organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Chloro­benz­yl­oxy)urea

aState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China, bDepartment of Pharmacy, Medical College of Nanchang University, Nanchang 330006, People's Republic of China, cDepartment of Pharmacy, Shangrao Branch of Jiangxi Medical College, Shangrao 334000, People's Republic of China, and dSino-German Joint Research Institute of Nanchang University, Nanchang 330006, People's Republic of China
*Correspondence e-mail: cmxlf2008@163.com

(Received 29 October 2009; accepted 29 October 2009; online 4 November 2009)

The asymmetric unit of the crystal structure of the title compound, C8H9ClN2O2, contains four independent mol­ecules. The dihedral angles between the urea N—(C=O)—N planes and the benzene rings are 83.3 (3), 87.8 (1), 89.1 (1) and 17.5 (2)° in the four mol­ecules. Extensive N—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For general background to the design and synthesis of hydroxy­urea derivatives and their in vitro anti­tumor activity, see: Mai et al. (2009[Mai, X., Xia, H.-Y., Cao, Y.-S., Lu, X.-S. & Fang, X.-N. (2009). Acta Cryst. E65, o442.]). For related structures, see: Armagan et al. (1976[Armagan, N., Richards, J. P. G. & Uraz, A. A. (1976). Acta Cryst. B32, 1042-1047.]); Nielsen et al. (1993[Nielsen, B. B., Frydenvang, K. & Larsen, I. K. (1993). Acta Cryst. C49, 1018-1022.]); Berman & Kim (1967[Berman, H. & Kim, S. H. (1967). Acta Cryst. 23, 180-181.]); Howard et al. (1967[Howard, W., Shields, P. J., Hamrick, J. & Welby, R. (1967). J. Chem. Phys. 46, 2510-2514.]); Larsen & Jerslev (1966[Larsen, I. K. & Jerslev, B. (1966). Acta Chem. Scand. 20, 983-991.]); Thiessen et al. (1978[Thiessen, W. E., Levy, H. A. & Flaig, B. D. (1978). Acta Cryst. B34, 2495-2502.]); Yoshitaka et al. (1993[Yoshitaka, S., James, L. S., Alan, J. H., Adam, H. L., Timothy, J. K., Warren, H. L. D., Hope, W. & Earl, F. K. (1993). J. Med. Chem. 36, 3580-3594. ]).

[Scheme 1]

Experimental

Crystal data
  • C8H9ClN2O2

  • Mr = 200.62

  • Triclinic, [P \overline 1]

  • a = 10.830 (1) Å

  • b = 13.9410 (14) Å

  • c = 14.2750 (15) Å

  • α = 69.672 (1)°

  • β = 75.828 (2)°

  • γ = 70.388 (1)°

  • V = 1883.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 K

  • 0.43 × 0.40 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.856, Tmax = 0.982

  • 9908 measured reflections

  • 6533 independent reflections

  • 3124 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.094

  • S = 1.01

  • 6533 reflections

  • 469 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5i 0.90 2.20 3.096 (3) 173
N2—H2A⋯O1i 0.86 2.16 3.023 (3) 177
N2—H2B⋯O3ii 0.86 2.29 2.971 (3) 136
N4—H4A⋯O7iii 0.86 2.11 2.971 (3) 176
N4—H4B⋯O5 0.86 2.39 3.017 (3) 130
N5—H5⋯O1i 0.90 2.19 3.090 (3) 176
N6—H6A⋯O5iv 0.86 2.07 2.925 (3) 177
N7—H7⋯O7v 0.90 2.04 2.937 (3) 171
N8—H8A⋯O3ii 0.86 2.09 2.947 (3) 177
N8—H8B⋯O1i 0.86 2.25 2.976 (3) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) x-1, y, z; (iv) -x, -y+2, -z+1; (v) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydroxyurea (HU) is a substance used in cancer chemotherapy for many years, but it has several disadvantages, such as short half-life, extremely polar nature, the rapid development of resistance and so on. To obtain more potent compound, we have designed and synthesized HU derivatives, and evaluated their in vitro antitumor activities in our previous work (Mai et al., 2009). Here we report the crystal structure of the title compound, 3-chlorobenzyloxyurea.

The structure of 3-chlorobenzyloxyurea is shown in Fig. 1. The conformations of the N–O and C=O bonds are opposite to each other, similar to that observed in N-hydroxyurea (Howard et al., 1967; Thiessen et al., 1978; Armagan et al., 1976; Berman et al., 1967; Larsen & Jerslev, 1966), 1-hydroxy-1-methylurea, 1-hydroxy-3-methylurea (Nielsen et al., 1993), N-(6-phenoxy-2H-chromen-3-ylmethyl)-N-hydroxyurea (Yoshitaka et al., 1993) and 1-(2-fluorobenzyl)-1-(2-fluorobenzyloxy) urea (Mai et al., 2009). The bond parameters are similar to 1-(2-fluorobenzyl)-1-(2-fluorobenzyloxy)urea (Mai et al., 2009). The asymmetric unit of the title compound contains four independent molecules. The dihedral angles between the urea N-(C=O)–N planes and benzene ring are 83.3 (3)°, 87.8 (1)°, 89.1 (1)° and 17.5 (2)° for the four molecules. The N–O bonds are twisted out of the urea N–(C=O)–N planes by 18.4 (3)°, 17.9 (3)°, 19.2 (4)° and -17.8 (3)°, respectively in the four molecules. In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds, forming the zigzig chain.

Related literature top

For general background to the design and synthesis of hydroxyurea derivatives and their in vitro antitumor activity, see: Mai et al. (2009). For related structures, see: Armagan et al. (1976); Nielsen et al. (1993); Berman & Kim (1967); Howard et al. (1967); Larsen & Jerslev (1966); Thiessen et al. (1978); Yoshitaka et al. (1993).

Experimental top

The title compound was synthesized by hydroxyurea (0.026 mol) with 3-chlorobenzyl chloride (0.034 mol) in methanol (80 ml) in the presence of potassium hydroxide (0.034 mol). After refluxing for 13 h, solvent was removed under reduced pressure at 308 K. The resulting crude solid was filtered and washed in trichloromethane, then recrystallized in acetone and trichloromethane solution (5:2), filtered and dried. Colorless platelet single crystals of the title compound were recrystallized from the mixed solvent acetone and n-hexane (5:10).

Refinement top

H atoms were placed in calculated positions with N—H = 0.90 (imino), 0.86 Å (amino), C—H = 0.93 (aromatic) and 0.97 Å (methylene), and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The unit cell diagram showing intermolecular hydrogen bonding as dashed lines
1-(3-Chlorobenzyloxy)urea top
Crystal data top
C8H9ClN2O2Z = 8
Mr = 200.62F(000) = 832
Triclinic, P1Dx = 1.415 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.830 (1) ÅCell parameters from 1978 reflections
b = 13.9410 (14) Åθ = 2.2–22.6°
c = 14.2750 (15) ŵ = 0.37 mm1
α = 69.672 (1)°T = 298 K
β = 75.828 (2)°Platelet, colourless
γ = 70.388 (1)°0.43 × 0.40 × 0.05 mm
V = 1883.6 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6533 independent reflections
Radiation source: fine-focus sealed tube3124 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.856, Tmax = 0.982k = 1616
9908 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0205P)2]
where P = (Fo2 + 2Fc2)/3
6533 reflections(Δ/σ)max = 0.001
469 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C8H9ClN2O2γ = 70.388 (1)°
Mr = 200.62V = 1883.6 (3) Å3
Triclinic, P1Z = 8
a = 10.830 (1) ÅMo Kα radiation
b = 13.9410 (14) ŵ = 0.37 mm1
c = 14.2750 (15) ÅT = 298 K
α = 69.672 (1)°0.43 × 0.40 × 0.05 mm
β = 75.828 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6533 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3124 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.982Rint = 0.029
9908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
6533 reflectionsΔρmin = 0.24 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.11832 (10)0.31531 (8)0.02808 (6)0.0839 (3)
Cl20.25832 (11)0.58558 (9)0.04798 (7)0.0998 (4)
Cl30.39222 (11)0.83726 (9)0.04386 (7)0.1020 (4)
Cl40.16163 (12)1.13164 (10)0.84040 (10)0.1271 (5)
N10.8146 (2)0.36994 (18)0.39732 (16)0.0401 (6)
H10.84180.30290.43700.048*
N20.6676 (2)0.51825 (17)0.44071 (16)0.0419 (6)
H2A0.59000.55220.46310.050*
H2B0.73010.54910.41770.050*
N30.0506 (2)0.61462 (18)0.39981 (16)0.0380 (6)
H30.07570.54890.44240.046*
N40.0889 (2)0.76897 (17)0.43587 (16)0.0453 (7)
H4A0.16470.80540.45830.054*
H4B0.02510.79800.40890.054*
N50.2948 (2)0.86095 (18)0.39097 (17)0.0438 (6)
H50.32030.79480.43270.053*
N60.1619 (2)1.01583 (18)0.42966 (17)0.0529 (7)
H6A0.08821.05240.45490.063*
H6B0.22521.04480.39910.063*
N70.4342 (2)0.89042 (18)0.59283 (16)0.0422 (6)
H70.41190.95740.55200.051*
N80.5745 (2)0.73892 (17)0.55203 (16)0.0447 (6)
H8A0.65130.70250.53090.054*
H8B0.50930.71110.57350.054*
O10.60499 (19)0.36862 (15)0.47386 (15)0.0501 (6)
O20.91190 (18)0.42284 (15)0.38500 (13)0.0421 (5)
O30.15777 (19)0.62023 (14)0.48081 (14)0.0462 (5)
O40.15349 (18)0.66423 (15)0.38002 (14)0.0440 (5)
O50.09142 (19)0.86693 (15)0.48084 (15)0.0524 (6)
O60.4015 (2)0.90763 (15)0.36655 (15)0.0510 (6)
O70.64654 (19)0.88364 (14)0.52150 (14)0.0469 (5)
O80.33178 (18)0.84381 (15)0.60348 (14)0.0458 (5)
C10.6909 (3)0.4182 (2)0.4417 (2)0.0379 (7)
C20.9543 (3)0.4670 (2)0.2794 (2)0.0463 (8)
H2C0.99400.52270.27140.056*
H2D0.87740.49920.24440.056*
C31.0527 (3)0.3856 (2)0.2309 (2)0.0400 (8)
C41.0418 (3)0.3863 (2)0.1359 (2)0.0473 (8)
H40.97150.43480.10320.057*
C51.1353 (3)0.3151 (3)0.0903 (2)0.0489 (8)
C61.2408 (3)0.2433 (3)0.1353 (2)0.0573 (9)
H61.30380.19640.10280.069*
C71.2522 (3)0.2418 (3)0.2306 (3)0.0619 (10)
H7A1.32300.19310.26270.074*
C81.1592 (3)0.3119 (3)0.2776 (2)0.0551 (9)
H81.16750.31000.34160.066*
C90.0704 (3)0.6681 (2)0.4428 (2)0.0373 (7)
C100.1852 (3)0.7051 (2)0.2732 (2)0.0506 (9)
H10A0.24430.74900.25910.061*
H10B0.10450.75030.24560.061*
C110.2494 (3)0.6202 (3)0.2204 (2)0.0462 (8)
C120.2222 (3)0.6366 (3)0.1247 (2)0.0552 (9)
H120.15900.69750.09570.066*
C130.2892 (4)0.5626 (3)0.0729 (2)0.0578 (9)
C140.3784 (4)0.4728 (3)0.1150 (3)0.0694 (11)
H140.42330.42340.07950.083*
C150.4031 (4)0.4544 (3)0.2107 (3)0.0804 (12)
H150.46320.39150.24030.096*
C160.3399 (3)0.5278 (3)0.2632 (2)0.0659 (10)
H160.35820.51510.32750.079*
C170.1778 (3)0.9153 (3)0.4379 (2)0.0424 (8)
C180.4308 (3)0.9459 (3)0.2589 (2)0.0649 (10)
H18A0.50390.97730.24200.078*
H18B0.35441.00160.23330.078*
C190.4666 (3)0.8607 (3)0.2068 (2)0.0498 (9)
C200.4215 (3)0.8854 (3)0.1150 (3)0.0608 (10)
H200.37100.95370.08580.073*
C210.4533 (3)0.8067 (3)0.0688 (2)0.0625 (10)
C220.5279 (3)0.7067 (3)0.1085 (3)0.0665 (10)
H220.54890.65520.07540.080*
C230.5723 (3)0.6827 (3)0.1992 (3)0.0687 (10)
H230.62250.61410.22780.082*
C240.5427 (3)0.7592 (3)0.2471 (2)0.0575 (9)
H240.57440.74240.30740.069*
C250.5569 (3)0.8378 (2)0.5515 (2)0.0364 (7)
C260.2837 (3)0.8033 (2)0.7081 (2)0.0504 (9)
H26A0.35820.77270.74560.061*
H26B0.24610.74650.71570.061*
C270.1814 (3)0.8842 (2)0.7541 (2)0.0443 (8)
C280.2123 (3)0.9650 (3)0.7696 (2)0.0560 (9)
H280.29680.97420.74590.067*
C290.1197 (4)1.0319 (3)0.8198 (3)0.0605 (10)
C300.0046 (4)1.0205 (3)0.8561 (3)0.0815 (12)
H300.06581.06430.89260.098*
C310.0373 (4)0.9426 (3)0.8373 (4)0.1146 (18)
H310.12300.93560.85870.137*
C320.0543 (4)0.8753 (3)0.7876 (3)0.0877 (13)
H320.03040.82260.77630.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1008 (8)0.0997 (8)0.0604 (6)0.0235 (7)0.0021 (6)0.0446 (6)
Cl20.0901 (8)0.1568 (11)0.0720 (7)0.0397 (8)0.0086 (6)0.0533 (7)
Cl30.1091 (9)0.1371 (11)0.0636 (6)0.0405 (8)0.0252 (6)0.0189 (6)
Cl40.1133 (10)0.1276 (11)0.1915 (13)0.0182 (8)0.0241 (10)0.1208 (10)
N10.0363 (16)0.0381 (16)0.0505 (15)0.0135 (14)0.0008 (13)0.0199 (13)
N20.0341 (15)0.0312 (16)0.0625 (16)0.0105 (13)0.0005 (13)0.0198 (13)
N30.0380 (16)0.0337 (15)0.0433 (15)0.0127 (13)0.0003 (13)0.0134 (12)
N40.0397 (16)0.0333 (17)0.0641 (17)0.0126 (13)0.0039 (13)0.0209 (13)
N50.0432 (17)0.0370 (17)0.0543 (16)0.0154 (14)0.0014 (14)0.0168 (13)
N60.0454 (17)0.0355 (17)0.0766 (19)0.0135 (14)0.0034 (15)0.0211 (14)
N70.0389 (16)0.0341 (16)0.0532 (16)0.0117 (14)0.0013 (14)0.0144 (13)
N80.0382 (16)0.0316 (16)0.0665 (17)0.0097 (13)0.0005 (13)0.0218 (13)
O10.0376 (13)0.0378 (13)0.0820 (16)0.0174 (11)0.0014 (12)0.0260 (11)
O20.0374 (12)0.0513 (14)0.0452 (12)0.0174 (11)0.0006 (10)0.0226 (10)
O30.0372 (13)0.0399 (13)0.0690 (14)0.0186 (11)0.0037 (11)0.0250 (11)
O40.0387 (13)0.0486 (14)0.0505 (13)0.0196 (11)0.0025 (11)0.0201 (11)
O50.0414 (14)0.0408 (14)0.0827 (16)0.0187 (12)0.0033 (12)0.0283 (12)
O60.0466 (14)0.0544 (15)0.0578 (14)0.0230 (12)0.0024 (11)0.0215 (11)
O70.0359 (13)0.0333 (13)0.0743 (14)0.0120 (11)0.0013 (11)0.0211 (11)
O80.0391 (13)0.0521 (14)0.0522 (13)0.0186 (11)0.0001 (11)0.0212 (11)
C10.040 (2)0.034 (2)0.0448 (19)0.0074 (17)0.0077 (17)0.0187 (16)
C20.051 (2)0.046 (2)0.0417 (19)0.0195 (18)0.0019 (17)0.0133 (16)
C30.042 (2)0.039 (2)0.0374 (18)0.0149 (17)0.0032 (16)0.0115 (15)
C40.047 (2)0.043 (2)0.050 (2)0.0110 (17)0.0046 (17)0.0145 (17)
C50.053 (2)0.051 (2)0.045 (2)0.0189 (19)0.0003 (18)0.0179 (17)
C60.061 (3)0.047 (2)0.057 (2)0.012 (2)0.011 (2)0.0221 (18)
C70.056 (2)0.055 (2)0.058 (2)0.0005 (19)0.004 (2)0.0146 (19)
C80.054 (2)0.060 (3)0.047 (2)0.012 (2)0.0039 (19)0.0160 (18)
C90.037 (2)0.037 (2)0.0447 (19)0.0107 (17)0.0061 (16)0.0193 (16)
C100.051 (2)0.042 (2)0.050 (2)0.0157 (17)0.0065 (18)0.0099 (17)
C110.045 (2)0.044 (2)0.043 (2)0.0166 (18)0.0088 (17)0.0103 (17)
C120.046 (2)0.053 (2)0.059 (2)0.0114 (18)0.0005 (19)0.0160 (19)
C130.055 (2)0.064 (3)0.050 (2)0.022 (2)0.0023 (19)0.014 (2)
C140.086 (3)0.058 (3)0.056 (2)0.022 (2)0.021 (2)0.025 (2)
C150.096 (3)0.047 (3)0.056 (3)0.014 (2)0.005 (2)0.008 (2)
C160.076 (3)0.053 (3)0.045 (2)0.004 (2)0.002 (2)0.0105 (19)
C170.041 (2)0.038 (2)0.053 (2)0.0084 (18)0.0080 (18)0.0211 (17)
C180.075 (3)0.052 (2)0.062 (2)0.027 (2)0.011 (2)0.013 (2)
C190.051 (2)0.046 (2)0.047 (2)0.0181 (19)0.0096 (18)0.0128 (18)
C200.054 (2)0.053 (2)0.057 (2)0.0084 (19)0.001 (2)0.006 (2)
C210.053 (2)0.080 (3)0.048 (2)0.021 (2)0.0020 (19)0.015 (2)
C220.062 (3)0.076 (3)0.060 (2)0.014 (2)0.006 (2)0.034 (2)
C230.066 (3)0.060 (3)0.063 (2)0.004 (2)0.005 (2)0.020 (2)
C240.057 (2)0.057 (3)0.052 (2)0.009 (2)0.0074 (19)0.015 (2)
C250.036 (2)0.030 (2)0.0425 (18)0.0054 (17)0.0067 (16)0.0129 (15)
C260.054 (2)0.041 (2)0.054 (2)0.0180 (18)0.0034 (18)0.0124 (17)
C270.039 (2)0.043 (2)0.0460 (19)0.0100 (17)0.0013 (16)0.0103 (16)
C280.043 (2)0.069 (3)0.063 (2)0.015 (2)0.0005 (18)0.033 (2)
C290.067 (3)0.056 (3)0.060 (2)0.009 (2)0.011 (2)0.0252 (19)
C300.078 (3)0.057 (3)0.083 (3)0.002 (2)0.022 (2)0.026 (2)
C310.061 (3)0.078 (3)0.195 (5)0.027 (3)0.048 (3)0.067 (3)
C320.060 (3)0.062 (3)0.142 (4)0.025 (2)0.024 (3)0.049 (3)
Geometric parameters (Å, º) top
Cl1—C51.742 (3)C6—C71.388 (4)
Cl2—C131.737 (3)C6—H60.9300
Cl3—C211.750 (3)C7—C81.372 (4)
Cl4—C291.732 (3)C7—H7A0.9300
N1—C11.387 (3)C8—H80.9300
N1—O21.424 (2)C10—C111.504 (4)
N1—H10.9000C10—H10A0.9700
N2—C11.327 (3)C10—H10B0.9700
N2—H2A0.8600C11—C161.376 (4)
N2—H2B0.8600C11—C121.392 (4)
N3—C91.385 (3)C12—C131.380 (4)
N3—O41.424 (2)C12—H120.9300
N3—H30.9000C13—C141.346 (4)
N4—C91.323 (3)C14—C151.376 (4)
N4—H4A0.8600C14—H140.9300
N4—H4B0.8600C15—C161.375 (4)
N5—C171.386 (3)C15—H150.9300
N5—O61.426 (3)C16—H160.9300
N5—H50.9000C18—C191.510 (4)
N6—C171.320 (3)C18—H18A0.9700
N6—H6A0.8600C18—H18B0.9700
N6—H6B0.8600C19—C241.377 (4)
N7—C251.384 (3)C19—C201.400 (4)
N7—O81.417 (2)C20—C211.378 (4)
N7—H70.9000C20—H200.9300
N8—C251.324 (3)C21—C221.355 (4)
N8—H8A0.8600C22—C231.383 (4)
N8—H8B0.8600C22—H220.9300
O1—C11.247 (3)C23—C241.371 (4)
O2—C21.439 (3)C23—H230.9300
O3—C91.247 (3)C24—H240.9300
O4—C101.428 (3)C26—C271.500 (4)
O5—C171.249 (3)C26—H26A0.9700
O6—C181.432 (3)C26—H26B0.9700
O7—C251.248 (3)C27—C321.374 (4)
O8—C261.432 (3)C27—C281.377 (4)
C2—C31.507 (4)C28—C291.369 (4)
C2—H2C0.9700C28—H280.9300
C2—H2D0.9700C29—C301.360 (4)
C3—C41.387 (4)C30—C311.372 (5)
C3—C81.391 (4)C30—H300.9300
C4—C51.374 (4)C31—C321.364 (5)
C4—H40.9300C31—H310.9300
C5—C61.366 (4)C32—H320.9300
C1—N1—O2113.2 (2)C13—C12—H12120.0
C1—N1—H1108.3C11—C12—H12120.0
O2—N1—H1108.2C14—C13—C12120.6 (3)
C1—N2—H2A120.0C14—C13—Cl2119.7 (3)
C1—N2—H2B120.0C12—C13—Cl2119.7 (3)
H2A—N2—H2B120.0C13—C14—C15119.8 (3)
C9—N3—O4114.3 (2)C13—C14—H14120.1
C9—N3—H3108.1C15—C14—H14120.1
O4—N3—H3108.1C16—C15—C14120.8 (3)
C9—N4—H4A120.0C16—C15—H15119.6
C9—N4—H4B120.0C14—C15—H15119.6
H4A—N4—H4B120.0C15—C16—C11119.8 (3)
C17—N5—O6114.9 (2)C15—C16—H16120.1
C17—N5—H5108.0C11—C16—H16120.1
O6—N5—H5107.9O5—C17—N6124.3 (3)
C17—N6—H6A120.0O5—C17—N5117.3 (3)
C17—N6—H6B120.0N6—C17—N5118.2 (3)
H6A—N6—H6B120.0O6—C18—C19113.6 (2)
C25—N7—O8114.0 (2)O6—C18—H18A108.8
C25—N7—H7107.9C19—C18—H18A108.8
O8—N7—H7107.9O6—C18—H18B108.8
C25—N8—H8A120.0C19—C18—H18B108.8
C25—N8—H8B120.0H18A—C18—H18B107.7
H8A—N8—H8B120.0C24—C19—C20119.1 (3)
N1—O2—C2110.04 (18)C24—C19—C18121.7 (3)
N3—O4—C10108.3 (2)C20—C19—C18119.2 (3)
N5—O6—C18108.6 (2)C21—C20—C19118.7 (3)
N7—O8—C26110.3 (2)C21—C20—H20120.7
O1—C1—N2123.4 (3)C19—C20—H20120.7
O1—C1—N1118.8 (3)C22—C21—C20122.2 (3)
N2—C1—N1117.6 (3)C22—C21—Cl3119.4 (3)
O2—C2—C3113.2 (2)C20—C21—Cl3118.4 (3)
O2—C2—H2C108.9C21—C22—C23118.9 (3)
C3—C2—H2C108.9C21—C22—H22120.6
O2—C2—H2D108.9C23—C22—H22120.6
C3—C2—H2D108.9C24—C23—C22120.5 (3)
H2C—C2—H2D107.7C24—C23—H23119.8
C4—C3—C8118.5 (3)C22—C23—H23119.8
C4—C3—C2120.1 (3)C23—C24—C19120.6 (3)
C8—C3—C2121.4 (3)C23—C24—H24119.7
C5—C4—C3119.8 (3)C19—C24—H24119.7
C5—C4—H4120.1O7—C25—N8123.8 (3)
C3—C4—H4120.1O7—C25—N7118.3 (3)
C6—C5—C4121.9 (3)N8—C25—N7117.8 (3)
C6—C5—Cl1118.9 (3)O8—C26—C27114.8 (2)
C4—C5—Cl1119.2 (3)O8—C26—H26A108.6
C5—C6—C7118.7 (3)C27—C26—H26A108.6
C5—C6—H6120.7O8—C26—H26B108.6
C7—C6—H6120.7C27—C26—H26B108.6
C8—C7—C6120.2 (3)H26A—C26—H26B107.5
C8—C7—H7A119.9C32—C27—C28117.9 (3)
C6—C7—H7A119.9C32—C27—C26120.1 (3)
C7—C8—C3121.0 (3)C28—C27—C26121.9 (3)
C7—C8—H8119.5C29—C28—C27120.5 (3)
C3—C8—H8119.5C29—C28—H28119.8
O3—C9—N4123.9 (3)C27—C28—H28119.8
O3—C9—N3118.1 (3)C30—C29—C28121.4 (3)
N4—C9—N3117.9 (3)C30—C29—Cl4118.9 (3)
O4—C10—C11113.7 (2)C28—C29—Cl4119.7 (3)
O4—C10—H10A108.8C29—C30—C31118.2 (4)
C11—C10—H10A108.8C29—C30—H30120.9
O4—C10—H10B108.8C31—C30—H30120.9
C11—C10—H10B108.8C32—C31—C30120.8 (4)
H10A—C10—H10B107.7C32—C31—H31119.6
C16—C11—C12119.0 (3)C30—C31—H31119.6
C16—C11—C10120.9 (3)C31—C32—C27121.1 (4)
C12—C11—C10120.0 (3)C31—C32—H32119.5
C13—C12—C11120.0 (3)C27—C32—H32119.5
C1—N1—O2—C2114.4 (2)C12—C11—C16—C150.9 (5)
C9—N3—O4—C10110.6 (3)C10—C11—C16—C15176.0 (3)
C17—N5—O6—C18112.7 (3)O6—N5—C17—O5164.4 (2)
C25—N7—O8—C26114.6 (3)O6—N5—C17—N619.2 (4)
O2—N1—C1—O1166.4 (2)N5—O6—C18—C1958.1 (3)
O2—N1—C1—N218.4 (3)O6—C18—C19—C2438.7 (4)
N1—O2—C2—C379.1 (3)O6—C18—C19—C20141.4 (3)
O2—C2—C3—C4137.8 (3)C24—C19—C20—C210.9 (5)
O2—C2—C3—C845.1 (4)C18—C19—C20—C21179.2 (3)
C8—C3—C4—C50.1 (4)C19—C20—C21—C220.8 (5)
C2—C3—C4—C5177.0 (3)C19—C20—C21—Cl3178.1 (2)
C3—C4—C5—C60.7 (5)C20—C21—C22—C230.8 (5)
C3—C4—C5—Cl1178.8 (2)Cl3—C21—C22—C23178.0 (3)
C4—C5—C6—C70.9 (5)C21—C22—C23—C240.9 (5)
Cl1—C5—C6—C7178.5 (2)C22—C23—C24—C191.1 (5)
C5—C6—C7—C80.5 (5)C20—C19—C24—C231.1 (5)
C6—C7—C8—C30.3 (5)C18—C19—C24—C23179.0 (3)
C4—C3—C8—C70.5 (5)O8—N7—C25—O7166.5 (2)
C2—C3—C8—C7176.5 (3)O8—N7—C25—N817.8 (3)
O4—N3—C9—O3165.9 (2)N7—O8—C26—C2783.7 (3)
O4—N3—C9—N417.9 (3)O8—C26—C27—C32114.8 (3)
N3—O4—C10—C1167.9 (3)O8—C26—C27—C2869.1 (4)
O4—C10—C11—C1638.4 (4)C32—C27—C28—C292.0 (5)
O4—C10—C11—C12144.7 (3)C26—C27—C28—C29174.2 (3)
C16—C11—C12—C132.2 (5)C27—C28—C29—C300.3 (5)
C10—C11—C12—C13174.7 (3)C27—C28—C29—Cl4178.9 (2)
C11—C12—C13—C141.7 (5)C28—C29—C30—C312.8 (6)
C11—C12—C13—Cl2178.1 (2)Cl4—C29—C30—C31178.6 (3)
C12—C13—C14—C150.2 (5)C29—C30—C31—C322.9 (7)
Cl2—C13—C14—C15180.0 (3)C30—C31—C32—C270.7 (7)
C13—C14—C15—C161.6 (6)C28—C27—C32—C311.8 (6)
C14—C15—C16—C111.0 (6)C26—C27—C32—C31174.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.902.203.096 (3)173
N2—H2A···O1i0.862.163.023 (3)177
N2—H2B···O3ii0.862.292.971 (3)136
N4—H4A···O7iii0.862.112.971 (3)176
N4—H4B···O50.862.393.017 (3)130
N5—H5···O1i0.902.193.090 (3)176
N6—H6A···O5iv0.862.072.925 (3)177
N7—H7···O7v0.902.042.937 (3)171
N8—H8A···O3ii0.862.092.947 (3)177
N8—H8B···O1i0.862.252.976 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+2, z+1; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC8H9ClN2O2
Mr200.62
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.830 (1), 13.9410 (14), 14.2750 (15)
α, β, γ (°)69.672 (1), 75.828 (2), 70.388 (1)
V3)1883.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.43 × 0.40 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.856, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
9908, 6533, 3124
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.094, 1.01
No. of reflections6533
No. of parameters469
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.902.203.096 (3)173
N2—H2A···O1i0.862.163.023 (3)177
N2—H2B···O3ii0.862.292.971 (3)136
N4—H4A···O7iii0.862.112.971 (3)176
N4—H4B···O50.862.393.017 (3)130
N5—H5···O1i0.902.193.090 (3)176
N6—H6A···O5iv0.862.072.925 (3)177
N7—H7···O7v0.902.042.937 (3)171
N8—H8A···O3ii0.862.092.947 (3)177
N8—H8B···O1i0.862.252.976 (3)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x, y+2, z+1; (v) x+1, y+2, z+1.
 

Acknowledgements

The authors gratefully acknowledge the financial support of this study by the National Key S&T Special Project of China: Grand New Drug R&D (NO. 2009ZX09103–087) and the program of the Nanchang Department of Science and Technology, China (No. 2008368).

References

First citationArmagan, N., Richards, J. P. G. & Uraz, A. A. (1976). Acta Cryst. B32, 1042–1047.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBerman, H. & Kim, S. H. (1967). Acta Cryst. 23, 180–181.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHoward, W., Shields, P. J., Hamrick, J. & Welby, R. (1967). J. Chem. Phys. 46, 2510–2514.  Google Scholar
First citationLarsen, I. K. & Jerslev, B. (1966). Acta Chem. Scand. 20, 983–991.  CrossRef Web of Science Google Scholar
First citationMai, X., Xia, H.-Y., Cao, Y.-S., Lu, X.-S. & Fang, X.-N. (2009). Acta Cryst. E65, o442.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNielsen, B. B., Frydenvang, K. & Larsen, I. K. (1993). Acta Cryst. C49, 1018–1022.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiessen, W. E., Levy, H. A. & Flaig, B. D. (1978). Acta Cryst. B34, 2495–2502.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationYoshitaka, S., James, L. S., Alan, J. H., Adam, H. L., Timothy, J. K., Warren, H. L. D., Hope, W. & Earl, F. K. (1993). J. Med. Chem. 36, 3580–3594.   PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds