)0.109 (11)0.096 (9)0.016 (5)0.005 (5)0.048 (7)
S1B0.113 (6)0.124 (8)0.076 (4)0.004 (4)0.021 (3)0.031 (3)
C6B0.078 (12)0.041 (8)0.18 (3)0.002 (8)0.059 (12)0.034 (10)
O10.0499 (9)0.0316 (8)0.0592 (10)0.0009 (7)0.0149 (8)0.0001 (7)
O20.0510 (10)0.0531 (11)0.0899 (14)0.0023 (8)0.0338 (10)0.0044 (9)
O30.0337 (8)0.0366 (9)0.0655 (11)0.0017 (7)0.0039 (8)0.0123 (8)
O40.0452 (9)0.0363 (9)0.0968 (14)0.0014 (7)0.0116 (9)0.0224 (9)
O50.0435 (9)0.0411 (9)0.0899 (13)0.0012 (7)0.0131 (9)0.0187 (9)
N10.0401 (10)0.0402 (10)0.0446 (11)0.0004 (8)0.0010 (8)0.0022 (9)
N20.0494 (12)0.0404 (11)0.0574 (13)0.0018 (9)0.0142 (10)0.0001 (10)
C10.0366 (11)0.0317 (11)0.0444 (13)0.0000 (9)0.0015 (9)0.0017 (10)
C20.0382 (12)0.0396 (12)0.0442 (13)0.0046 (10)0.0028 (10)0.0005 (10)
C30.0322 (11)0.0307 (11)0.0497 (13)0.0019 (9)0.0042 (10)0.0026 (10)
C40.0318 (11)0.0440 (13)0.0518 (14)0.0058 (9)0.0033 (10)0.0081 (11)
C50.0660 (17)0.077 (2)0.073 (2)0.0156 (15)0.0104 (15)0.0262 (16)
C70.0586 (16)0.0536 (16)0.0560 (17)0.0071 (12)0.0175 (13)0.0004 (13)
C80.0479 (13)0.0487 (14)0.0579 (16)0.0061 (11)0.0070 (12)0.0047 (12)
C90.0522 (15)0.0572 (17)0.082 (2)0.0089 (12)0.0002 (15)0.0139 (15)
C100.0691 (19)0.080 (2)0.075 (2)0.0102 (16)0.0159 (17)0.0264 (17)
C110.0748 (18)0.078 (2)0.0450 (15)0.0004 (16)0.0044 (13)0.0155 (14)
C120.0455 (13)0.0467 (14)0.0441 (14)0.0095 (11)0.0024 (11)0.0032 (11)
C130.0495 (13)0.0500 (15)0.0439 (14)0.0112 (11)0.0053 (11)0.0067 (11)
C140.0690 (19)0.104 (2)0.0487 (17)0.0068 (17)0.0068 (15)0.0143 (16)
C150.081 (2)0.101 (3)0.077 (2)0.011 (2)0.0295 (19)0.034 (2)
C160.070 (2)0.063 (2)0.113 (3)0.0004 (15)0.042 (2)0.0220 (19)
C170.0668 (18)0.0556 (17)0.092 (2)0.0114 (14)0.0271 (17)0.0064 (15)
O60.0429 (11)0.0615 (12)0.166 (2)0.0055 (9)0.0057 (12)0.0011 (13)
O70.0408 (10)0.0598 (13)0.191 (2)0.0105 (9)0.0077 (13)0.0120 (14)
Geometric parameters (Å, º) top
Zn1—O12.0001 (15)C3—H30.9800
Zn1—O32.0224 (15)C4—C71.361 (3)
Zn1—O51.9596 (15)C4—C51.386 (3)
Zn1—N12.1123 (18)C5—H50.9317
Zn1—N22.100 (2)C7—H70.9630
S1A—C71.672 (3)C8—C91.369 (3)
S1A—C6A1.79 (2)C8—H80.9300
C6A—C51.461 (16)C9—C101.373 (4)
C6A—H6AA0.9300C9—H90.9300
S1B—C6B1.68 (3)C10—C111.376 (4)
S1B—C51.606 (14)C10—H100.9300
C6B—C71.469 (17)C11—C121.385 (3)
C6B—H6BA0.9300C11—H110.9300
O1—C21.261 (2)C12—C131.473 (3)
O2—C21.231 (3)C13—C141.385 (3)
O3—C11.254 (2)C14—C151.361 (4)
O4—C11.233 (2)C14—H140.9300
O5—H180.8499C15—C161.358 (5)
O5—H190.8500C15—H150.9300
N1—C81.331 (3)C16—C171.385 (4)
N1—C121.344 (3)C16—H160.9300
N2—C171.335 (3)C17—H170.9300
N2—C131.340 (3)O6—H200.8499
C1—C31.540 (3)O6—H210.8501
C2—C31.536 (3)O7—H220.8500
C3—C41.512 (3)O7—H230.8501
O5—Zn1—O1104.60 (7)C4—C5—C6A119.0 (9)
O5—Zn1—O3101.65 (6)C4—C5—S1B110.2 (6)
O1—Zn1—O388.61 (6)C6A—C5—S1B10.7 (17)
O5—Zn1—N2110.18 (7)C4—C5—H5122.6
O1—Zn1—N2144.76 (7)C6A—C5—H5116.9
O3—Zn1—N289.78 (7)S1B—C5—H5126.7
O5—Zn1—N1101.30 (7)C4—C7—S1A113.3 (2)
O1—Zn1—N190.98 (7)C4—C7—C6B117.4 (11)
O3—Zn1—N1156.38 (7)S1A—C7—C6B7.3 (11)
N2—Zn1—N177.11 (7)C4—C7—H7124.8
C7—S1A—C6A95.9 (5)S1A—C7—H7121.8
C5—C6A—S1A101.1 (10)C6B—C7—H7117.7
C5—C6A—H6AA129.4N1—C8—C9123.1 (2)
S1A—C6A—H6AA129.4N1—C8—H8118.5
C6B—S1B—C5100.6 (10)C9—C8—H8118.5
S1B—C6B—C7100.9 (15)C8—C9—C10118.2 (3)
S1B—C6B—H6BA129.5C8—C9—H9120.9
C7—C6B—H6BA129.5C10—C9—H9120.9
C2—O1—Zn1124.22 (14)C9—C10—C11119.7 (3)
C1—O3—Zn1123.42 (13)C9—C10—H10120.2
Zn1—O5—H18117.2C11—C10—H10120.2
Zn1—O5—H19133.4C10—C11—C12119.1 (3)
H18—O5—H19107.9C10—C11—H11120.4
C8—N1—C12119.0 (2)C12—C11—H11120.4
C8—N1—Zn1125.22 (16)N1—C12—C11120.9 (2)
C12—N1—Zn1115.63 (15)N1—C12—C13115.4 (2)
C17—N2—C13119.0 (2)C11—C12—C13123.7 (2)
C17—N2—Zn1124.7 (2)N2—C13—C14120.7 (2)
C13—N2—Zn1116.26 (16)N2—C13—C12115.4 (2)
O4—C1—O3122.49 (19)C14—C13—C12123.9 (3)
O4—C1—C3118.79 (18)C15—C14—C13119.9 (3)
O3—C1—C3118.73 (18)C15—C14—H14120.0
O2—C2—O1123.4 (2)C13—C14—H14120.0
O2—C2—C3118.29 (19)C16—C15—C14119.6 (3)
O1—C2—C3118.20 (19)C16—C15—H15120.2
C4—C3—C2110.86 (17)C14—C15—H15120.2
C4—C3—C1109.04 (17)C15—C16—C17118.6 (3)
C2—C3—C1112.53 (17)C15—C16—H16120.7
C4—C3—H3108.1C17—C16—H16120.7
C2—C3—H3108.1N2—C17—C16122.2 (3)
C1—C3—H3108.1N2—C17—H17118.9
C7—C4—C5110.6 (2)C16—C17—H17118.9
C7—C4—C3125.9 (2)H20—O6—H21103.8
C5—C4—C3123.5 (2)H22—O7—H23102.8
C7—S1A—C6A—C52.2 (10)C7—C4—C5—C6A3.1 (10)
C5—S1B—C6B—C71.9 (17)C3—C4—C5—C6A177.0 (9)
O5—Zn1—O1—C2136.45 (18)C7—C4—C5—S1B3.7 (7)
O3—Zn1—O1—C234.78 (18)C3—C4—C5—S1B176.2 (7)
N2—Zn1—O1—C252.9 (2)S1A—C6A—C5—C43.4 (13)
N1—Zn1—O1—C2121.60 (18)S1A—C6A—C5—S1B33 (5)
O5—Zn1—O3—C1139.19 (18)C6B—S1B—C5—C40.9 (14)
O1—Zn1—O3—C134.56 (18)C6B—S1B—C5—C6A145 (6)
N2—Zn1—O3—C1110.24 (19)C5—C4—C7—S1A1.1 (3)
N1—Zn1—O3—C154.7 (3)C3—C4—C7—S1A179.0 (2)
O5—Zn1—N1—C872.87 (18)C5—C4—C7—C6B5.5 (12)
O1—Zn1—N1—C832.23 (18)C3—C4—C7—C6B174.4 (12)
O3—Zn1—N1—C8121.0 (2)C6A—S1A—C7—C40.8 (7)
N2—Zn1—N1—C8178.76 (19)C6A—S1A—C7—C6B127 (10)
O5—Zn1—N1—C12111.89 (16)S1B—C6B—C7—C44.5 (18)
O1—Zn1—N1—C12143.01 (15)S1B—C6B—C7—S1A52 (9)
O3—Zn1—N1—C1254.3 (2)C12—N1—C8—C91.0 (3)
N2—Zn1—N1—C123.51 (15)Zn1—N1—C8—C9174.14 (18)
O5—Zn1—N2—C1782.5 (2)N1—C8—C9—C100.9 (4)
O1—Zn1—N2—C17107.2 (2)C8—C9—C10—C110.4 (4)
O3—Zn1—N2—C1719.9 (2)C9—C10—C11—C120.2 (4)
N1—Zn1—N2—C17179.9 (2)C8—N1—C12—C110.4 (3)
O5—Zn1—N2—C1399.53 (17)Zn1—N1—C12—C11175.18 (18)
O1—Zn1—N2—C1370.9 (2)C8—N1—C12—C13179.9 (2)
O3—Zn1—N2—C13158.13 (17)Zn1—N1—C12—C134.4 (2)
N1—Zn1—N2—C132.06 (16)C10—C11—C12—N10.2 (4)
Zn1—O3—C1—O4177.78 (18)C10—C11—C12—C13179.4 (2)
Zn1—O3—C1—C32.3 (3)C17—N2—C13—C140.7 (4)
Zn1—O1—C2—O2178.94 (18)Zn1—N2—C13—C14178.78 (19)
Zn1—O1—C2—C32.1 (3)C17—N2—C13—C12178.6 (2)
O2—C2—C3—C4107.2 (2)Zn1—N2—C13—C120.5 (3)
O1—C2—C3—C469.8 (2)N1—C12—C13—N22.6 (3)
O2—C2—C3—C1130.3 (2)C11—C12—C13—N2176.9 (2)
O1—C2—C3—C152.6 (3)N1—C12—C13—C14178.2 (2)
O4—C1—C3—C4109.2 (2)C11—C12—C13—C142.3 (4)
O3—C1—C3—C470.7 (2)N2—C13—C14—C150.5 (4)
O4—C1—C3—C2127.4 (2)C12—C13—C14—C15178.7 (3)
O3—C1—C3—C252.7 (3)C13—C14—C15—C160.6 (5)
C2—C3—C4—C73.5 (3)C14—C15—C16—C171.4 (5)
C1—C3—C4—C7127.9 (2)C13—N2—C17—C160.2 (4)
C2—C3—C4—C5176.4 (2)Zn1—N2—C17—C16177.8 (2)
C1—C3—C4—C552.0 (3)C15—C16—C17—N21.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H18···O7i0.851.742.568 (2)165
O5—H19···O4ii0.851.832.618 (2)155
O6—H20···O20.851.942.784 (2)172
O6—H21···O4iii0.852.222.943 (2)144
O6—H21···O3iii0.852.453.238 (2)154
O7—H22···O20.852.042.847 (3)158
O7—H22···O10.852.473.165 (2)139
O7—H23···O6iv0.851.882.700 (3)162
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H4O4S)(C10H8N2)(H2O)]·2H2O
Mr459.76
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)15.9978 (10), 14.5647 (9), 16.5889 (10)
V3)3865.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.15 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.843, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
23919, 4752, 3107
Rint0.045
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.01
No. of reflections4752
No. of parameters273
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.39

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O12.0001 (15)Zn1—N12.1123 (18)
Zn1—O32.0224 (15)Zn1—N22.100 (2)
Zn1—O51.9596 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H18···O7i0.851.742.568 (2)164.8
O5—H19···O4ii0.851.832.618 (2)154.5
O6—H20···O20.851.942.784 (2)171.5
O6—H21···O4iii0.852.222.943 (2)143.6
O6—H21···O3iii0.852.453.238 (2)154.4
O7—H22···O20.852.042.847 (3)158.0
O7—H22···O10.852.473.165 (2)139.1
O7—H23···O6iv0.851.882.700 (3)162.1
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported financially by the Natural Science Foundation of Shaanxi Provinces of China (SJ08B11).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEppel, S. & Bernstein, J. (2009). Cryst. Growth Des. 9, 1683–1691.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHe, Q.-F., Li, D.-S., Zhao, J., Ke, X.-J. & Li, C. (2009). Acta Cryst. E65, m666.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, W., Wu, D.-Y., Zhou, P., Yan, W.-B., Guo, D., Duan, C.-Y. & Meng, Q.-J. (2009). Cryst. Growth Des. 9, 1361–1369.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Z.-M., Xu, D.-J., Pan, Y.-J., Xu, Y.-Z. & Chiang, M. Y. N. (2001). J. Mol. Struct. 559, 1–5.  Web of Science CSD CrossRef CAS Google Scholar
First citationLim, J.-M., Do, Y. & Kim, J. (2006). Eur. J. Inorg. Chem. pp. 711–717.  Web of Science CSD CrossRef Google Scholar
First citationLin, J.-M., Guan, Y.-F., Wang, D.-Y., Dong, W., Wang, X.-T. & Ga, S. (2008). J. Chem. Soc. Dalton Trans. pp. 6165–6169.  CrossRef Google Scholar
First citationMurray, A. H., Zhang, Y., Wallbank, A. I., Cameron, T. S., Vadavi, R., MacLean, B. J. & Aquino, A. S. (2008). Polyhedron, 27, 1270–1279.  Web of Science CSD CrossRef CAS Google Scholar
First citationNichol, G. S. & Clegg, W. (2009). Cryst. Growth Des. 9, 1844–1850.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1604-m1605
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds