metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­cobalt(II) tetra­aqua­bis­(2-amino­pyrazine-κN4)cobalt(II) di­sulfate dihydrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 October 2009; accepted 29 October 2009; online 4 November 2009)

The reaction of cobalt(II) sulfate and 2-amino­pyrazine affords the title salt, [Co(H2O)6][Co(C4H5N3)2(H2O)4](SO4)2·2H2O. The metal atoms in the tetra­aqua-coordinated and hexa­aqua-coordinated complex cations lie on centers of inversion in slightly distorted octa­hedral geometries. The cations, anions and solvent water mol­ecules are linked by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

The reaction of cobalt(II) chloride and 3-amino­pyrazine yields tetra­kis(3-amino­pyrazine)dichloridocobalt(II); see: Csöregh et al. (2000[Csöregh, I., Kennessey, G., Wadsten, T., Liptay, G. & Carson, B. R. (2000). Z. Kristallogr. 215, 547-552.]); Kang et al. (2009[Kang, W., Huo, L.-H., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, m1502.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(H2O)6][Co(C4H5N3)2(H2O)4](SO4)2·2H2O

  • Mr = 716.40

  • Triclinic, [P \overline 1]

  • a = 6.5722 (3) Å

  • b = 8.3264 (4) Å

  • c = 13.2337 (7) Å

  • α = 75.732 (2)°

  • β = 78.571 (1)°

  • γ = 78.795 (1)°

  • V = 679.81 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.668, Tmax = 0.758

  • 6692 measured reflections

  • 3071 independent reflections

  • 2762 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.05

  • 3071 reflections

  • 231 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1w1⋯O1 0.84 (1) 1.93 (1) 2.755 (2) 168 (3)
O1w—H1w2⋯N2i 0.85 (1) 1.95 (1) 2.795 (2) 175 (3)
O2w—H2w1⋯O3 0.84 (1) 1.94 (1) 2.769 (2) 170 (2)
O2w—H2w2⋯O1ii 0.84 (1) 1.93 (1) 2.765 (2) 170 (3)
O3w—H3w1⋯O2 0.85 (1) 1.91 (1) 2.743 (2) 169 (3)
O3w—H3w2⋯O6w 0.85 (1) 1.89 (1) 2.730 (2) 170 (3)
O4w—H4w1⋯O6wiii 0.85 (1) 1.95 (1) 2.781 (2) 168 (3)
O4w—H4w2⋯O2iii 0.85 (1) 1.91 (1) 2.745 (2) 167 (2)
O5w—H5w1⋯O3iv 0.85 (1) 1.98 (1) 2.816 (2) 170 (3)
O5w—H5w2⋯O4v 0.84 (1) 1.90 (1) 2.737 (2) 174 (3)
O6w—H6w1⋯O3i 0.85 (1) 1.94 (1) 2.782 (2) 171 (4)
O6w—H6w2⋯O4iv 0.85 (1) 1.89 (1) 2.711 (2) 164 (3)
N3—H3n2⋯O1vi 0.85 (1) 2.20 (1) 3.036 (2) 168 (3)
Symmetry codes: (i) x, y-1, z; (ii) x+1, y, z; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+2; (v) -x, -y+1, -z+2; (vi) -x+1, -y+3, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The reaction of cobalt(II) chloride and 3-aminopyrazine yields tetrakis(3-aminopyrazine)dichloridocobalt(II); see: Csöregh et al. (2000); Kang et al. (2009).

Experimental top

To an aqueous solution of 3-aminopyrazine (0.19 g, 2 mmol) was added cobalt(II) sulfate heptahydrate (0.56 g, 2 mmol). Red crystals of the salt separated from the solution after a few days. CH&N elemental analysis. Calc. for C8H34N6O20S2Co2: C 13.41, H 4.78, N 11.73%; found: C 13.39, H 4.72, N 11.76%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H = O–H = 0.85±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Co(H2O)6] [Co(H2O)4(C4H5N3)2] 2[SO4].2H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Hexaaquacobalt(II) tetraaquabis(2-aminopyrazine-κN4)cobalt(II) disulfate dihydrate top
Crystal data top
[Co(H2O)6][Co(C4H5N3)2(H2O)4](SO4)2·2H2OZ = 1
Mr = 716.40F(000) = 370
Triclinic, P1Dx = 1.750 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5722 (3) ÅCell parameters from 6326 reflections
b = 8.3264 (4) Åθ = 3.2–27.5°
c = 13.2337 (7) ŵ = 1.47 mm1
α = 75.732 (2)°T = 293 K
β = 78.571 (1)°Prism, red
γ = 78.795 (1)°0.30 × 0.20 × 0.20 mm
V = 679.81 (6) Å3
Data collection top
Rigaku RAXIS-RAPID IP
diffractometer
3071 independent reflections
Radiation source: fine-focus sealed tube2762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 78
Tmin = 0.668, Tmax = 0.758k = 1010
6692 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.1887P]
where P = (Fo2 + 2Fc2)/3
3071 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.47 e Å3
14 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(H2O)6][Co(C4H5N3)2(H2O)4](SO4)2·2H2Oγ = 78.795 (1)°
Mr = 716.40V = 679.81 (6) Å3
Triclinic, P1Z = 1
a = 6.5722 (3) ÅMo Kα radiation
b = 8.3264 (4) ŵ = 1.47 mm1
c = 13.2337 (7) ÅT = 293 K
α = 75.732 (2)°0.30 × 0.20 × 0.20 mm
β = 78.571 (1)°
Data collection top
Rigaku RAXIS-RAPID IP
diffractometer
3071 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2762 reflections with I > 2σ(I)
Tmin = 0.668, Tmax = 0.758Rint = 0.027
6692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03114 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.47 e Å3
3071 reflectionsΔρmin = 0.33 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.00001.00000.50000.02058 (10)
Co20.00000.50001.00000.02713 (11)
S10.48109 (7)0.88842 (5)0.80066 (3)0.02386 (12)
O10.4133 (2)0.98162 (18)0.70001 (10)0.0309 (3)
O20.5369 (3)0.70948 (18)0.79992 (14)0.0439 (4)
O30.6685 (2)0.95119 (18)0.81446 (11)0.0317 (3)
O40.3094 (2)0.9161 (2)0.88747 (12)0.0410 (4)
O1W0.7178 (2)0.91396 (17)0.53377 (11)0.0295 (3)
O2W1.0213 (2)0.96509 (18)0.66021 (11)0.0305 (3)
O3W0.2836 (2)0.4730 (2)0.90039 (14)0.0435 (4)
O4W0.1433 (3)0.4747 (2)0.87641 (13)0.0399 (4)
O5W0.0399 (2)0.23895 (19)1.05544 (14)0.0421 (4)
O6W0.6169 (3)0.2195 (2)0.91230 (13)0.0397 (3)
N10.8413 (2)1.25974 (19)0.49825 (13)0.0257 (3)
N20.7121 (3)1.6016 (2)0.49242 (14)0.0302 (3)
N30.7876 (3)1.6554 (2)0.30956 (16)0.0423 (4)
C10.8491 (3)1.3722 (2)0.40789 (15)0.0289 (4)
H10.90121.33610.34520.035*
C20.7812 (3)1.5450 (2)0.40335 (16)0.0283 (4)
C30.7021 (3)1.4852 (3)0.58309 (16)0.0317 (4)
H30.65161.52070.64610.038*
C40.7624 (3)1.3170 (2)0.58746 (15)0.0306 (4)
H40.74891.24150.65230.037*
H1W10.615 (3)0.941 (3)0.5778 (16)0.039 (7)*
H1W20.708 (4)0.822 (2)0.521 (2)0.043 (7)*
H2W10.924 (3)0.961 (3)0.7118 (14)0.038 (7)*
H2W21.136 (3)0.983 (4)0.671 (2)0.058 (9)*
H3W10.348 (5)0.556 (3)0.872 (3)0.072 (10)*
H3W20.376 (3)0.387 (2)0.906 (2)0.050 (8)*
H4W10.199 (5)0.387 (3)0.886 (3)0.068 (10)*
H4W20.234 (3)0.558 (2)0.856 (2)0.043 (7)*
H5W10.135 (3)0.176 (3)1.0881 (19)0.046 (8)*
H5W20.062 (4)0.185 (4)1.076 (2)0.066 (9)*
H6W10.637 (6)0.145 (4)0.876 (3)0.094 (13)*
H6W20.625 (5)0.164 (4)0.9747 (12)0.065 (10)*
H3N10.830 (5)1.618 (4)0.2538 (15)0.062 (9)*
H3N20.751 (5)1.7602 (15)0.307 (3)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02009 (17)0.01865 (17)0.02239 (18)0.00235 (12)0.00307 (13)0.00400 (12)
Co20.02194 (19)0.02479 (19)0.0323 (2)0.00440 (14)0.00566 (14)0.00002 (14)
S10.0220 (2)0.0245 (2)0.0240 (2)0.00519 (17)0.00492 (16)0.00072 (16)
O10.0285 (7)0.0353 (7)0.0270 (7)0.0006 (6)0.0095 (5)0.0022 (5)
O20.0429 (9)0.0237 (7)0.0623 (10)0.0039 (6)0.0138 (8)0.0005 (7)
O30.0241 (6)0.0394 (8)0.0336 (7)0.0094 (6)0.0057 (5)0.0074 (6)
O40.0292 (7)0.0610 (10)0.0311 (7)0.0127 (7)0.0028 (6)0.0080 (7)
O1W0.0249 (7)0.0264 (7)0.0383 (8)0.0067 (5)0.0030 (6)0.0134 (6)
O2W0.0266 (7)0.0413 (8)0.0242 (7)0.0062 (6)0.0044 (5)0.0069 (6)
O3W0.0280 (8)0.0322 (8)0.0594 (10)0.0041 (6)0.0049 (7)0.0007 (7)
O4W0.0383 (8)0.0344 (8)0.0493 (9)0.0060 (7)0.0199 (7)0.0029 (7)
O5W0.0314 (8)0.0290 (8)0.0618 (10)0.0075 (6)0.0170 (7)0.0077 (7)
O6W0.0501 (9)0.0321 (8)0.0387 (9)0.0050 (7)0.0107 (7)0.0089 (7)
N10.0231 (7)0.0206 (7)0.0326 (8)0.0019 (6)0.0050 (6)0.0053 (6)
N20.0271 (8)0.0234 (8)0.0425 (9)0.0026 (6)0.0079 (7)0.0104 (7)
N30.0564 (12)0.0247 (9)0.0399 (11)0.0015 (8)0.0053 (9)0.0040 (8)
C10.0305 (9)0.0241 (9)0.0318 (10)0.0029 (7)0.0039 (8)0.0072 (7)
C20.0244 (9)0.0224 (9)0.0378 (10)0.0034 (7)0.0059 (7)0.0052 (7)
C30.0290 (9)0.0318 (10)0.0361 (10)0.0005 (8)0.0061 (8)0.0138 (8)
C40.0305 (10)0.0296 (10)0.0294 (9)0.0018 (8)0.0040 (8)0.0052 (7)
Geometric parameters (Å, º) top
Co1—O1W2.0451 (13)O3W—H3W10.846 (10)
Co1—O1Wi2.0451 (13)O3W—H3W20.846 (10)
Co1—O2Wi2.0970 (13)O4W—H4W10.847 (10)
Co1—O2W2.0970 (13)O4W—H4W20.850 (10)
Co1—N1i2.2076 (15)O5W—H5W10.849 (10)
Co1—N12.2076 (15)O5W—H5W20.840 (10)
Co2—O3W2.0670 (16)O6W—H6W10.849 (10)
Co2—O3Wii2.0670 (16)O6W—H6W20.847 (10)
Co2—O5W2.0977 (15)N1—C11.324 (2)
Co2—O5Wii2.0977 (15)N1—C41.352 (3)
Co2—O4W2.1128 (16)N2—C21.340 (3)
Co2—O4Wii2.1128 (16)N2—C31.343 (3)
S1—O21.4656 (16)N3—C21.349 (3)
S1—O41.4703 (15)N3—H3N10.849 (10)
S1—O11.4717 (13)N3—H3N20.852 (10)
S1—O31.4866 (14)C1—C21.411 (3)
O1W—H1W10.836 (10)C1—H10.9300
O1W—H1W20.846 (10)C3—C41.370 (3)
O2W—H2W10.838 (10)C3—H30.9300
O2W—H2W20.843 (10)C4—H40.9300
O1W—Co1—O1Wi180.0Co1—O1W—H1W1126.4 (17)
O1W—Co1—O2Wi87.43 (6)Co1—O1W—H1W2120.7 (18)
O1Wi—Co1—O2Wi92.57 (6)H1W1—O1W—H1W2110 (2)
O1W—Co1—O2W92.57 (6)Co1—O2W—H2W1128.2 (18)
O1Wi—Co1—O2W87.43 (6)Co1—O2W—H2W2114 (2)
O2Wi—Co1—O2W180.000 (1)H2W1—O2W—H2W2116 (3)
O1W—Co1—N1i88.71 (6)Co2—O3W—H3W1121 (2)
O1Wi—Co1—N1i91.29 (6)Co2—O3W—H3W2125.2 (19)
O2Wi—Co1—N1i90.16 (6)H3W1—O3W—H3W2107 (3)
O2W—Co1—N1i89.84 (6)Co2—O4W—H4W1117 (2)
O1W—Co1—N191.29 (6)Co2—O4W—H4W2114.2 (18)
O1Wi—Co1—N188.71 (6)H4W1—O4W—H4W2107 (3)
O2Wi—Co1—N189.84 (6)Co2—O5W—H5W1128.5 (19)
O2W—Co1—N190.16 (6)Co2—O5W—H5W2122 (2)
N1i—Co1—N1180.000 (1)H5W1—O5W—H5W2103 (3)
O3W—Co2—O3Wii180.0H6W1—O6W—H6W2104 (3)
O3W—Co2—O5W88.95 (7)C1—N1—C4117.08 (16)
O3Wii—Co2—O5W91.05 (7)C1—N1—Co1119.42 (13)
O3W—Co2—O5Wii91.05 (7)C4—N1—Co1122.75 (13)
O3Wii—Co2—O5Wii88.95 (7)C2—N2—C3116.49 (17)
O5W—Co2—O5Wii180.0C2—N3—H3N1118 (2)
O3W—Co2—O4W87.20 (7)C2—N3—H3N2121 (2)
O3Wii—Co2—O4W92.80 (7)H3N1—N3—H3N2121 (3)
O5W—Co2—O4W89.82 (7)N1—C1—C2122.25 (18)
O5Wii—Co2—O4W90.18 (7)N1—C1—H1118.9
O3W—Co2—O4Wii92.80 (7)C2—C1—H1118.9
O3Wii—Co2—O4Wii87.20 (7)N2—C2—N3119.21 (18)
O5W—Co2—O4Wii90.18 (7)N2—C2—C1120.28 (18)
O5Wii—Co2—O4Wii89.82 (7)N3—C2—C1120.50 (19)
O4W—Co2—O4Wii180.0N2—C3—C4123.26 (19)
O2—S1—O4110.72 (10)N2—C3—H3118.4
O2—S1—O1109.81 (9)C4—C3—H3118.4
O4—S1—O1108.83 (9)N1—C4—C3120.53 (18)
O2—S1—O3108.89 (9)N1—C4—H4119.7
O4—S1—O3109.26 (9)C3—C4—H4119.7
O1—S1—O3109.31 (8)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O10.84 (1)1.93 (1)2.755 (2)168 (3)
O1w—H1w2···N2iii0.85 (1)1.95 (1)2.795 (2)175 (3)
O2w—H2w1···O30.84 (1)1.94 (1)2.769 (2)170 (2)
O2w—H2w2···O1iv0.84 (1)1.93 (1)2.765 (2)170 (3)
O3w—H3w1···O20.85 (1)1.91 (1)2.743 (2)169 (3)
O3w—H3w2···O6w0.85 (1)1.89 (1)2.730 (2)170 (3)
O4w—H4w1···O6wv0.85 (1)1.95 (1)2.781 (2)168 (3)
O4w—H4w2···O2v0.85 (1)1.91 (1)2.745 (2)167 (2)
O5w—H5w1···O3vi0.85 (1)1.98 (1)2.816 (2)170 (3)
O5w—H5w2···O4ii0.84 (1)1.90 (1)2.737 (2)174 (3)
O6w—H6w1···O3iii0.85 (1)1.94 (1)2.782 (2)171 (4)
O6w—H6w2···O4vi0.85 (1)1.89 (1)2.711 (2)164 (3)
N3—H3n2···O1vii0.85 (1)2.20 (1)3.036 (2)168 (3)
Symmetry codes: (ii) x, y+1, z+2; (iii) x, y1, z; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y+1, z+2; (vii) x+1, y+3, z+1.

Experimental details

Crystal data
Chemical formula[Co(H2O)6][Co(C4H5N3)2(H2O)4](SO4)2·2H2O
Mr716.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.5722 (3), 8.3264 (4), 13.2337 (7)
α, β, γ (°)75.732 (2), 78.571 (1), 78.795 (1)
V3)679.81 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku RAXIS-RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.668, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
6692, 3071, 2762
Rint0.027
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.05
No. of reflections3071
No. of parameters231
No. of restraints14
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.33

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O10.84 (1)1.93 (1)2.755 (2)168 (3)
O1w—H1w2···N2i0.85 (1)1.95 (1)2.795 (2)175 (3)
O2w—H2w1···O30.84 (1)1.94 (1)2.769 (2)170 (2)
O2w—H2w2···O1ii0.84 (1)1.93 (1)2.765 (2)170 (3)
O3w—H3w1···O20.85 (1)1.91 (1)2.743 (2)169 (3)
O3w—H3w2···O6w0.85 (1)1.89 (1)2.730 (2)170 (3)
O4w—H4w1···O6wiii0.85 (1)1.95 (1)2.781 (2)168 (3)
O4w—H4w2···O2iii0.85 (1)1.91 (1)2.745 (2)167 (2)
O5w—H5w1···O3iv0.85 (1)1.98 (1)2.816 (2)170 (3)
O5w—H5w2···O4v0.84 (1)1.90 (1)2.737 (2)174 (3)
O6w—H6w1···O3i0.85 (1)1.94 (1)2.782 (2)171 (4)
O6w—H6w2···O4iv0.85 (1)1.89 (1)2.711 (2)164 (3)
N3—H3n2···O1vi0.85 (1)2.20 (1)3.036 (2)168 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+1, y+1, z+2; (v) x, y+1, z+2; (vi) x+1, y+3, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of Heilongjiang Province (No. B200501), Heilongjiang University, China, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCsöregh, I., Kennessey, G., Wadsten, T., Liptay, G. & Carson, B. R. (2000). Z. Kristallogr. 215, 547–552.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKang, W., Huo, L.-H., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, m1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds