organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(1,3-Di­phenyl­allyl­­idene)malono­nitrile

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: kangtairan@yahoo.com.cn

(Received 13 November 2009; accepted 14 November 2009; online 21 November 2009)

The title compound, C18H12N2, adopts an E conformation with the benzyl­idenemalononitrile and phenyl groups located on opposite sides of the C=C bond. The two phenyl rings are oriented at a dihedral angle of 62.49 (7)°.

Related literature

For background to the use of malononitrile-containing compounds as building blocks in organic synthesis, see: Erian (1993[Erian, A. W. (1993). Chem. Rev. 93, 1991-2005.]); Liu et al. (2002[Liu, Y., Shen, B., Kotora, M., Nakajima, K. & Takahashi, T. (2002). J. Org. Chem. 67, 7019-7028.]); Sepiol & Milart. (1985[Sepiol, J. & Milart, P. (1985). Tetrahedron, 41, 5261-5265.]); Zhang et al. (2003[Zhang, B., Zhu, X. Q., Lu, J. Y., He, J., Wang, P. G. & Cheng, J. P. (2003). J. Org. Chem. 68, 3295-3298.]). For a related structure, see: Basu Baul et al. (2009[Basu Baul, T. S., Kundu, S., Arman, H. D. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3061.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N2

  • Mr = 256.30

  • Monoclinic, P 21 /c

  • a = 12.1658 (6) Å

  • b = 14.8852 (9) Å

  • c = 8.1959 (7) Å

  • β = 108.457 (6)°

  • V = 1407.85 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: none

  • 13329 measured reflections

  • 2880 independent reflections

  • 1735 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.082

  • S = 1.01

  • 2880 reflections

  • 181 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of ylidene malononitrile was studied extensively in organic synthesis (Erian et al., 1993). From the ring closure reactions, the comounds containing newly formed five or six-membered rings, such as indans (Zhang et al., 2003), naphthalenes (Liu, et al., 2002), benzenes (Sepiol & Milart., 1985) were obtained. As a part of our interest in the synthesis of some complex ring systems, we investigated the title compound, (I), which is a diene reagent in the Diels–Alder reaction. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The title compound adopts an E conformation with respect to the C=C bond, the dihedral angle between the C1—C6 phenyl ring and C10—C15 phenyl ring is 62.49 (7)°.

Related literature top

For background to the use of malononitrile-containing compounds as building blocks in organic synthesis, see: Erian (1993); Liu et al. (2002); Sepiol & Milart. (1985); Zhang et al. (2003). For a related structure, see: Basu Baul et al. (2009).

Experimental top

2-(1-Phenylethylidene)malononitrile (0.334 g, 2.14 mmol), benzaldehyde (0.249 g, 2.35 mmol), piperidine (0.018 g, 0.214 mmol) were stirred in 2-propanol (2 ml) at 343 K for 24 h. Then the reaction was cooled to room temperature, and the solution was filtered to obtain a yellow solid. Recrystallization from hot ethanol afforded the pure compound. Single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation ethanol solvent.

Refinement top

The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93 Å, and refined using a riding model, with Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009; data reduction: CrysAlis PRO (Oxford Diffraction, 2009; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
(E)-2-(1,3-Diphenylallylidene)malononitrile top
Crystal data top
C18H12N2F(000) = 536
Mr = 256.30Dx = 1.209 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5219 reflections
a = 12.1658 (6) Åθ = 3.0–29.2°
b = 14.8852 (9) ŵ = 0.07 mm1
c = 8.1959 (7) ÅT = 295 K
β = 108.457 (6)°Block, yellow
V = 1407.85 (16) Å30.50 × 0.40 × 0.40 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
1735 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.025
Graphite monochromatorθmax = 26.4°, θmin = 3.0°
Detector resolution: 15.9149 pixels mm-1h = 1515
ω scansk = 1218
13329 measured reflectionsl = 1010
2880 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0388P)2]
where P = (Fo2 + 2Fc2)/3
2880 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.11 e Å3
3 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H12N2V = 1407.85 (16) Å3
Mr = 256.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1658 (6) ŵ = 0.07 mm1
b = 14.8852 (9) ÅT = 295 K
c = 8.1959 (7) Å0.50 × 0.40 × 0.40 mm
β = 108.457 (6)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
1735 reflections with I > 2σ(I)
13329 measured reflectionsRint = 0.025
2880 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.01Δρmax = 0.11 e Å3
2880 reflectionsΔρmin = 0.14 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C81.02337 (9)0.42702 (8)0.80790 (16)0.0520 (3)
H80.97560.47310.74870.062*
C91.14221 (9)0.42886 (8)0.80802 (15)0.0468 (3)
C161.17980 (10)0.50107 (7)0.73655 (16)0.0492 (3)
C101.22053 (10)0.35243 (7)0.87880 (15)0.0466 (3)
C70.97483 (10)0.36634 (8)0.88354 (15)0.0492 (3)
H71.02250.32110.94640.059*
C40.76990 (10)0.41976 (8)0.76497 (17)0.0578 (3)
H40.79140.45860.69150.069*
C60.81719 (11)0.30629 (8)0.98007 (17)0.0564 (3)
H60.87060.26771.05310.068*
C50.85340 (9)0.36488 (7)0.87593 (15)0.0461 (3)
C10.70315 (12)0.30433 (9)0.97724 (19)0.0679 (4)
H10.68040.26491.04840.081*
C20.62347 (11)0.36058 (9)0.86948 (19)0.0679 (4)
H20.54700.36010.86920.082*
C111.32866 (10)0.36506 (8)0.99982 (17)0.0572 (3)
H111.35300.42271.03840.069*
C30.65660 (11)0.41749 (9)0.76217 (18)0.0651 (4)
H30.60210.45470.68730.078*
C171.29300 (11)0.50807 (8)0.71970 (17)0.0578 (3)
C141.25937 (13)0.19431 (9)0.8861 (2)0.0751 (4)
H141.23630.13640.84740.090*
C151.18644 (11)0.26573 (8)0.82240 (18)0.0604 (4)
H151.11420.25590.74140.073*
C131.36577 (13)0.20804 (10)1.0064 (2)0.0778 (5)
H131.41440.15951.04920.093*
C121.40048 (12)0.29275 (10)1.06346 (19)0.0707 (4)
H121.47260.30181.14530.085*
C181.10284 (11)0.57361 (9)0.66242 (17)0.0544 (3)
N21.03886 (10)0.62944 (8)0.60031 (16)0.0742 (4)
N11.38156 (11)0.51654 (8)0.70138 (18)0.0851 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C80.0442 (7)0.0488 (7)0.0631 (8)0.0040 (5)0.0171 (6)0.0015 (6)
C90.0427 (7)0.0482 (7)0.0495 (8)0.0006 (5)0.0144 (5)0.0057 (6)
C160.0458 (6)0.0452 (7)0.0570 (8)0.0010 (5)0.0169 (6)0.0030 (6)
C100.0433 (7)0.0475 (7)0.0530 (8)0.0017 (5)0.0208 (6)0.0013 (6)
C70.0462 (7)0.0503 (7)0.0505 (8)0.0049 (5)0.0146 (6)0.0000 (6)
C40.0474 (7)0.0592 (8)0.0668 (9)0.0011 (6)0.0178 (6)0.0085 (7)
C60.0566 (8)0.0565 (7)0.0588 (9)0.0020 (6)0.0222 (7)0.0023 (7)
C50.0440 (7)0.0458 (7)0.0508 (8)0.0001 (5)0.0182 (6)0.0039 (6)
C10.0608 (9)0.0757 (9)0.0755 (11)0.0076 (7)0.0335 (8)0.0056 (8)
C20.0465 (8)0.0847 (10)0.0779 (10)0.0075 (7)0.0272 (7)0.0097 (9)
C110.0486 (7)0.0614 (8)0.0613 (9)0.0012 (6)0.0168 (6)0.0034 (7)
C30.0436 (8)0.0732 (9)0.0757 (10)0.0054 (6)0.0149 (7)0.0012 (8)
C170.0549 (7)0.0536 (8)0.0690 (9)0.0005 (6)0.0253 (7)0.0041 (7)
C140.0774 (11)0.0503 (8)0.1059 (13)0.0079 (7)0.0408 (10)0.0020 (8)
C150.0530 (8)0.0548 (8)0.0753 (10)0.0018 (6)0.0229 (7)0.0052 (7)
C130.0682 (10)0.0724 (11)0.0999 (13)0.0228 (8)0.0365 (10)0.0281 (9)
C120.0509 (8)0.0846 (11)0.0754 (11)0.0103 (7)0.0181 (7)0.0199 (9)
C180.0528 (7)0.0489 (7)0.0626 (9)0.0029 (5)0.0199 (6)0.0020 (6)
N20.0721 (8)0.0606 (7)0.0865 (10)0.0055 (6)0.0202 (7)0.0097 (7)
N10.0661 (8)0.0863 (9)0.1148 (11)0.0025 (6)0.0457 (8)0.0183 (8)
Geometric parameters (Å, º) top
C8—C71.3344 (15)C1—C21.3706 (19)
C8—C91.4457 (14)C1—H10.9300
C8—H80.9300C2—C31.3703 (18)
C9—C161.3701 (15)C2—H20.9300
C9—C101.4795 (15)C11—C121.3804 (17)
C16—C171.4308 (16)C11—H110.9300
C16—C181.4323 (18)C3—H30.9300
C10—C111.3869 (16)C17—N11.1409 (14)
C10—C151.3892 (16)C14—C131.372 (2)
C7—C51.4590 (15)C14—C151.3773 (18)
C7—H70.9300C14—H140.9300
C4—C31.3718 (16)C15—H150.9300
C4—C51.3932 (16)C13—C121.364 (2)
C4—H40.9300C13—H130.9300
C6—C11.3805 (16)C12—H120.9300
C6—C51.3861 (15)C18—N21.1423 (15)
C6—H60.9300
C7—C8—C9127.01 (11)C2—C1—H1120.0
C7—C8—H8116.5C6—C1—H1120.0
C9—C8—H8116.5C3—C2—C1119.97 (12)
C16—C9—C8118.92 (10)C3—C2—H2120.0
C16—C9—C10120.68 (10)C1—C2—H2120.0
C8—C9—C10120.36 (10)C12—C11—C10120.54 (12)
C9—C16—C17124.07 (10)C12—C11—H11119.7
C9—C16—C18120.73 (10)C10—C11—H11119.7
C17—C16—C18115.09 (10)C2—C3—C4120.18 (12)
C11—C10—C15118.66 (11)C2—C3—H3119.9
C11—C10—C9121.57 (11)C4—C3—H3119.9
C15—C10—C9119.77 (11)N1—C17—C16177.09 (14)
C8—C7—C5125.53 (11)C13—C14—C15120.38 (13)
C8—C7—H7117.2C13—C14—H14119.8
C5—C7—H7117.2C15—C14—H14119.8
C3—C4—C5121.17 (12)C14—C15—C10120.15 (13)
C3—C4—H4119.4C14—C15—H15119.9
C5—C4—H4119.4C10—C15—H15119.9
C1—C6—C5121.10 (12)C12—C13—C14120.22 (13)
C1—C6—H6119.5C12—C13—H13119.9
C5—C6—H6119.5C14—C13—H13119.9
C6—C5—C4117.56 (10)C13—C12—C11120.06 (14)
C6—C5—C7119.86 (11)C13—C12—H12120.0
C4—C5—C7122.57 (11)C11—C12—H12120.0
C2—C1—C6119.99 (12)N2—C18—C16177.74 (14)
C7—C8—C9—C16174.10 (11)C8—C7—C5—C6170.60 (11)
C7—C8—C9—C108.02 (18)C8—C7—C5—C410.37 (18)
C8—C9—C16—C17176.08 (12)C5—C6—C1—C20.38 (19)
C10—C9—C16—C171.80 (17)C6—C1—C2—C31.3 (2)
C8—C9—C16—C180.14 (17)C15—C10—C11—C120.38 (18)
C10—C9—C16—C18177.74 (12)C9—C10—C11—C12179.70 (11)
C16—C9—C10—C1153.38 (16)C1—C2—C3—C41.44 (19)
C8—C9—C10—C11128.77 (12)C5—C4—C3—C20.05 (19)
C16—C9—C10—C15125.93 (12)C13—C14—C15—C100.4 (2)
C8—C9—C10—C1551.92 (15)C11—C10—C15—C140.09 (18)
C9—C8—C7—C5177.82 (12)C9—C10—C15—C14179.25 (11)
C1—C6—C5—C41.80 (17)C15—C14—C13—C120.3 (2)
C1—C6—C5—C7179.11 (12)C14—C13—C12—C110.2 (2)
C3—C4—C5—C61.64 (17)C10—C11—C12—C130.5 (2)
C3—C4—C5—C7179.30 (12)

Experimental details

Crystal data
Chemical formulaC18H12N2
Mr256.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)12.1658 (6), 14.8852 (9), 8.1959 (7)
β (°) 108.457 (6)
V3)1407.85 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.40 × 0.40
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13329, 2880, 1735
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.082, 1.01
No. of reflections2880
No. of parameters181
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), CrysAlis PRO (Oxford Diffraction, 2009, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The diffraction data were collected at the Centre for Testing and Analysis, Sichuan University. We acknowledge financial support from China West Normal University (No 412374).

References

First citationBasu Baul, T. S., Kundu, S., Arman, H. D. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3061.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationErian, A. W. (1993). Chem. Rev. 93, 1991–2005.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Shen, B., Kotora, M., Nakajima, K. & Takahashi, T. (2002). J. Org. Chem. 67, 7019–7028.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSepiol, J. & Milart, P. (1985). Tetrahedron, 41, 5261–5265.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, B., Zhu, X. Q., Lu, J. Y., He, J., Wang, P. G. & Cheng, J. P. (2003). J. Org. Chem. 68, 3295–3298.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds