organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Bromo­phen­yl)-N-phenyl­oxirane-2-carboxamide

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China, and bCollege of Life Science, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: helongcwnu@yahoo.com.cn

(Received 1 November 2009; accepted 2 November 2009; online 4 November 2009)

In the mol­ecule of the title compound, C15H12BrNO2, the two benzene rings adopt a syn configuration with respect to the ep­oxy ring; the dihedral angles between the ep­oxy ring and the two benzene rings are 59.90 (13) and 68.01 (12)°. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For epoxide-containing compounds used as building blocks in synthesis, see: Flisak et al. (1993[Flisak, J. R., Gombatz, K. J., Holmes, M. M., Jarmas, A. A., Lantos, I., Mendelson, W. L., Novack, V. J., Remich, J. J. & Snyder, L. (1993). J. Org. Chem. 58, 6247-6254.]); Watanabe et al. (1998[Watanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090-8091.]); Zhu & Espenson (1995[Zhu, Z. L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090-7091.]). For related structures, see: He (2009[He, L. (2009). Acta Cryst. E65, o2052.]); He & Chen (2009[He, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrNO2

  • Mr = 318.17

  • Orthorhombic, P 21 21 21

  • a = 6.71700 (10) Å

  • b = 10.0370 (2) Å

  • c = 20.4287 (3) Å

  • V = 1377.27 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.05 mm−1

  • T = 295 K

  • 0.40 × 0.40 × 0.36 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.294, Tmax = 0.324

  • 17721 measured reflections

  • 2701 independent reflections

  • 2675 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.069

  • S = 1.01

  • 2701 reflections

  • 177 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1104 Friedel pairs

  • Flack parameter: −0.008 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.79 (3) 2.22 (3) 2.971 (2) 161 (2)
C15—H15⋯O1ii 0.93 2.59 3.442 (3) 153
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Epoxides are important intermediates in organic synthesis. Glycidic esters and amides are particularly useful as they can be further transformed to key intermediates of several pharmaceutical products (Flisak et al. 1993; Watanabe et al. 1998). The Darzens reaction, is one of the most powerful methodologies for the synthesis of α, β-epoxy carbonyl and related compounds (Zhu & Espenson, 1995). We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. In the molecule, the two phenyl ring adopts a cis configuration about the epoxides ring. The dihedral angle between the C1—C6 and C10—C15 is 77.05 (7)°, O1/C7/C8 epoxide ring makes dihedral angles of 59.90 (13)° and 68.01 (12)° with C6 and C15 phenyl ring, respectively, which is similar to that found in a related structure (He & Chen, 2009). The crystal packing is stabilized by N—H···0 and C—H···0 hydrogen bonding (Table 1).

Related literature top

For epoxide-containing compounds used as building blocks in synthesis, see: Flisak et al. (1993); Watanabe et al. (1998); Zhu & Espenson (1995). For related structures, see: He (2009); He & Chen (2009).

Experimental top

2-Chloro-N-phenylacetamide (0.17 g, 1.0 mmol) and potassium hydroxide (0.112 g, 2.0 mmol) were dissolved in acetonitrile (2 ml). To the solution was added 2-bromophenylaldehyde (0.15 g, 1.0 mmol) at 298 K, the solution was stirred for 60 min and removal of solvent under reduced pressure, the residue was purified through column chromatography. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature for 1 d.

Refinement top

Imine H atom was located in a difference Fourier map and refined isotropically. The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
3-(2-Bromophenyl)-N-phenyloxirane-2-carboxamide top
Crystal data top
C15H12BrNO2F(000) = 640
Mr = 318.17Dx = 1.534 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 15647 reflections
a = 6.7170 (1) Åθ = 2.2–72.1°
b = 10.0370 (2) ŵ = 4.05 mm1
c = 20.4287 (3) ÅT = 295 K
V = 1377.27 (4) Å3Block, colorless
Z = 40.40 × 0.40 × 0.36 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2701 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2675 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 15.9149 pixels mm-1θmax = 72.3°, θmin = 4.3°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1112
Tmin = 0.294, Tmax = 0.324l = 2425
17721 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.035P)2 + 0.5235P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.33 e Å3
2701 reflectionsΔρmin = 0.42 e Å3
177 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0074 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1104 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.008 (18)
Crystal data top
C15H12BrNO2V = 1377.27 (4) Å3
Mr = 318.17Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.7170 (1) ŵ = 4.05 mm1
b = 10.0370 (2) ÅT = 295 K
c = 20.4287 (3) Å0.40 × 0.40 × 0.36 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2701 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2675 reflections with I > 2σ(I)
Tmin = 0.294, Tmax = 0.324Rint = 0.028
17721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.069Δρmax = 0.33 e Å3
S = 1.01Δρmin = 0.42 e Å3
2701 reflectionsAbsolute structure: Flack (1983), 1104 Friedel pairs
177 parametersAbsolute structure parameter: 0.008 (18)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14003 (5)0.63054 (3)0.557209 (16)0.07563 (15)
O10.1933 (3)0.23595 (16)0.66346 (9)0.0567 (4)
O20.0059 (3)0.50889 (16)0.76057 (10)0.0637 (5)
N10.1077 (3)0.29560 (18)0.75313 (9)0.0437 (4)
C50.1656 (4)0.2794 (3)0.59008 (13)0.0582 (6)
H50.14800.20150.61400.070*
C60.0186 (3)0.3772 (2)0.59138 (10)0.0470 (5)
C150.3410 (4)0.4080 (2)0.82806 (11)0.0520 (5)
H150.25880.48230.83140.062*
C90.0201 (3)0.3947 (2)0.74074 (11)0.0440 (4)
C80.1951 (3)0.3600 (2)0.69813 (11)0.0467 (5)
H80.32530.38930.71430.056*
C100.2882 (3)0.3016 (2)0.78857 (10)0.0407 (4)
C70.1724 (3)0.3564 (2)0.62606 (11)0.0499 (5)
H70.29120.38280.60140.060*
C110.4155 (3)0.1931 (2)0.78350 (11)0.0494 (5)
H110.38280.12270.75590.059*
C10.0535 (4)0.4931 (2)0.55591 (11)0.0502 (5)
C120.5905 (4)0.1889 (3)0.81914 (14)0.0607 (6)
H120.67340.11490.81620.073*
C20.2261 (5)0.5119 (3)0.52052 (13)0.0654 (7)
H20.24770.59080.49770.078*
C30.3657 (5)0.4116 (3)0.51958 (14)0.0723 (7)
H30.48150.42270.49520.087*
C130.6420 (4)0.2934 (3)0.85879 (13)0.0655 (7)
H130.75940.29050.88290.079*
C140.5199 (4)0.4020 (3)0.86281 (13)0.0641 (7)
H140.55670.47340.88920.077*
C40.3375 (4)0.2965 (3)0.55369 (14)0.0680 (7)
H40.43340.22970.55250.082*
H10.074 (3)0.225 (3)0.7406 (12)0.037 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0896 (2)0.05464 (17)0.0827 (2)0.01486 (15)0.01432 (17)0.01807 (14)
O10.0611 (10)0.0400 (8)0.0689 (10)0.0133 (7)0.0136 (8)0.0087 (7)
O20.0677 (10)0.0342 (8)0.0891 (12)0.0036 (8)0.0200 (10)0.0011 (8)
N10.0487 (10)0.0311 (8)0.0515 (9)0.0032 (8)0.0056 (8)0.0002 (7)
C50.0618 (15)0.0547 (13)0.0581 (13)0.0042 (12)0.0126 (12)0.0037 (11)
C60.0500 (11)0.0458 (11)0.0453 (10)0.0031 (11)0.0122 (8)0.0024 (9)
C150.0584 (13)0.0455 (11)0.0520 (11)0.0046 (10)0.0047 (11)0.0052 (9)
C90.0473 (10)0.0332 (10)0.0515 (11)0.0039 (8)0.0011 (9)0.0071 (8)
C80.0418 (10)0.0375 (10)0.0609 (12)0.0063 (9)0.0036 (8)0.0089 (10)
C100.0442 (10)0.0386 (10)0.0392 (9)0.0030 (8)0.0020 (8)0.0079 (8)
C70.0459 (11)0.0448 (11)0.0589 (12)0.0055 (10)0.0150 (9)0.0106 (10)
C110.0517 (12)0.0425 (11)0.0541 (12)0.0011 (9)0.0042 (9)0.0029 (9)
C10.0604 (12)0.0462 (11)0.0441 (10)0.0012 (9)0.0009 (10)0.0020 (10)
C120.0477 (12)0.0615 (14)0.0730 (16)0.0100 (11)0.0029 (11)0.0138 (12)
C20.0782 (17)0.0652 (16)0.0528 (13)0.0086 (14)0.0095 (12)0.0001 (12)
C30.0631 (16)0.091 (2)0.0629 (15)0.0026 (16)0.0099 (14)0.0143 (14)
C130.0525 (13)0.0838 (19)0.0602 (13)0.0019 (15)0.0100 (12)0.0111 (13)
C140.0696 (16)0.0679 (16)0.0548 (13)0.0056 (14)0.0149 (12)0.0083 (12)
C40.0624 (15)0.0748 (17)0.0669 (15)0.0141 (13)0.0095 (15)0.0156 (14)
Geometric parameters (Å, º) top
Br1—C11.896 (2)C8—H80.9800
O1—C81.433 (3)C10—C111.388 (3)
O1—C71.437 (3)C7—H70.9800
O2—C91.219 (3)C11—C121.384 (4)
N1—C91.338 (3)C11—H110.9300
N1—C101.414 (3)C1—C21.380 (4)
N1—H10.78 (3)C12—C131.370 (4)
C5—C41.384 (4)C12—H120.9300
C5—C61.392 (3)C2—C31.375 (5)
C5—H50.9300C2—H20.9300
C6—C11.390 (3)C3—C41.363 (5)
C6—C71.481 (3)C3—H30.9300
C15—C101.385 (3)C13—C141.366 (4)
C15—C141.397 (4)C13—H130.9300
C15—H150.9300C14—H140.9300
C9—C81.503 (3)C4—H40.9300
C8—C71.481 (3)
C8—O1—C762.11 (14)O1—C7—H7114.9
C9—N1—C10127.97 (19)C6—C7—H7114.9
C9—N1—H1115.1 (18)C8—C7—H7114.9
C10—N1—H1116.8 (18)C12—C11—C10120.6 (2)
C4—C5—C6121.0 (3)C12—C11—H11119.7
C4—C5—H5119.5C10—C11—H11119.7
C6—C5—H5119.5C2—C1—C6121.9 (2)
C1—C6—C5117.4 (2)C2—C1—Br1118.96 (19)
C1—C6—C7120.9 (2)C6—C1—Br1119.09 (17)
C5—C6—C7121.7 (2)C13—C12—C11120.1 (2)
C10—C15—C14118.9 (2)C13—C12—H12119.9
C10—C15—H15120.6C11—C12—H12119.9
C14—C15—H15120.6C3—C2—C1118.7 (3)
O2—C9—N1125.9 (2)C3—C2—H2120.6
O2—C9—C8118.1 (2)C1—C2—H2120.6
N1—C9—C8116.05 (19)C4—C3—C2121.2 (3)
O1—C8—C759.09 (14)C4—C3—H3119.4
O1—C8—C9118.74 (18)C2—C3—H3119.4
C7—C8—C9120.07 (19)C14—C13—C12119.7 (2)
O1—C8—H8115.7C14—C13—H13120.2
C7—C8—H8115.7C12—C13—H13120.2
C9—C8—H8115.7C13—C14—C15121.3 (2)
C15—C10—C11119.4 (2)C13—C14—H14119.3
C15—C10—N1123.5 (2)C15—C14—H14119.3
C11—C10—N1117.1 (2)C3—C4—C5119.7 (3)
O1—C7—C6117.2 (2)C3—C4—H4120.1
O1—C7—C858.80 (14)C5—C4—H4120.1
C6—C7—C8124.15 (18)
C4—C5—C6—C11.3 (3)C9—C8—C7—O1107.5 (2)
C4—C5—C6—C7175.4 (2)O1—C8—C7—C6103.6 (2)
C10—N1—C9—O23.1 (4)C9—C8—C7—C63.9 (4)
C10—N1—C9—C8176.5 (2)C15—C10—C11—C122.1 (3)
C7—O1—C8—C9109.7 (2)N1—C10—C11—C12176.9 (2)
O2—C9—C8—O1167.2 (2)C5—C6—C1—C20.1 (3)
N1—C9—C8—O112.5 (3)C7—C6—C1—C2176.7 (2)
O2—C9—C8—C798.3 (3)C5—C6—C1—Br1178.98 (16)
N1—C9—C8—C781.4 (3)C7—C6—C1—Br14.2 (3)
C14—C15—C10—C111.2 (3)C10—C11—C12—C131.4 (4)
C14—C15—C10—N1177.8 (2)C6—C1—C2—C31.1 (4)
C9—N1—C10—C1514.1 (3)Br1—C1—C2—C3179.8 (2)
C9—N1—C10—C11166.9 (2)C1—C2—C3—C41.2 (4)
C8—O1—C7—C6115.3 (2)C11—C12—C13—C140.2 (4)
C1—C6—C7—O1177.83 (19)C12—C13—C14—C151.1 (4)
C5—C6—C7—O15.5 (3)C10—C15—C14—C130.4 (4)
C1—C6—C7—C8108.6 (2)C2—C3—C4—C50.0 (4)
C5—C6—C7—C874.7 (3)C6—C5—C4—C31.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.79 (3)2.22 (3)2.971 (2)161 (2)
C15—H15···O1ii0.932.593.442 (3)153
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H12BrNO2
Mr318.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)6.7170 (1), 10.0370 (2), 20.4287 (3)
V3)1377.27 (4)
Z4
Radiation typeCu Kα
µ (mm1)4.05
Crystal size (mm)0.40 × 0.40 × 0.36
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.294, 0.324
No. of measured, independent and
observed [I > 2σ(I)] reflections
17721, 2701, 2675
Rint0.028
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.069, 1.01
No. of reflections2701
No. of parameters177
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.42
Absolute structureFlack (1983), 1104 Friedel pairs
Absolute structure parameter0.008 (18)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.79 (3)2.22 (3)2.971 (2)161 (2)
C15—H15···O1ii0.932.593.442 (3)153.3
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+3/2.
 

Acknowledgements

The diffraction data were collected at The Centre for Testing and Analysis, Sichuan University. We acknowledge financial support from China West Normal University.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlisak, J. R., Gombatz, K. J., Holmes, M. M., Jarmas, A. A., Lantos, I., Mendelson, W. L., Novack, V. J., Remich, J. J. & Snyder, L. (1993). J. Org. Chem. 58, 6247–6254.  CrossRef CAS Web of Science Google Scholar
First citationHe, L. (2009). Acta Cryst. E65, o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090–8091.  Web of Science CrossRef CAS Google Scholar
First citationZhu, Z. L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090–7091.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds