organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Bromo­phen­yl)-N-phenyl­oxirane-2-carboxamide

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China, and bCollege of Life Science, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: helongcwnu@yahoo.com.cn

(Received 30 October 2009; accepted 1 November 2009; online 7 November 2009)

There are two independent mol­ecules in the asymmetric unit of the title compound, C15H12BrNO2. In both mol­ecules, the two benzene rings adopt a cis configuration with respect to the ep­oxy ring. In one mol­ecule, the ep­oxy ring makes dihedral angles of 60.5 (2) and 77.92 (19)° with the two benzene rings; in the other mol­ecule, the values are 61.0 (2) and 81.43 (19)°. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For epoxide-containing compounds used as building blocks in synthesis, see: Diez et al. (2008[Diez, D., Nunez, M. G., Anton, A. B., Moro, G. R. F., Garrido, M. N. M., Marcos, I. S., Basabe, P. & Urones, J. G. (2008). Curr. Org. Synth. 5, 186-216.]); Watanabe et al. (1998[Watanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090-8091.]); Zhu & Espenson (1995[Zhu, Z. L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090-7091.]). For related structures, see: He (2009[He, L. (2009). Acta Cryst. E65, o2052.]); He & Chen (2009[He, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrNO2

  • Mr = 318.17

  • Monoclinic, P 21

  • a = 5.5124 (1) Å

  • b = 11.1975 (2) Å

  • c = 21.3298 (4) Å

  • β = 94.405 (2)°

  • V = 1312.69 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.25 mm−1

  • T = 295 K

  • 0.36 × 0.34 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.310, Tmax = 0.362

  • 19177 measured reflections

  • 4142 independent reflections

  • 4027 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.084

  • S = 1.00

  • 4142 reflections

  • 351 parameters

  • 17 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1768 Friedel pairs

  • Flack parameter: 0.016 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.90 (3) 2.55 (2) 3.359 (4) 150
N2—H2A⋯O4ii 0.90 (3) 2.53 (2) 3.332 (4) 148
C3—H3⋯O2iii 0.93 2.48 3.214 (5) 136
C4—H4⋯O1i 0.93 2.36 3.277 (5) 167
C19—H19⋯O4ii 0.93 2.27 3.160 (5) 160
C20—H20⋯O3iv 0.93 2.51 3.199 (6) 131
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+2]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

α, β-Epoxy carbonyl compound are important intermediates for the synthesis of complex molecules. (Diez et al. 2008; Watanabe et al. 1998). The Darzens reaction, is one of the most powerful method to the synthesis of α, β-epoxy carbonyl and related compounds (Zhu et al. 1995). We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The asymmetric unit of the title compound consists of two crystallographically independent molecules (Fig. 1) each of which adopts a cis configuration about the epoxides ring. The dihedral angle between the C1—C6 and C10—C15 is 86.13 (10)° and that between C16–21 and C25–30 phenyl ring is 83.86 (11)°. O2/C7/C8 epoxide ring makes dihedral angles of 60.47 (22)° and 77.92 (19)° with C6 and C15 phenyl ring, respectively. O3/C22/C23 epoxide ring makes dihedral angles of 60.96 (22)° and 81.43 (19)° with C16 and C25 phenyl ring, respectively. The crystal packing is stabilized by N—H···0 and C—H···0 hydrogen bonding (Table 1).

Related literature top

For epoxide-containing compounds used as building blocks in synthesis, see: Diez et al. (2008); Watanabe et al. (1998); Zhu & Espenson (1995). For related structures, see: He et al. (2009); He & Chen (2009).

For related literature, see: He (2009).

Experimental top

2-Chloro-N-phenylacetamide (0.17 g, 1.0 mmol) and potassium hydroxide (0.112 g, 2.0 mmol) were dissolved in acetonitrile (2 ml). To the solution was added 3-bromophenylaldehyde (0.15 g, 1.0 mmol) at 298 K, the solution was stirred for 60 min and removal of solvent under reduced pressure, the residue was purified through column chromatography. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature for 1 d.

Refinement top

H atoms on N atoms was located in a difference Fourier map and refined isotropically with distance restraints of 0.90±0.01 Å. The carbon-bound hydrogen atoms were placed in calculated positions with C—H = 0.93–0.98 Å and refined using a riding model, Uiso(H) =1.2Ueq(C). The distance restraints of 1.39±0.01 Å were applied for the C—C bonds of the benzene rings.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
3-(3-Bromophenyl)-N-phenyloxirane-2-carboxamide top
Crystal data top
C15H12BrNO2F(000) = 640
Mr = 318.17Dx = 1.610 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 15364 reflections
a = 5.5124 (1) Åθ = 2.1–71.8°
b = 11.1975 (2) ŵ = 4.25 mm1
c = 21.3298 (4) ÅT = 295 K
β = 94.405 (2)°Block, colorless
V = 1312.69 (4) Å30.36 × 0.34 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
4142 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source4027 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 15.9149 pixels mm-1θmax = 65.1°, θmin = 2.1°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1310
Tmin = 0.310, Tmax = 0.362l = 2525
19177 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.857P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4142 reflectionsΔρmax = 0.67 e Å3
351 parametersΔρmin = 0.38 e Å3
17 restraintsAbsolute structure: Flack (1983), 1768 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (18)
Crystal data top
C15H12BrNO2V = 1312.69 (4) Å3
Mr = 318.17Z = 4
Monoclinic, P21Cu Kα radiation
a = 5.5124 (1) ŵ = 4.25 mm1
b = 11.1975 (2) ÅT = 295 K
c = 21.3298 (4) Å0.36 × 0.34 × 0.30 mm
β = 94.405 (2)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
4142 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4027 reflections with I > 2σ(I)
Tmin = 0.310, Tmax = 0.362Rint = 0.048
19177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.67 e Å3
S = 1.00Δρmin = 0.38 e Å3
4142 reflectionsAbsolute structure: Flack (1983), 1768 Friedel pairs
351 parametersAbsolute structure parameter: 0.016 (18)
17 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42656 (10)0.89013 (4)0.78262 (2)0.07080 (18)
Br20.99441 (11)0.66221 (5)0.71660 (2)0.07210 (17)
O30.7352 (6)0.2259 (3)0.52366 (13)0.0628 (8)
N20.8472 (5)0.3942 (3)0.42997 (14)0.0468 (7)
N10.6413 (5)0.6562 (3)1.07453 (13)0.0453 (7)
O20.7701 (6)0.4874 (3)0.98389 (13)0.0584 (8)
O10.2403 (5)0.6400 (3)1.05633 (13)0.0589 (8)
O41.2515 (5)0.3825 (3)0.44653 (13)0.0592 (7)
C100.6238 (6)0.7481 (3)1.12127 (15)0.0396 (8)
C170.9052 (7)0.4659 (4)0.63585 (17)0.0465 (9)
H171.04990.43440.65420.056*
C70.6277 (7)0.5369 (4)0.93584 (17)0.0457 (9)
H70.57520.48030.90250.055*
C250.8600 (6)0.4843 (3)0.38192 (15)0.0409 (8)
C130.6069 (7)0.9245 (4)1.21235 (17)0.0468 (10)
H130.60940.98661.24130.056*
C10.6161 (7)0.8207 (4)0.84397 (17)0.0466 (9)
C30.9538 (8)0.8303 (4)0.90649 (19)0.0554 (11)
H31.09700.86780.92160.066*
C50.6970 (6)0.6577 (4)0.91201 (15)0.0410 (7)
C160.8251 (7)0.5765 (4)0.65623 (18)0.0489 (9)
C60.5555 (7)0.7099 (4)0.86780 (17)0.0453 (9)
H60.41300.67230.85220.054*
C80.5158 (8)0.5125 (4)0.99944 (19)0.0490 (9)
H80.41080.44180.99930.059*
C230.9853 (8)0.2580 (4)0.50714 (18)0.0509 (9)
H231.09990.19100.50970.061*
C140.8076 (7)0.9150 (4)1.16933 (18)0.0528 (10)
H140.93260.97091.17360.063*
C40.8971 (7)0.7199 (4)0.93112 (18)0.0496 (9)
H41.00350.68740.96250.060*
C261.0499 (7)0.4918 (4)0.33747 (17)0.0460 (9)
H261.17620.43650.34070.055*
C150.8182 (6)0.8273 (3)1.12322 (17)0.0459 (9)
H150.94320.82231.09640.055*
C110.4279 (7)0.7575 (4)1.16434 (16)0.0447 (8)
H110.30170.70221.16080.054*
C180.7812 (6)0.4049 (4)0.59137 (16)0.0445 (9)
C20.8138 (7)0.8835 (4)0.86286 (18)0.0513 (9)
H20.84870.95810.84650.062*
C210.6217 (8)0.6303 (4)0.6342 (2)0.0601 (12)
H210.57260.70440.64840.072*
C271.0480 (7)0.5783 (4)0.29070 (17)0.0475 (10)
H271.16870.58280.26270.057*
C280.8594 (8)0.6554 (4)0.28868 (16)0.0508 (9)
H280.84980.71510.25830.061*
C90.4518 (7)0.6102 (4)1.04614 (16)0.0444 (8)
C300.6630 (6)0.5628 (4)0.38105 (18)0.0490 (9)
H300.54250.55880.40920.059*
C290.6667 (7)0.6478 (4)0.33342 (18)0.0568 (10)
H290.54070.70320.32940.068*
C200.4981 (8)0.5692 (5)0.5910 (2)0.0623 (12)
H200.35270.60110.57340.075*
C120.4244 (7)0.8461 (4)1.21031 (16)0.0505 (11)
H120.30190.85031.23790.061*
C241.0405 (7)0.3523 (3)0.45838 (16)0.0460 (9)
C190.5729 (7)0.4571 (5)0.56933 (19)0.0575 (11)
H190.47400.41780.53860.069*
C220.8683 (8)0.2850 (4)0.57056 (18)0.0499 (9)
H220.92860.23330.60540.060*
H1A0.779 (4)0.631 (3)1.0586 (16)0.038 (10)*
H2A0.710 (5)0.369 (4)0.4461 (18)0.055 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0567 (3)0.0843 (4)0.0696 (3)0.0040 (3)0.00674 (19)0.0319 (3)
Br20.0783 (3)0.0641 (3)0.0704 (3)0.0098 (3)0.0172 (2)0.0138 (3)
O30.079 (2)0.0537 (18)0.0527 (16)0.0231 (16)0.0157 (14)0.0082 (14)
N20.0472 (16)0.052 (2)0.0402 (15)0.0079 (18)0.0066 (12)0.0116 (15)
N10.0473 (16)0.0487 (19)0.0381 (14)0.0032 (17)0.0079 (12)0.0073 (15)
O20.075 (2)0.0446 (18)0.0516 (16)0.0170 (15)0.0173 (14)0.0015 (12)
O10.0532 (16)0.063 (2)0.0580 (16)0.0031 (15)0.0148 (13)0.0066 (14)
O40.0515 (15)0.0659 (19)0.0575 (15)0.0072 (17)0.0142 (12)0.0116 (16)
C100.0419 (18)0.040 (2)0.0352 (17)0.0040 (15)0.0104 (14)0.0030 (15)
C170.0401 (18)0.051 (2)0.0463 (19)0.0012 (17)0.0063 (15)0.0068 (18)
C70.052 (2)0.040 (2)0.0423 (19)0.0012 (17)0.0148 (16)0.0033 (16)
C250.0436 (18)0.040 (2)0.0369 (17)0.0055 (16)0.0105 (14)0.0013 (14)
C130.056 (2)0.044 (2)0.0374 (18)0.0146 (18)0.0198 (16)0.0074 (16)
C10.0414 (19)0.053 (2)0.0445 (18)0.0058 (17)0.0029 (15)0.0018 (17)
C30.051 (2)0.064 (3)0.050 (2)0.018 (2)0.0049 (18)0.0047 (19)
C50.0401 (17)0.045 (2)0.0374 (16)0.0005 (18)0.0034 (13)0.0044 (17)
C160.046 (2)0.052 (2)0.048 (2)0.0001 (18)0.0019 (16)0.0050 (17)
C60.0415 (19)0.049 (2)0.0438 (19)0.0016 (16)0.0088 (15)0.0017 (16)
C80.061 (2)0.037 (2)0.047 (2)0.0014 (17)0.0124 (17)0.0010 (16)
C230.064 (2)0.039 (2)0.047 (2)0.0017 (18)0.0135 (18)0.0049 (17)
C140.045 (2)0.050 (3)0.061 (2)0.0024 (17)0.0171 (17)0.0015 (19)
C40.042 (2)0.061 (3)0.0439 (19)0.0022 (18)0.0104 (16)0.0056 (18)
C260.047 (2)0.047 (2)0.0424 (19)0.0085 (17)0.0033 (16)0.0007 (17)
C150.0355 (18)0.052 (2)0.049 (2)0.0028 (16)0.0054 (15)0.0000 (17)
C110.0435 (19)0.047 (2)0.0422 (18)0.0048 (16)0.0080 (15)0.0024 (16)
C180.0385 (16)0.053 (2)0.0408 (17)0.0023 (18)0.0057 (13)0.0110 (17)
C20.052 (2)0.050 (2)0.0514 (19)0.007 (2)0.0005 (16)0.0005 (19)
C210.054 (2)0.063 (3)0.062 (2)0.014 (2)0.003 (2)0.011 (2)
C270.051 (2)0.058 (3)0.0344 (18)0.0067 (19)0.0053 (15)0.0034 (17)
C280.070 (2)0.041 (2)0.0371 (17)0.005 (2)0.0193 (16)0.0108 (18)
C90.054 (2)0.041 (2)0.0368 (17)0.0025 (16)0.0072 (16)0.0011 (15)
C300.0352 (18)0.058 (3)0.053 (2)0.0027 (17)0.0036 (15)0.0046 (18)
C290.0449 (19)0.058 (3)0.064 (2)0.005 (2)0.0154 (17)0.008 (2)
C200.046 (2)0.077 (3)0.063 (3)0.013 (2)0.0062 (19)0.015 (2)
C120.052 (2)0.066 (3)0.0327 (17)0.017 (2)0.0002 (15)0.0021 (17)
C240.058 (2)0.042 (2)0.0359 (17)0.0058 (17)0.0065 (16)0.0031 (15)
C190.043 (2)0.078 (3)0.049 (2)0.002 (2)0.0131 (17)0.013 (2)
C220.058 (2)0.047 (2)0.0426 (19)0.0070 (18)0.0147 (17)0.0087 (17)
Geometric parameters (Å, º) top
Br1—C11.788 (4)C5—C41.341 (5)
Br2—C161.807 (4)C16—C211.326 (6)
O3—C221.365 (5)C6—H60.9300
O3—C231.493 (6)C8—C91.539 (6)
N2—C241.274 (5)C8—H80.9800
N2—C251.444 (5)C23—C241.528 (5)
N2—H2A0.90 (3)C23—C221.572 (6)
N1—C91.275 (5)C23—H230.9800
N1—C101.442 (5)C14—C151.395 (5)
N1—H1A0.90 (3)C14—H140.9300
O2—C71.360 (4)C4—H40.9300
O2—C81.492 (5)C26—C271.390 (5)
O1—C91.248 (5)C26—H260.9300
O4—C241.256 (5)C15—H150.9300
C10—C151.389 (5)C11—C121.397 (5)
C10—C111.474 (5)C11—H110.9300
C17—C181.317 (5)C18—C191.341 (5)
C17—C161.396 (6)C18—C221.504 (6)
C17—H170.9300C2—H20.9300
C7—C51.505 (6)C21—C201.298 (7)
C7—C81.557 (6)C21—H210.9300
C7—H70.9800C27—C281.349 (5)
C25—C301.396 (5)C27—H270.9300
C25—C261.468 (5)C28—C291.484 (5)
C13—C121.333 (6)C28—H280.9300
C13—C141.494 (5)C30—C291.393 (5)
C13—H130.9300C30—H300.9300
C1—C21.333 (5)C29—H290.9300
C1—C61.392 (6)C20—C191.411 (7)
C3—C21.306 (6)C20—H200.9300
C3—C41.388 (6)C12—H120.9300
C3—H30.9300C19—H190.9300
C5—C61.314 (5)C22—H220.9800
C22—O3—C2366.6 (3)C13—C14—H14118.1
C24—N2—C25120.7 (3)C5—C4—C3123.5 (4)
C24—N2—H2A113 (3)C5—C4—H4118.3
C25—N2—H2A125 (3)C3—C4—H4118.3
C9—N1—C10121.4 (3)C27—C26—C25122.5 (3)
C9—N1—H1A112 (2)C27—C26—H26118.8
C10—N1—H1A126 (3)C25—C26—H26118.8
C7—O2—C866.0 (3)C10—C15—C14113.3 (3)
C15—C10—N1112.6 (3)C10—C15—H15123.3
C15—C10—C11122.5 (3)C14—C15—H15123.3
N1—C10—C11124.9 (3)C12—C11—C10122.6 (3)
C18—C17—C16121.7 (4)C12—C11—H11118.7
C18—C17—H17119.2C10—C11—H11118.7
C16—C17—H17119.2C17—C18—C19114.2 (4)
O2—C7—C5118.3 (3)C17—C18—C22121.0 (3)
O2—C7—C861.1 (3)C19—C18—C22124.7 (4)
C5—C7—C8125.5 (3)C3—C2—C1113.5 (4)
O2—C7—H7113.9C3—C2—H2123.2
C5—C7—H7113.9C1—C2—H2123.2
C8—C7—H7113.9C20—C21—C16113.3 (5)
C30—C25—N2111.6 (3)C20—C21—H21123.3
C30—C25—C26123.2 (3)C16—C21—H21123.3
N2—C25—C26125.1 (3)C28—C27—C26115.6 (4)
C12—C13—C14121.7 (4)C28—C27—H27122.2
C12—C13—H13119.1C26—C27—H27122.2
C14—C13—H13119.1C27—C28—C29122.1 (4)
C2—C1—C6125.0 (4)C27—C28—H28119.0
C2—C1—Br1114.2 (3)C29—C28—H28119.0
C6—C1—Br1120.8 (3)O1—C9—N1123.5 (4)
C2—C3—C4122.6 (4)O1—C9—C8124.5 (4)
C2—C3—H3118.7N1—C9—C8112.0 (4)
C4—C3—H3118.7C29—C30—C25112.6 (3)
C6—C5—C4114.6 (4)C29—C30—H30123.7
C6—C5—C7119.4 (3)C25—C30—H30123.7
C4—C5—C7126.0 (3)C30—C29—C28124.0 (4)
C21—C16—C17124.9 (4)C30—C29—H29118.0
C21—C16—Br2112.8 (3)C28—C29—H29118.0
C17—C16—Br2122.3 (3)C21—C20—C19123.4 (4)
C5—C6—C1120.9 (4)C21—C20—H20118.3
C5—C6—H6119.6C19—C20—H20118.3
C1—C6—H6119.6C13—C12—C11116.1 (4)
O2—C8—C9123.0 (3)C13—C12—H12122.0
O2—C8—C753.0 (2)C11—C12—H12122.0
C9—C8—C7124.4 (3)O4—C24—N2123.9 (4)
O2—C8—H8114.3O4—C24—C23124.0 (4)
C9—C8—H8114.3N2—C24—C23112.1 (4)
C7—C8—H8114.3C18—C19—C20122.5 (4)
O3—C23—C24124.2 (3)C18—C19—H19118.8
O3—C23—C2252.8 (2)C20—C19—H19118.8
C24—C23—C22124.7 (4)O3—C22—C18118.9 (3)
O3—C23—H23113.9O3—C22—C2360.6 (3)
C24—C23—H23113.9C18—C22—C23125.9 (3)
C22—C23—H23113.9O3—C22—H22113.6
C15—C14—C13123.8 (4)C18—C22—H22113.6
C15—C14—H14118.1C23—C22—H22113.6
C9—N1—C10—C15148.8 (4)Br1—C1—C2—C3178.3 (3)
C9—N1—C10—C1133.1 (5)C17—C16—C21—C200.5 (7)
C8—O2—C7—C5117.1 (4)Br2—C16—C21—C20179.7 (4)
C24—N2—C25—C30147.1 (4)C25—C26—C27—C280.1 (6)
C24—N2—C25—C2634.9 (5)C26—C27—C28—C290.1 (6)
O2—C7—C5—C6176.6 (4)C10—N1—C9—O10.2 (6)
C8—C7—C5—C6103.5 (4)C10—N1—C9—C8178.9 (3)
O2—C7—C5—C44.3 (6)O2—C8—C9—O1173.9 (4)
C8—C7—C5—C477.4 (5)C7—C8—C9—O1109.1 (5)
C18—C17—C16—C210.5 (7)O2—C8—C9—N17.5 (5)
C18—C17—C16—Br2179.3 (3)C7—C8—C9—N172.2 (5)
C4—C5—C6—C10.2 (6)N2—C25—C30—C29177.7 (3)
C7—C5—C6—C1179.0 (3)C26—C25—C30—C290.3 (5)
C2—C1—C6—C50.6 (6)C25—C30—C29—C280.5 (6)
Br1—C1—C6—C5178.7 (3)C27—C28—C29—C300.5 (7)
C7—O2—C8—C9110.7 (4)C16—C21—C20—C190.3 (7)
C5—C7—C8—O2105.8 (4)C14—C13—C12—C112.0 (6)
O2—C7—C8—C9108.0 (4)C10—C11—C12—C131.4 (6)
C5—C7—C8—C92.3 (6)C25—N2—C24—O41.6 (6)
C22—O3—C23—C24110.4 (4)C25—N2—C24—C23179.8 (3)
C12—C13—C14—C151.7 (6)O3—C23—C24—O4176.9 (4)
C6—C5—C4—C30.3 (6)C22—C23—C24—O4111.6 (5)
C7—C5—C4—C3178.8 (4)O3—C23—C24—N24.9 (6)
C2—C3—C4—C50.9 (7)C22—C23—C24—N270.1 (5)
C30—C25—C26—C270.0 (6)C17—C18—C19—C201.7 (6)
N2—C25—C26—C27177.7 (4)C22—C18—C19—C20179.2 (4)
N1—C10—C15—C14178.4 (3)C21—C20—C19—C180.8 (7)
C11—C10—C15—C140.2 (5)C23—O3—C22—C18117.3 (4)
C13—C14—C15—C100.4 (5)C17—C18—C22—O3179.1 (4)
C15—C10—C11—C120.3 (5)C19—C18—C22—O33.5 (6)
N1—C10—C11—C12177.7 (3)C17—C18—C22—C23106.1 (4)
C16—C17—C18—C191.5 (6)C19—C18—C22—C2376.5 (6)
C16—C17—C18—C22179.1 (4)C24—C23—C22—O3109.5 (4)
C4—C3—C2—C11.1 (6)O3—C23—C22—C18106.1 (4)
C6—C1—C2—C31.0 (6)C24—C23—C22—C183.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.90 (3)2.55 (2)3.359 (4)150
N2—H2A···O4ii0.90 (3)2.53 (2)3.332 (4)148
C3—H3···O2iii0.932.483.214 (5)136
C4—H4···O1i0.932.363.277 (5)167
C19—H19···O4ii0.932.273.160 (5)160
C20—H20···O3iv0.932.513.199 (6)131
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y+1/2, z+2; (iv) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H12BrNO2
Mr318.17
Crystal system, space groupMonoclinic, P21
Temperature (K)295
a, b, c (Å)5.5124 (1), 11.1975 (2), 21.3298 (4)
β (°) 94.405 (2)
V3)1312.69 (4)
Z4
Radiation typeCu Kα
µ (mm1)4.25
Crystal size (mm)0.36 × 0.34 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.310, 0.362
No. of measured, independent and
observed [I > 2σ(I)] reflections
19177, 4142, 4027
Rint0.048
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.084, 1.00
No. of reflections4142
No. of parameters351
No. of restraints17
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.38
Absolute structureFlack (1983), 1768 Friedel pairs
Absolute structure parameter0.016 (18)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.90 (3)2.55 (2)3.359 (4)150
N2—H2A···O4ii0.90 (3)2.53 (2)3.332 (4)148
C3—H3···O2iii0.932.483.214 (5)136
C4—H4···O1i0.932.363.277 (5)167
C19—H19···O4ii0.932.273.160 (5)160
C20—H20···O3iv0.932.513.199 (6)131
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y+1/2, z+2; (iv) x+1, y+1/2, z+1.
 

Acknowledgements

The diffraction data were collected at The Centre for Testing and Analysis, Sichuan University. We acknowledge financial support from China West Normal University.

References

First citationDiez, D., Nunez, M. G., Anton, A. B., Moro, G. R. F., Garrido, M. N. M., Marcos, I. S., Basabe, P. & Urones, J. G. (2008). Curr. Org. Synth. 5, 186–216.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHe, L. (2009). Acta Cryst. E65, o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090–8091.  Web of Science CrossRef CAS Google Scholar
First citationZhu, Z. L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090–7091.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds