metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1608-m1609

Bis(μ-2-fluoro­benzoato-1:2κ2O:O′)(2-fluoro­benzoato-1κ2O,O′)(2-fluoro­benzoato-2κO)dinicotinamide-1κN1,2κN1-dizinc(II)–2-fluoro­benzoic acid (1/1)

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 5 November 2009; accepted 12 November 2009; online 21 November 2009)

The asymmetric unit of the title compound, [Zn2(C7H4FO2)4(C6H6N2O)2]·C7H5FO2, consists of a binuclear ZnII complex bridged by two carboxyl groups of 2-fluoro­benzoate (FB) anions and a 2-fluoro­benzoic acid mol­ecule. The two bridging FB anions, one chelating FB anion and one nicotinamide (NA) ligand coordinate to one Zn cation with a distorted square-pyramidal geometry, while the two bridging FB anions, one monodentate FB anion and one NA ligand coordinate to the other Zn cation with a distorted tetra­hedral geometry. Within the binuclear mol­ecule, the pyridine rings are oriented at a dihedral angle of 19.41 (14)°. In the crystal structure, the uncoordinated 2-fluorobenzoic acid mol­ecules are linked by O—H⋯O hydrogen bonding, forming centrosymmetric supra­molecular dimers. Inter­molecular N—H⋯O hydrogen bonds link the complex mol­ecules into a three-dimensional network. The ππ contacts between nearly parallel pyridine and benzene rings [dihedral angles of 19.41 (14) and 12.72 (16)°, respectively, centroid–centroid distances = 3.701 (2) and 3.857 (3) Å] may further stabilize the crystal structure. The fluorine atoms in two FB ligands are disordered over two positions, with occupancy ratios of 0.70:0.30.

Related literature

For general background to nicotinamide and the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]); Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For related structures, see: Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009a[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955-m956.],b[Hökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328-m1329.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m651-m652.],d[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1416-m1417.]); Greenaway et al. (1984[Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C7H4FO2)4(C6H6N2O)2]·C7H5FO2

  • Mr = 1071.55

  • Monoclinic, P 21 /c

  • a = 12.5143 (2) Å

  • b = 16.7106 (3) Å

  • c = 20.6673 (4) Å

  • β = 92.929 (2)°

  • V = 4316.33 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 100 K

  • 0.29 × 0.25 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.710, Tmax = 0.840

  • 37814 measured reflections

  • 10696 independent reflections

  • 7459 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.097

  • S = 1.01

  • 10696 reflections

  • 659 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.39 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.296 (3)
Zn1—O2 2.006 (3)
Zn1—O5 1.958 (3)
Zn1—O7 2.005 (3)
Zn1—N1 2.068 (4)
Zn2—O3 1.995 (3)
Zn2—O6 1.975 (3)
Zn2—O8 1.940 (3)
Zn2—N3 2.021 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.82 (5) 2.39 (5) 3.056 (6) 140 (5)
N2—H2B⋯O10ii 0.84 (6) 2.03 (5) 2.863 (6) 176.4 (5)
N4—H4A⋯O4iii 0.81 (5) 2.11 (5) 2.825 (5) 149 (5)
N4—H4B⋯O9iv 0.92 (7) 1.96 (7) 2.874 (6) 176 (7)
O12—H121⋯O11v 0.92 (8) 1.71 (8) 2.626 (5) 174 (6)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound is a binuclear compound, consisting of two nicotinamide (NA), four 2-fluorobenzoate (FB) ligands and one 2-fluorobenzoic acid molecule. The structures of some DENA and/or NA complexes of ZnII ion, [Zn2(C11H14NO2)4(C10H14N2O)2] (Hökelek et al., 2009a) and [Zn2(C8H8NO2)4(C10H14N2O)2].2H2O (Hökelek et al., 2009b) have also been determined.

In the title dimeric complex, [Zn2(C7H4FO2)4(C6H6N2O)2].(C7H5FO2), two ZnII atoms are surrounded by three FB groups and one NA ligand. The NA ligands are coordinated to ZnII ions through pyridine N atoms only. Two FB groups act as bridging ligands, while the other two FB groups are coordinated to ZnII ions bidentately and monodentately. The Zn1···Zn2 distance is 3.315 (3) Å. Atom Zn1 lies 0.2403 (5) Å below the best least-squares plane of the four O atoms (O1, O2, O5 and O7) [with a maximum deviation of 0.119 (3) Å for atom O2], while atom Zn2 lies 0.5735 (5) Å below the least-squares plane of the three O atoms (O3, O6 and O8). The four O atoms around the Zn1 atom form a distorted square-planar arrangement with an average Zn1—O bond length of 2.06625 (30) Å. The distorted square-pyramidal coordination is completed by the pyridine N1 atom of the NA ligand at a distance of 2.068 (4) Å (Table 1, Fig. 1). The three nearest O atoms arrangement [with an average Zn2—O bond length of 1.970 (3) Å] around Zn2 atom is completed by the pyridine N3 atom of the NA ligand at a distance of 2.021 (4) Å to form a tetrahedral coordinaton (Table 1, Fig. 1).

The N1—Zn1···Zn2 and N3—Zn2···Zn1 angles are 152.72 (3) and 171.99 (3) °, respectively. The dihedral angle between the best least-squares planes through Zn1, O5, C15, O6, Zn2 [with a maximum deviation of 0.115 (3) Å for atom O5] and Zn1, O7, C22, O8, Zn2 [with a maximum deviation of -0.089 (3) Å for atom O8] is 115.74 (5)°. The dihedral angles between the planar carboxylate groups (O1/O2/C1),(O3/O4/C8), (O5/O6/C15), (O7/O8/C22) and the adjacent benzene rings A (C2—C7), B (C9—C14), C (C16—C21), D (C23—C28) are 10.2 (5)°, 7.65 (17)°, 16.03 (30)° and 16.21 (35)°, respectively, while those between rings A, B, C and D are A/B = 12.72 (16), A/C = 71.97 (15), A/D = 71.15 (14), B/C = 78.14 (15), B/D = 83.60 (16) and C/D = 47.65 (13) °. The pyridine rings E (N1/C29—C33) and F (N3/C35—C39) are oriented at a dihedral angle of 19.41 (14)°. The O1—Zn1—O2 angle is 60.92 (12)°. The corresponding O—M—O (where M is a metal) angles are 58.3 (3)° in [Zn2(C10H14N2O)2(C7H5O3)4].2H2O (Hökelek & Necefoğlu, 1996), 60.03 (6)° in [Zn(C9H10NO2)2(C6H6N2O)(H2O)2] (Hökelek et al., 2009c), 52.91 (4) and 53.96 (4) ° in [Cd(C8H5O3)2(C6H6N2O)2(H2O)].H2O (Hökelek et al., 2009d) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).

In the crystal structure, N—H···O and O—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contacts between the benzene and benzene rings, benzene and pyridine rings, pyridine and H (Zn1/O1/O2/C1) rings and pyridine and benzene rings, Cg1—Cg2, Cg4—Cg6i, Cg5—Cg8 and Cg6—Cg7i [symmetry code: (i) 1 - x, y - 1/2, 1/2 - z, where Cg1, Cg2, Cg4, Cg5, Cg6, Cg7 and Cg8 are centroids of the rings A (C2—C7), B (C9—C14), D (C23—C28), E (N1/C29—C33), F (N3/C35—C39), G (C41—C46) and H (Zn1/O1/O2/C1), respectively] may further stabilize the structure, with centroid-centroid distances of 3.716 (3), 3.701 (2), 3.926 (2) and 3.857 (3) Å, respectively.

Related literature top

For general background to nicotinamide and the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972); Krishnamachari (1974). For related structures, see: Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d); Greenaway et al. (1984).

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.89 g, 5 mmol) in H2O (20 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 2-fluorobenzoate (1.62 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for two days, giving colorless single crystals.

Refinement top

Atoms H2A, H2B, H4A and H4B (for NH2) and H121 (for OH) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 Å for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The F2 and H14 atoms attached at C10 and C14, and the F4 and H28 atoms attached at C24 and C28, respectively, are disordered over two orientations. During the refinement process, the disordered F2, F4, H14, H28 and F2', F4', H14', H28' atoms were refined with occupancies of 0.7 and 0.3, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. Hydrogen atoms have been omitted for clarity.
Bis(µ-2-fluorobenzoato-1:2κ2O:O')(2-fluorobenzoato- 1κ2O,O')(2-fluorobenzoato-2κO)dinicotinamide- 1κN1,2κN1-dizinc(II)–2-fluorobenzoic acid (1/1) top
Crystal data top
[Zn2(C7H4FO2)4(C6H6N2O)2]·C7H5FO2F(000) = 2176
Mr = 1071.55Dx = 1.649 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9923 reflections
a = 12.5143 (2) Åθ = 2.3–28.1°
b = 16.7106 (3) ŵ = 1.21 mm1
c = 20.6673 (4) ÅT = 100 K
β = 92.929 (2)°Block, colorless
V = 4316.33 (13) Å30.29 × 0.25 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
10696 independent reflections
Radiation source: fine-focus sealed tube7459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1613
Tmin = 0.710, Tmax = 0.840k = 2222
37814 measured reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0383P)2 + 3.8099P]
where P = (Fo2 + 2Fc2)/3
10696 reflections(Δ/σ)max = 0.001
659 parametersΔρmax = 1.39 e Å3
10 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Zn2(C7H4FO2)4(C6H6N2O)2]·C7H5FO2V = 4316.33 (13) Å3
Mr = 1071.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5143 (2) ŵ = 1.21 mm1
b = 16.7106 (3) ÅT = 100 K
c = 20.6673 (4) Å0.29 × 0.25 × 0.14 mm
β = 92.929 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
10696 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7459 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.840Rint = 0.036
37814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04210 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 1.39 e Å3
10696 reflectionsΔρmin = 0.59 e Å3
659 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.17153 (4)0.67257 (3)0.24483 (2)0.01406 (14)
Zn20.31257 (4)0.51261 (3)0.29078 (3)0.01641 (14)
F10.0139 (2)0.6414 (2)0.02860 (15)0.0383 (8)
F20.1234 (3)0.4736 (2)0.09432 (18)0.0236 (9)0.70
F2'0.4720 (5)0.5834 (7)0.0809 (5)0.054 (3)*0.30
F30.0844 (2)0.64099 (18)0.36234 (15)0.0362 (8)
F40.6020 (3)0.6154 (2)0.3631 (2)0.0291 (10)0.70
F4'0.3673 (4)0.8400 (4)0.3434 (4)0.0138 (17)*0.30
F50.4883 (2)0.73739 (19)0.00733 (15)0.0377 (8)
O10.0703 (3)0.6540 (2)0.15019 (15)0.0240 (8)
O20.2346 (2)0.6999 (2)0.16036 (14)0.0199 (7)
O30.2399 (2)0.5160 (2)0.20262 (16)0.0270 (8)
O40.4067 (2)0.5492 (2)0.19029 (16)0.0242 (8)
O50.0874 (2)0.60130 (18)0.29767 (14)0.0163 (7)
O60.1828 (2)0.49874 (19)0.34017 (15)0.0199 (7)
O70.3061 (2)0.6981 (2)0.29769 (14)0.0182 (7)
O80.4007 (2)0.59306 (19)0.33526 (16)0.0211 (7)
O90.2568 (3)0.9875 (2)0.26713 (19)0.0319 (9)
O100.2451 (2)0.2018 (2)0.27913 (16)0.0228 (8)
O110.6174 (3)0.9659 (2)0.0211 (2)0.0380 (10)
O120.4706 (3)0.8936 (2)0.00208 (19)0.0331 (9)
H1210.443 (5)0.943 (5)0.008 (3)0.07 (2)*
N10.0910 (3)0.7776 (2)0.26319 (17)0.0148 (8)
N20.1202 (4)1.0617 (3)0.3008 (2)0.0235 (10)
H2A0.058 (4)1.063 (3)0.310 (2)0.022 (14)*
H2B0.158 (4)1.102 (3)0.296 (3)0.030 (16)*
N30.4006 (3)0.4123 (2)0.30545 (17)0.0142 (8)
N40.3912 (4)0.1241 (3)0.2944 (2)0.0209 (9)
H4A0.454 (4)0.120 (3)0.304 (2)0.024 (15)*
H4B0.347 (5)0.082 (4)0.284 (3)0.06 (2)*
C10.1502 (4)0.6839 (3)0.1255 (2)0.0172 (10)
C20.1499 (3)0.7054 (3)0.0554 (2)0.0163 (10)
C30.0668 (4)0.6878 (3)0.0113 (2)0.0203 (10)
C40.0640 (4)0.7140 (3)0.0521 (2)0.0273 (12)
H40.00600.70190.08030.033*
C50.1486 (4)0.7584 (3)0.0729 (2)0.0290 (12)
H50.14720.77740.11520.035*
C60.2351 (4)0.7745 (3)0.0310 (2)0.0255 (12)
H60.29310.80300.04550.031*
C70.2356 (4)0.7483 (3)0.0323 (2)0.0196 (10)
H70.29440.75950.06020.023*
C80.3164 (3)0.5334 (3)0.1666 (2)0.0179 (10)
C90.2958 (3)0.5326 (3)0.0950 (2)0.0169 (10)
C100.2015 (4)0.5058 (3)0.0629 (2)0.0230 (11)
H14'0.14730.48530.08720.028*0.30
C110.1859 (4)0.5086 (3)0.0046 (3)0.0282 (12)
H110.12220.49030.02460.034*
C120.2649 (4)0.5383 (3)0.0407 (3)0.0312 (13)
H120.25430.54050.08550.037*
C130.3598 (4)0.5651 (3)0.0124 (2)0.0306 (13)
H130.41320.58500.03770.037*
C140.3749 (4)0.5620 (3)0.0552 (2)0.0234 (11)
H140.43940.57990.07440.028*0.70
C150.0994 (3)0.5414 (3)0.3341 (2)0.0145 (9)
C160.0079 (3)0.5168 (3)0.3735 (2)0.0164 (10)
C170.0787 (4)0.5654 (3)0.3857 (2)0.0218 (11)
C180.1606 (4)0.5413 (3)0.4231 (2)0.0286 (12)
H180.21760.57540.43010.034*
C190.1571 (4)0.4659 (4)0.4501 (3)0.0362 (14)
H190.21190.44890.47560.043*
C200.0727 (4)0.4155 (3)0.4393 (3)0.0367 (14)
H200.07000.36470.45760.044*
C210.0082 (4)0.4410 (3)0.4010 (2)0.0258 (12)
H210.06440.40640.39340.031*
C220.3881 (3)0.6668 (3)0.3252 (2)0.0158 (10)
C230.4772 (3)0.7209 (3)0.3453 (2)0.0141 (9)
C240.5816 (3)0.6927 (3)0.3596 (2)0.0174 (10)
H28'0.59400.63780.36050.021*0.30
C250.6675 (4)0.7452 (3)0.3726 (2)0.0216 (11)
H250.73620.72530.38110.026*
C260.6492 (4)0.8258 (3)0.3728 (2)0.0216 (11)
H260.70640.86050.38120.026*
C270.5482 (4)0.8570 (3)0.3608 (2)0.0214 (11)
H270.53640.91190.36210.026*
C280.4637 (3)0.8040 (3)0.3467 (2)0.0186 (10)
H280.39570.82480.33780.022*0.70
C290.1429 (3)0.8473 (3)0.2675 (2)0.0146 (9)
H290.21620.84720.26200.018*
C300.0941 (3)0.9198 (3)0.2797 (2)0.0150 (10)
C310.0155 (3)0.9193 (3)0.2884 (2)0.0168 (10)
H310.05150.96650.29720.020*
C320.0698 (3)0.8475 (3)0.2837 (2)0.0181 (10)
H320.14300.84590.28950.022*
C330.0157 (3)0.7782 (3)0.2707 (2)0.0168 (10)
H330.05360.73040.26680.020*
C340.1630 (3)0.9929 (3)0.2819 (2)0.0187 (10)
C350.3537 (3)0.3409 (3)0.2987 (2)0.0142 (9)
H350.27990.33930.29060.017*
C360.4082 (3)0.2690 (3)0.3032 (2)0.0133 (9)
C370.5183 (3)0.2716 (3)0.3166 (2)0.0170 (10)
H370.55790.22460.32040.020*
C380.5676 (3)0.3453 (3)0.3241 (2)0.0184 (10)
H380.64090.34830.33360.022*
C390.5075 (3)0.4143 (3)0.3175 (2)0.0174 (10)
H390.54180.46360.32140.021*
C400.3426 (3)0.1945 (3)0.2915 (2)0.0169 (10)
C410.7570 (4)0.6917 (3)0.0614 (3)0.0303 (12)
H410.79900.64690.07090.036*
C420.6512 (4)0.6824 (3)0.0410 (2)0.0269 (12)
H420.62150.63160.03670.032*
C430.5899 (4)0.7494 (3)0.0272 (2)0.0225 (11)
C440.6319 (4)0.8263 (3)0.0324 (2)0.0195 (10)
C450.7393 (4)0.8332 (3)0.0534 (2)0.0268 (12)
H450.76990.88380.05780.032*
C460.8006 (4)0.7669 (3)0.0677 (3)0.0329 (13)
H460.87190.77290.08170.039*
C470.5720 (4)0.9010 (3)0.0178 (2)0.0214 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0128 (2)0.0158 (3)0.0136 (3)0.0009 (2)0.00059 (19)0.0017 (2)
Zn20.0136 (2)0.0104 (3)0.0248 (3)0.0005 (2)0.0018 (2)0.0001 (2)
F10.0310 (16)0.042 (2)0.0416 (19)0.0084 (15)0.0021 (14)0.0026 (16)
F20.0158 (18)0.029 (2)0.026 (2)0.0116 (17)0.0042 (16)0.0000 (18)
F30.0401 (17)0.0233 (17)0.0473 (19)0.0134 (14)0.0224 (15)0.0138 (15)
F40.025 (2)0.018 (2)0.044 (3)0.0016 (18)0.0054 (18)0.003 (2)
F50.0316 (16)0.0317 (19)0.049 (2)0.0060 (14)0.0037 (14)0.0023 (16)
O10.0318 (18)0.021 (2)0.0194 (17)0.0047 (16)0.0082 (14)0.0002 (15)
O20.0195 (15)0.0255 (19)0.0146 (16)0.0056 (15)0.0014 (13)0.0000 (15)
O30.0132 (15)0.044 (2)0.0240 (18)0.0029 (16)0.0032 (13)0.0131 (17)
O40.0199 (16)0.024 (2)0.0287 (19)0.0058 (15)0.0002 (14)0.0004 (16)
O50.0183 (15)0.0118 (17)0.0189 (16)0.0005 (13)0.0019 (13)0.0034 (14)
O60.0169 (15)0.0185 (19)0.0246 (18)0.0032 (14)0.0033 (13)0.0032 (14)
O70.0148 (15)0.0205 (18)0.0189 (17)0.0008 (14)0.0040 (13)0.0011 (14)
O80.0203 (16)0.0134 (18)0.0292 (19)0.0025 (14)0.0035 (14)0.0016 (15)
O90.0190 (16)0.0164 (19)0.061 (3)0.0025 (15)0.0111 (17)0.0072 (18)
O100.0151 (15)0.0142 (18)0.039 (2)0.0004 (14)0.0032 (14)0.0005 (16)
O110.0239 (18)0.022 (2)0.068 (3)0.0010 (17)0.0012 (18)0.005 (2)
O120.0241 (18)0.025 (2)0.050 (3)0.0028 (17)0.0048 (17)0.0043 (19)
N10.0137 (17)0.017 (2)0.0136 (19)0.0028 (16)0.0004 (14)0.0001 (16)
N20.015 (2)0.015 (2)0.040 (3)0.001 (2)0.0005 (19)0.000 (2)
N30.0141 (17)0.013 (2)0.0158 (19)0.0004 (16)0.0007 (14)0.0001 (16)
N40.017 (2)0.013 (2)0.032 (2)0.0016 (19)0.0005 (18)0.0005 (19)
C10.024 (2)0.012 (2)0.016 (2)0.005 (2)0.0054 (19)0.001 (2)
C20.018 (2)0.015 (2)0.016 (2)0.003 (2)0.0017 (18)0.002 (2)
C30.022 (2)0.018 (3)0.021 (2)0.003 (2)0.0013 (19)0.001 (2)
C40.035 (3)0.027 (3)0.019 (3)0.003 (2)0.010 (2)0.004 (2)
C50.048 (3)0.026 (3)0.013 (2)0.006 (3)0.004 (2)0.001 (2)
C60.029 (3)0.026 (3)0.022 (3)0.000 (2)0.010 (2)0.002 (2)
C70.021 (2)0.019 (3)0.019 (2)0.003 (2)0.0038 (19)0.001 (2)
C80.018 (2)0.011 (2)0.024 (3)0.0041 (19)0.0036 (19)0.003 (2)
C90.017 (2)0.011 (2)0.023 (2)0.0040 (19)0.0033 (18)0.003 (2)
C100.023 (2)0.013 (3)0.033 (3)0.001 (2)0.003 (2)0.001 (2)
C110.031 (3)0.016 (3)0.036 (3)0.001 (2)0.011 (2)0.006 (2)
C120.047 (3)0.024 (3)0.022 (3)0.000 (3)0.001 (2)0.003 (2)
C130.038 (3)0.031 (3)0.024 (3)0.004 (3)0.012 (2)0.002 (2)
C140.021 (2)0.023 (3)0.027 (3)0.001 (2)0.006 (2)0.000 (2)
C150.016 (2)0.013 (2)0.015 (2)0.0024 (19)0.0026 (17)0.003 (2)
C160.016 (2)0.015 (2)0.017 (2)0.000 (2)0.0012 (17)0.001 (2)
C170.025 (2)0.017 (3)0.024 (3)0.003 (2)0.003 (2)0.005 (2)
C180.023 (2)0.030 (3)0.033 (3)0.009 (2)0.010 (2)0.009 (3)
C190.025 (3)0.035 (3)0.049 (4)0.001 (3)0.015 (2)0.018 (3)
C200.030 (3)0.024 (3)0.058 (4)0.000 (2)0.014 (3)0.021 (3)
C210.019 (2)0.017 (3)0.041 (3)0.002 (2)0.003 (2)0.006 (2)
C220.018 (2)0.017 (3)0.012 (2)0.002 (2)0.0047 (17)0.003 (2)
C230.019 (2)0.013 (2)0.010 (2)0.0023 (19)0.0013 (17)0.0009 (19)
C240.019 (2)0.015 (3)0.018 (2)0.002 (2)0.0016 (18)0.002 (2)
C250.018 (2)0.025 (3)0.022 (3)0.002 (2)0.0028 (19)0.003 (2)
C260.021 (2)0.021 (3)0.023 (2)0.011 (2)0.0035 (19)0.003 (2)
C270.028 (2)0.014 (3)0.023 (3)0.004 (2)0.009 (2)0.003 (2)
C280.019 (2)0.019 (3)0.018 (2)0.000 (2)0.0037 (18)0.001 (2)
C290.0118 (19)0.016 (3)0.015 (2)0.0012 (19)0.0009 (17)0.0019 (19)
C300.014 (2)0.015 (2)0.016 (2)0.0012 (19)0.0018 (17)0.0013 (19)
C310.017 (2)0.019 (3)0.015 (2)0.004 (2)0.0007 (18)0.002 (2)
C320.0097 (19)0.027 (3)0.018 (2)0.001 (2)0.0000 (17)0.005 (2)
C330.015 (2)0.019 (3)0.016 (2)0.004 (2)0.0022 (17)0.004 (2)
C340.018 (2)0.015 (3)0.022 (2)0.003 (2)0.0029 (19)0.000 (2)
C350.0138 (19)0.014 (2)0.015 (2)0.0004 (19)0.0006 (17)0.0002 (19)
C360.016 (2)0.012 (2)0.012 (2)0.0012 (19)0.0012 (17)0.0001 (18)
C370.017 (2)0.017 (3)0.016 (2)0.005 (2)0.0019 (18)0.002 (2)
C380.013 (2)0.021 (3)0.021 (2)0.000 (2)0.0008 (18)0.001 (2)
C390.017 (2)0.016 (3)0.019 (2)0.004 (2)0.0001 (18)0.001 (2)
C400.018 (2)0.015 (3)0.018 (2)0.002 (2)0.0024 (18)0.000 (2)
C410.033 (3)0.027 (3)0.032 (3)0.007 (2)0.006 (2)0.001 (2)
C420.040 (3)0.018 (3)0.024 (3)0.004 (2)0.010 (2)0.001 (2)
C430.022 (2)0.028 (3)0.018 (2)0.004 (2)0.0018 (19)0.001 (2)
C440.021 (2)0.022 (3)0.016 (2)0.001 (2)0.0037 (18)0.001 (2)
C450.025 (2)0.023 (3)0.033 (3)0.000 (2)0.002 (2)0.000 (2)
C460.027 (3)0.029 (3)0.042 (3)0.003 (3)0.000 (2)0.001 (3)
C470.023 (2)0.023 (3)0.018 (2)0.000 (2)0.0057 (19)0.000 (2)
Geometric parameters (Å, º) top
Zn1—O12.296 (3)C13—H130.9300
Zn1—O22.006 (3)C14—C131.402 (7)
Zn1—O51.958 (3)C14—H140.9300
Zn1—O72.005 (3)C16—C151.496 (6)
Zn1—N12.068 (4)C16—C171.389 (6)
Zn2—O31.995 (3)C16—C211.387 (7)
Zn2—O61.975 (3)C18—C171.375 (6)
Zn2—O81.940 (3)C18—C191.378 (7)
Zn2—N32.021 (4)C18—H180.9300
F1—C31.338 (5)C19—C201.378 (7)
F3—C171.353 (6)C19—H190.9300
F5—C431.331 (5)C20—H200.9300
O1—C11.250 (5)C21—C201.384 (7)
O2—C11.276 (5)C21—H210.9300
O3—C81.276 (5)C22—C231.479 (6)
O4—C81.237 (5)C24—C231.406 (6)
O5—C151.256 (5)C24—H28'0.9300
O6—C151.266 (5)C25—C241.403 (6)
O7—C221.261 (5)C25—H250.9300
O8—C221.259 (5)C26—C251.367 (7)
O9—C341.231 (5)C26—C271.378 (7)
O10—C401.240 (5)C26—H260.9300
O11—C471.225 (6)C27—C281.398 (6)
O12—C471.301 (6)C27—H270.9300
O12—H1210.92 (8)C28—C231.398 (6)
N1—C291.335 (6)C28—H280.9300
N1—C331.353 (5)C29—C301.387 (6)
N2—C341.335 (6)C29—H290.9300
N2—H2A0.82 (5)C31—C301.392 (6)
N2—H2B0.84 (6)C31—C321.380 (7)
N3—C351.335 (6)C31—H310.9300
N3—C391.349 (5)C32—H320.9300
N4—C401.324 (6)C33—C321.374 (6)
N4—H4A0.81 (5)C33—H330.9300
N4—H4B0.92 (7)C34—C301.494 (6)
C2—C11.494 (6)C35—H350.9300
C2—C31.379 (6)C36—C351.382 (6)
C2—C71.394 (6)C36—C371.391 (6)
C3—C41.379 (7)C36—C401.504 (6)
C4—H40.9300C37—C381.382 (6)
C5—C41.379 (7)C37—H370.9300
C5—H50.9300C38—H380.9300
C6—C51.378 (7)C39—C381.380 (6)
C6—H60.9300C39—H390.9300
C7—C61.380 (6)C41—C461.374 (8)
C7—H70.9300C41—H410.9300
C8—C91.490 (6)C42—C411.377 (7)
C9—C141.407 (6)C42—H420.9300
C10—C91.398 (6)C43—C421.379 (7)
C10—C111.398 (7)C44—C431.391 (7)
C10—H14'0.9300C44—C471.479 (7)
C11—H110.9300C45—C441.395 (6)
C12—C111.363 (7)C45—C461.371 (7)
C12—H120.9300C45—H450.9300
C13—C121.372 (7)C46—H460.9300
O2—Zn1—O160.92 (12)C19—C18—H18120.4
O2—Zn1—N1100.57 (14)C18—C19—C20120.1 (5)
O5—Zn1—O195.98 (12)C18—C19—H19120.0
O5—Zn1—O2150.56 (13)C20—C19—H19120.0
O5—Zn1—O7106.60 (12)C19—C20—C21119.6 (5)
O5—Zn1—N197.64 (13)C19—C20—H20120.2
O7—Zn1—O1154.68 (12)C21—C20—H20120.2
O7—Zn1—O293.94 (12)C16—C21—H21119.0
O7—Zn1—N197.05 (13)C20—C21—C16121.9 (5)
N1—Zn1—O191.04 (13)C20—C21—H21119.0
O3—Zn2—N3112.33 (15)O7—C22—C23117.3 (4)
O6—Zn2—O397.28 (12)O8—C22—O7124.9 (4)
O6—Zn2—N3106.36 (14)O8—C22—C23117.7 (4)
O8—Zn2—O3129.40 (14)C24—C23—C22122.2 (4)
O8—Zn2—O6107.39 (13)C28—C23—C22121.5 (4)
O8—Zn2—N3102.19 (14)C28—C23—C24116.2 (4)
C1—O1—Zn182.8 (3)C23—C24—H28'119.2
C1—O2—Zn195.3 (3)C25—C24—C23121.6 (4)
C8—O3—Zn2102.6 (3)C25—C24—H28'119.2
C15—O5—Zn1140.1 (3)C24—C25—H25120.3
C15—O6—Zn2125.3 (3)C26—C25—C24119.4 (4)
C22—O7—Zn1143.0 (3)C26—C25—H25120.3
C22—O8—Zn2122.4 (3)C25—C26—C27121.6 (4)
C47—O12—H121109 (4)C25—C26—H26119.2
C29—N1—Zn1120.9 (3)C27—C26—H26119.2
C29—N1—C33117.7 (4)C26—C27—C28118.4 (4)
C33—N1—Zn1121.4 (3)C26—C27—H27120.8
C34—N2—H2A120 (4)C28—C27—H27120.8
C34—N2—H2B115 (4)C23—C28—C27122.8 (4)
H2A—N2—H2B124 (5)C23—C28—H28118.6
C35—N3—Zn2119.5 (3)C27—C28—H28118.6
C35—N3—C39118.0 (4)N1—C29—C30123.9 (4)
C39—N3—Zn2122.4 (3)N1—C29—H29118.0
C40—N4—H4A122 (4)C30—C29—H29118.0
C40—N4—H4B114 (4)C29—C30—C31117.7 (4)
H4A—N4—H4B124 (5)C29—C30—C34117.4 (4)
O1—C1—O2120.7 (4)C31—C30—C34124.9 (4)
O1—C1—C2122.0 (4)C30—C31—H31120.6
O2—C1—C2117.3 (4)C32—C31—C30118.7 (4)
C3—C2—C1123.7 (4)C32—C31—H31120.6
C3—C2—C7116.8 (4)C31—C32—H32120.0
C7—C2—C1119.5 (4)C33—C32—C31120.1 (4)
F1—C3—C2120.1 (4)C33—C32—H32120.0
F1—C3—C4117.1 (4)N1—C33—C32121.9 (4)
C4—C3—C2122.8 (4)N1—C33—H33119.1
C3—C4—H4120.5C32—C33—H33119.1
C5—C4—C3118.9 (5)O9—C34—N2122.5 (4)
C5—C4—H4120.5O9—C34—C30119.3 (4)
C4—C5—H5120.0N2—C34—C30118.3 (4)
C6—C5—C4120.1 (5)N3—C35—C36123.8 (4)
C6—C5—H5120.0N3—C35—H35118.1
C5—C6—C7119.9 (5)C36—C35—H35118.1
C5—C6—H6120.1C35—C36—C37117.9 (4)
C7—C6—H6120.1C35—C36—C40116.4 (4)
C2—C7—H7119.3C37—C36—C40125.7 (4)
C6—C7—C2121.4 (4)C36—C37—H37120.6
C6—C7—H7119.3C38—C37—C36118.8 (4)
O3—C8—C9118.7 (4)C38—C37—H37120.6
O4—C8—O3121.1 (4)C37—C38—H38120.1
O4—C8—C9120.2 (4)C39—C38—C37119.8 (4)
C10—C9—C8125.0 (4)C39—C38—H38120.1
C14—C9—C10115.9 (4)N3—C39—C38121.8 (4)
C14—C9—C8119.1 (4)N3—C39—H39119.1
C9—C10—H14'118.9C38—C39—H39119.1
C11—C10—C9122.3 (4)O10—C40—N4122.8 (4)
C11—C10—H14'118.9O10—C40—C36118.3 (4)
C10—C11—H11120.3N4—C40—C36118.9 (4)
C12—C11—C10119.4 (5)C42—C41—H41119.9
C12—C11—H11120.3C46—C41—C42120.2 (5)
C11—C12—C13121.5 (5)C46—C41—H41119.9
C11—C12—H12119.3C41—C42—C43119.2 (5)
C13—C12—H12119.3C41—C42—H42120.4
C12—C13—C14118.9 (5)C43—C42—H42120.4
C12—C13—H13120.6F5—C43—C42117.0 (5)
C14—C13—H13120.6F5—C43—C44121.0 (4)
C9—C14—C13122.2 (4)C42—C43—C44122.0 (4)
C9—C14—H14118.9C43—C44—C45117.1 (5)
C13—C14—H14118.9C43—C44—C47125.3 (4)
O5—C15—O6125.5 (4)C45—C44—C47117.6 (4)
O5—C15—C16118.4 (4)C44—C45—H45119.4
O6—C15—C16116.1 (4)C46—C45—C44121.3 (5)
C17—C16—C15124.3 (4)C46—C45—H45119.4
C21—C16—C15119.2 (4)C41—C46—H46119.9
C21—C16—C17116.4 (4)C45—C46—C41120.3 (5)
F3—C17—C16120.6 (4)C45—C46—H46119.9
F3—C17—C18116.6 (4)O11—C47—O12122.8 (5)
C18—C17—C16122.8 (5)O11—C47—C44120.5 (4)
C17—C18—C19119.1 (5)O12—C47—C44116.7 (5)
C17—C18—H18120.4
O2—Zn1—O1—C13.1 (3)C2—C7—C6—C50.0 (7)
O5—Zn1—O1—C1163.8 (3)O3—C8—C9—C107.4 (7)
O7—Zn1—O1—C110.6 (4)O3—C8—C9—C14171.5 (4)
N1—Zn1—O1—C198.4 (3)O4—C8—C9—C10171.3 (4)
O1—Zn1—O2—C13.0 (2)O4—C8—C9—C149.7 (7)
O5—Zn1—O2—C145.1 (4)C10—C9—C14—C130.8 (7)
O7—Zn1—O2—C1179.9 (3)C8—C9—C14—C13178.3 (5)
N1—Zn1—O2—C182.2 (3)C11—C10—C9—C140.7 (7)
O1—Zn1—O5—C15125.1 (5)C11—C10—C9—C8178.3 (5)
O2—Zn1—O5—C1589.0 (5)C9—C10—C11—C120.1 (8)
O7—Zn1—O5—C1543.3 (5)C13—C12—C11—C100.4 (8)
N1—Zn1—O5—C15143.1 (5)C14—C13—C12—C110.4 (8)
O1—Zn1—O7—C2291.5 (5)C9—C14—C13—C120.3 (8)
O2—Zn1—O7—C2298.0 (5)C17—C16—C15—O517.1 (7)
O5—Zn1—O7—C2260.6 (5)C17—C16—C15—O6163.6 (4)
N1—Zn1—O7—C22160.8 (5)C21—C16—C15—O5163.9 (4)
O1—Zn1—N1—C29118.6 (3)C21—C16—C15—O615.4 (6)
O1—Zn1—N1—C3360.8 (3)C15—C16—C17—F30.8 (7)
O2—Zn1—N1—C2958.0 (3)C15—C16—C17—C18178.8 (5)
O2—Zn1—N1—C33121.4 (3)C21—C16—C17—F3178.2 (4)
O5—Zn1—N1—C29145.2 (3)C21—C16—C17—C180.2 (7)
O5—Zn1—N1—C3335.4 (3)C17—C16—C21—C200.8 (7)
O7—Zn1—N1—C2937.3 (3)C15—C16—C21—C20178.3 (5)
O7—Zn1—N1—C33143.2 (3)C19—C18—C17—F3177.8 (5)
O8—Zn2—O3—C853.8 (3)C19—C18—C17—C160.3 (8)
O6—Zn2—O3—C8173.4 (3)C17—C18—C19—C200.3 (9)
N3—Zn2—O3—C875.5 (3)C18—C19—C20—C210.3 (9)
O3—Zn2—O6—C1550.5 (4)C16—C21—C20—C190.9 (9)
O8—Zn2—O6—C1584.8 (4)O7—C22—C23—C24162.1 (4)
N3—Zn2—O6—C15166.4 (3)O7—C22—C23—C2813.1 (6)
O3—Zn2—O8—C2229.6 (4)O8—C22—C23—C2416.2 (6)
O6—Zn2—O8—C2285.8 (3)O8—C22—C23—C28168.5 (4)
N3—Zn2—O8—C22162.5 (3)C25—C24—C23—C281.8 (6)
O3—Zn2—N3—C3557.3 (3)C25—C24—C23—C22173.8 (4)
O3—Zn2—N3—C39117.9 (3)C26—C25—C24—C231.4 (7)
O6—Zn2—N3—C3548.0 (3)C27—C26—C25—C240.3 (7)
O6—Zn2—N3—C39136.8 (3)C25—C26—C27—C281.6 (7)
O8—Zn2—N3—C35160.4 (3)C26—C27—C28—C231.1 (7)
O8—Zn2—N3—C3924.3 (4)C27—C28—C23—C240.5 (6)
Zn1—O1—C1—O25.0 (4)C27—C28—C23—C22175.1 (4)
Zn1—O1—C1—C2172.5 (4)N1—C29—C30—C310.5 (7)
Zn1—O2—C1—O15.7 (5)N1—C29—C30—C34178.9 (4)
Zn1—O2—C1—C2171.9 (3)C32—C31—C30—C290.8 (6)
Zn2—O3—C8—O45.4 (5)C32—C31—C30—C34178.7 (4)
Zn2—O3—C8—C9173.4 (3)C30—C31—C32—C330.1 (6)
Zn1—O5—C15—O611.4 (8)N1—C33—C32—C311.3 (7)
Zn1—O5—C15—C16169.4 (3)N2—C34—C30—C29172.6 (4)
Zn2—O6—C15—O53.1 (6)N2—C34—C30—C318.0 (7)
Zn2—O6—C15—C16176.2 (3)O9—C34—C30—C296.7 (7)
Zn1—O7—C22—O812.9 (7)O9—C34—C30—C31172.8 (4)
Zn1—O7—C22—C23165.3 (3)C37—C36—C35—N31.1 (6)
Zn2—O8—C22—O716.4 (6)C40—C36—C35—N3177.4 (4)
Zn2—O8—C22—C23161.8 (3)C35—C36—C37—C380.6 (6)
Zn1—N1—C29—C30180.0 (3)C40—C36—C37—C38177.9 (4)
C33—N1—C29—C300.6 (6)C35—C36—C40—O100.5 (6)
Zn1—N1—C33—C32179.1 (3)C37—C36—C40—O10179.0 (4)
C29—N1—C33—C321.5 (6)C35—C36—C40—N4179.2 (4)
Zn2—N3—C35—C36175.3 (3)C37—C36—C40—N40.7 (7)
C39—N3—C35—C360.2 (6)C36—C37—C38—C390.8 (6)
Zn2—N3—C39—C38176.6 (3)N3—C39—C38—C371.8 (7)
C35—N3—C39—C381.3 (6)C42—C41—C46—C450.4 (8)
C3—C2—C1—O16.1 (7)C43—C42—C41—C460.1 (8)
C3—C2—C1—O2176.3 (4)F5—C43—C42—C41179.6 (4)
C7—C2—C1—O1171.4 (4)C44—C43—C42—C410.8 (7)
C7—C2—C1—O26.2 (6)C45—C44—C43—F5179.7 (4)
C1—C2—C3—F17.9 (7)C45—C44—C43—C420.9 (7)
C1—C2—C3—C4174.4 (5)C47—C44—C43—F50.5 (7)
C7—C2—C3—F1174.6 (4)C47—C44—C43—C42179.2 (4)
C7—C2—C3—C43.2 (7)C43—C44—C47—O11176.7 (5)
C1—C2—C7—C6175.2 (4)C43—C44—C47—O123.8 (7)
C3—C2—C7—C62.5 (7)C45—C44—C47—O113.5 (7)
F1—C3—C4—C5176.5 (4)C45—C44—C47—O12176.0 (4)
C2—C3—C4—C51.3 (8)C46—C45—C44—C430.5 (7)
C6—C5—C4—C31.4 (8)C46—C45—C44—C47179.7 (5)
C7—C6—C5—C42.0 (8)C44—C45—C46—C410.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.82 (5)2.39 (5)3.056 (6)140 (5)
N2—H2B···O10ii0.84 (6)2.03 (5)2.863 (6)176.4 (5)
N4—H4A···O4iii0.81 (5)2.11 (5)2.825 (5)149 (5)
N4—H4B···O9iv0.92 (7)1.96 (7)2.874 (6)176 (7)
O12—H121···O11v0.92 (8)1.71 (8)2.626 (5)174 (6)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x, y1, z; (v) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Zn2(C7H4FO2)4(C6H6N2O)2]·C7H5FO2
Mr1071.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.5143 (2), 16.7106 (3), 20.6673 (4)
β (°) 92.929 (2)
V3)4316.33 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.29 × 0.25 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.710, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
37814, 10696, 7459
Rint0.036
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.097, 1.01
No. of reflections10696
No. of parameters659
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.39, 0.59

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—O12.296 (3)Zn2—O31.995 (3)
Zn1—O22.006 (3)Zn2—O61.975 (3)
Zn1—O51.958 (3)Zn2—O81.940 (3)
Zn1—O72.005 (3)Zn2—N32.021 (4)
Zn1—N12.068 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.82 (5)2.39 (5)3.056 (6)140 (5)
N2—H2B···O10ii0.84 (6)2.03 (5)2.863 (6)176.4 (5)
N4—H4A···O4iii0.81 (5)2.11 (5)2.825 (5)149 (5)
N4—H4B···O9iv0.92 (7)1.96 (7)2.874 (6)176 (7)
O12—H121···O11v0.92 (8)1.71 (8)2.626 (5)174 (6)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x, y1, z; (v) x+1, y+2, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m651–m652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m955–m956.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m1328–m1329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1416–m1417.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1608-m1609
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds