metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino­benzo­nitrile)tetra­aqua­cobalt(II) dichloride

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: aywgx@yahoo.com.cn

(Received 7 November 2009; accepted 23 November 2009; online 28 November 2009)

In the crystal structure of the title compound, [Co(C7H6N2)2(H2O)4]Cl2, the CoII cation lies on an inversion center and is coordinated by two 2-amino­benzonitrile ligands and four water mol­ecules in a distorted octa­hedral geometry. The Cl counter-anion links with the complex cations via O—H⋯Cl and N—H⋯Cl hydrogen bonding. Inter­molecular O—H⋯N hydrogen bonding links the complex cations, forming supra­molecular chains running along the b axis.

Related literature

For the chemistry of nitrile derivatives, see: Jin et al. (1994[Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205-212.]); Brewis et al. (2003[Brewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863-3872.]). For a related structure, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H6N2)2(H2O)4]Cl2

  • Mr = 438.17

  • Monoclinic, P 21 /n

  • a = 12.492 (3) Å

  • b = 6.5864 (13) Å

  • c = 12.608 (3) Å

  • β = 109.24 (3)°

  • V = 979.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.732, Tmax = 0.871

  • 9255 measured reflections

  • 2227 independent reflections

  • 1872 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.072

  • S = 1.13

  • 2227 reflections

  • 115 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1W 2.0899 (14)
Co1—O2W 2.0550 (13)
Co1—N1 2.1566 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯Cl1i 0.84 2.33 3.1600 (16) 170
O1W—H1WB⋯Cl1ii 0.86 2.27 3.1099 (15) 167
O2W—H2WA⋯N2iii 0.91 1.99 2.868 (2) 162
O2W—H2WB⋯Cl1iv 0.88 2.27 3.1438 (17) 178
N2—H2B⋯Cl1v 0.92 2.53 3.4433 (18) 172
Symmetry codes: (i) x-1, y-1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+{\script{1\over 2}}, y-{\script{3\over 2}}, -z+{\script{1\over 2}}]; (v) -x+1, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitrile derivatives have found wide range of applications in industry and coordination chemistry as ligands. For example, phthalonitriles have been used as starting materials for phthalocyanines (Jin et al., 1994), which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitisers for photodynamic therapy (Brewis et al., 2003). Recently, we have reported a few benzonitrile compounds (Fu & Zhao, 2007). As an extension of our work on the structural characterization, we report here the crystal structure of the title compound tetra-aqua-bis(2-aminobenzonitrile)-cobalt(II) dichloride.

The crystal data show that in the title compound, the Co(II) lies on an inversion center. The distorted octahedral Co(II) environment contains two N atoms from two planar trans-related 2-aminobenzonitrile ligands in the axial positions and four aqua O atoms in the equatorial plane. In the crystal, O—H···Cl, N—H···Cl and O—H···N hydrogen bonds generate an infinite two-dimensional network (Fig.1).

Related literature top

For the chemistry of nitrile derivatives, see: Jin et al. (1994); Brewis et al. (2003). For a related structure, see: Fu & Zhao (2007).

Experimental top

A mixture of 2-aminobenzonitrile (0.1 mmol) and CoCl2 (0.1 mmol) and water (1 ml) sealed in a glass tube were maintained at 343 K. Crystals suitable for X-ray analysis were obtained after 5 d.

Refinement top

H atoms attached to C atoms were located geometrically and treated as riding with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C). H atoms bonded to O and N atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.85±0.03 and N—H = 0.89±0.03 Å, Uiso(H) = 1.5Ueq(O,N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Bis(2-aminobenzonitrile)tetraaquacobalt(II) dichloride top
Crystal data top
[Co(C7H6N2)2(H2O)4]Cl2F(000) = 450
Mr = 438.17Dx = 1.486 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1872 reflections
a = 12.492 (3) Åθ = 3.4–27.5°
b = 6.5864 (13) ŵ = 1.17 mm1
c = 12.608 (3) ÅT = 298 K
β = 109.24 (3)°Block, red
V = 979.4 (3) Å30.35 × 0.30 × 0.15 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
2227 independent reflections
Radiation source: fine-focus sealed tube1872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scanh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.732, Tmax = 0.871l = 1616
9255 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0216P)2 + 0.2674P]
where P = (Fo2 + 2Fc2)/3
2227 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.30 e Å3
4 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Co(C7H6N2)2(H2O)4]Cl2V = 979.4 (3) Å3
Mr = 438.17Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.492 (3) ŵ = 1.17 mm1
b = 6.5864 (13) ÅT = 298 K
c = 12.608 (3) Å0.35 × 0.30 × 0.15 mm
β = 109.24 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2227 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1872 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.871Rint = 0.038
9255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0344 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.13Δρmax = 0.30 e Å3
2227 reflectionsΔρmin = 0.35 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.50000.02435 (11)
Cl10.62659 (4)0.99536 (7)0.26701 (4)0.04265 (15)
O1W0.10877 (11)0.0642 (2)0.33800 (10)0.0348 (3)
H1WA0.17700.03080.32130.052*
H1WB0.10140.18290.31370.052*
N20.26587 (14)0.6024 (3)0.55539 (14)0.0406 (4)
H2A0.25600.49910.59440.061*
H2B0.29970.71160.59900.061*
O2W0.03539 (12)0.2770 (2)0.44423 (12)0.0469 (4)
H2WA0.10360.34090.47100.070*
H2WB0.00870.34270.38540.070*
C70.33808 (16)0.3068 (3)0.33515 (15)0.0366 (4)
H70.32250.18080.30010.044*
C20.28925 (14)0.3621 (3)0.41754 (14)0.0281 (4)
C30.31432 (14)0.5491 (3)0.47396 (15)0.0292 (4)
N10.14159 (13)0.1374 (2)0.46523 (13)0.0365 (4)
C50.43102 (16)0.6305 (4)0.35985 (18)0.0451 (5)
H50.47740.72200.33930.054*
C40.38513 (16)0.6849 (3)0.44191 (17)0.0389 (5)
H40.40120.81160.47600.047*
C10.20887 (15)0.2307 (3)0.44319 (15)0.0297 (4)
C60.40921 (17)0.4417 (4)0.30739 (17)0.0436 (5)
H60.44240.40670.25390.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02442 (18)0.02295 (18)0.02613 (18)0.00363 (13)0.00896 (14)0.00016 (13)
Cl10.0385 (3)0.0368 (3)0.0443 (3)0.0048 (2)0.0024 (2)0.0060 (2)
O1W0.0330 (7)0.0356 (7)0.0326 (7)0.0032 (6)0.0067 (6)0.0048 (6)
N20.0416 (9)0.0438 (10)0.0384 (9)0.0046 (8)0.0157 (8)0.0119 (8)
O2W0.0411 (8)0.0367 (8)0.0517 (9)0.0072 (6)0.0001 (7)0.0150 (7)
C70.0305 (10)0.0490 (12)0.0309 (10)0.0002 (9)0.0110 (8)0.0040 (9)
C20.0214 (8)0.0363 (10)0.0270 (9)0.0044 (8)0.0084 (7)0.0020 (8)
C30.0222 (9)0.0344 (10)0.0284 (9)0.0000 (7)0.0049 (7)0.0017 (7)
N10.0336 (8)0.0413 (9)0.0365 (9)0.0094 (8)0.0139 (7)0.0002 (7)
C50.0287 (10)0.0601 (14)0.0461 (12)0.0085 (10)0.0117 (9)0.0209 (11)
C40.0295 (10)0.0354 (10)0.0467 (12)0.0068 (8)0.0058 (9)0.0047 (9)
C10.0286 (9)0.0333 (10)0.0270 (9)0.0031 (8)0.0089 (8)0.0022 (7)
C60.0325 (10)0.0703 (15)0.0325 (11)0.0001 (10)0.0167 (9)0.0073 (10)
Geometric parameters (Å, º) top
Co1—O1W2.0899 (14)C7—C61.381 (3)
Co1—O1Wi2.0899 (14)C7—C21.415 (2)
Co1—O2W2.0550 (13)C7—H70.9300
Co1—O2Wi2.0550 (13)C2—C31.405 (3)
Co1—N12.1566 (15)C2—C11.441 (2)
Co1—N1i2.1566 (15)C3—C41.408 (3)
O1W—H1WA0.8377N1—C11.147 (2)
O1W—H1WB0.8551C5—C41.385 (3)
N2—C31.398 (2)C5—C61.392 (3)
N2—H2A0.8715C5—H50.9300
N2—H2B0.9196C4—H40.9300
O2W—H2WA0.9097C6—H60.9300
O2W—H2WB0.8784
O2W—Co1—O2Wi180.00 (8)Co1—O2W—H2WB125.5
O2W—Co1—O1W89.38 (5)H2WA—O2W—H2WB109.6
O2Wi—Co1—O1W90.62 (5)C6—C7—C2119.31 (19)
O2W—Co1—O1Wi90.62 (5)C6—C7—H7120.3
O2Wi—Co1—O1Wi89.38 (5)C2—C7—H7120.3
O1W—Co1—O1Wi180.00 (5)C3—C2—C7121.28 (16)
O2W—Co1—N191.13 (6)C3—C2—C1117.92 (15)
O2Wi—Co1—N188.87 (6)C7—C2—C1120.75 (17)
O1W—Co1—N191.66 (6)N2—C3—C2120.91 (16)
O1Wi—Co1—N188.34 (6)N2—C3—C4121.11 (17)
O2W—Co1—N1i88.87 (6)C2—C3—C4117.90 (17)
O2Wi—Co1—N1i91.13 (6)C1—N1—Co1171.82 (16)
O1W—Co1—N1i88.34 (6)C4—C5—C6121.43 (18)
O1Wi—Co1—N1i91.66 (6)C4—C5—H5119.3
N1—Co1—N1i180.0C6—C5—H5119.3
Co1—O1W—H1WA118.2C5—C4—C3120.27 (19)
Co1—O1W—H1WB115.0C5—C4—H4119.9
H1WA—O1W—H1WB111.8C3—C4—H4119.9
C3—N2—H2A113.3N1—C1—C2175.48 (19)
C3—N2—H2B114.3C7—C6—C5119.73 (18)
H2A—N2—H2B113.3C7—C6—H6120.1
Co1—O2W—H2WA124.4C5—C6—H6120.1
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl1ii0.842.333.1600 (16)170
O1W—H1WB···Cl1iii0.862.273.1099 (15)167
O2W—H2WA···N2iv0.911.992.868 (2)162
O2W—H2WB···Cl1v0.882.273.1438 (17)178
N2—H2B···Cl1vi0.922.533.4433 (18)172
Symmetry codes: (ii) x1, y1, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y1, z; (v) x+1/2, y3/2, z+1/2; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C7H6N2)2(H2O)4]Cl2
Mr438.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)12.492 (3), 6.5864 (13), 12.608 (3)
β (°) 109.24 (3)
V3)979.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.35 × 0.30 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.732, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
9255, 2227, 1872
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.072, 1.13
No. of reflections2227
No. of parameters115
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.35

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O1W2.0899 (14)Co1—N12.1566 (15)
Co1—O2W2.0550 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Cl1i0.842.333.1600 (16)170.3
O1W—H1WB···Cl1ii0.862.273.1099 (15)166.7
O2W—H2WA···N2iii0.911.992.868 (2)161.8
O2W—H2WB···Cl1iv0.882.273.1438 (17)178.2
N2—H2B···Cl1v0.922.533.4433 (18)172.2
Symmetry codes: (i) x1, y1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x+1/2, y3/2, z+1/2; (v) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology, China.

References

First citationBrewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863–3872.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205–212.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds